Download citation
Download citation
link to html
The crystal structure of the title compound allowed the cis substituent orientation on the cyclo­penta­none ring to be established. The mol­ecular conformation and crystal packing are governed by a network of hydrogen bonds and by π–π stacking.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814017711/hg5403sup1.cif
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814017711/hg54031sup2.hkl
Contains datablock 1

CCDC reference: 1017486

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.001 Å
  • R factor = 0.046
  • wR factor = 0.114
  • Data-to-parameter ratio = 34.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT480_ALERT_4_C Long H...A H-Bond Reported H10 .. CL1 .. 2.86 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H14 .. CL1 .. 2.96 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6B .. O3 .. 2.68 Ang. PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.542 Check PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 18 Report
Alert level G PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 1 Report PLAT793_ALERT_4_G The Model has Chirality at C2 ............. S Verify PLAT793_ALERT_4_G The Model has Chirality at C4 ............. R Verify PLAT910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) ..... 1 Report PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 839 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Chemical context top

The title compound, cis-3-chloro-1,3-di­methyl-N-(4-nitro­phenyl)-2-oxo­cyclo­pentane-1-carboxamide, (1), was prepared in the course of study of the formation and reactivity of methacryloyl chloride dimers (2), (3) and (4) (Warneke et al., 2014). The scheme below shows the reactivity of methacryloyl dimers and the synthesis of the title compound (1) (LA = Lewis acid). Dimer (2) forms in the oxa-Diels–Alder reaction of two methacryloyl chloride molecules and, in the presence of a Lewis acid (LA, such as AlCl3 or TiCl4), rearranges to cyclo­penta­none derivatives (3) (kinetic product) and (4) (thermodynamic product). Compounds (3) and (4) show similar 1H and 13C NMR spectra, making the direct assignment of the relative orientation of the cyclo­penta­none substituents almost impossible. The crystal structure of (1), as well as the crystal structure of another aromatic amide, cis-3-chloro-N-(3,5-di­chloro­phenyl)-1,3-di­methyl-2-oxo­cyclo­pentane­carboxamide, solved and reported earlier (Warneke et al., 2014), were crucial for the determination of the substituent orientation of the cyclo­penta­none ring after the isolation and derivatization of (4). For the X-ray structures of related trans-3-chloro-N-(3,5-di­chloro­phenyl)-1,3-di­methyl-2-oxo­cyclo­pentane­carboxamide with cis orientation of two methyl groups, see Fischer et al. (1985).

Structural commentary top

The molecular structure of the title compound with atom numbering is shown in Fig. 1. All bond lengths and angles may be considered normal. The crystal structure shows the cis disposition of the two methyl substituents of the cyclo­penta­none ring. The C1 and C7 substituents adopt equatorial, whereas the C8 and Cl1 substituents have axial orientations relative to the mean plane of the five-membered ring. The 4-nitro­anilide group is essentially planar, with a maximum deviation of fitted atoms from the least-square plane, which is defined by atoms C9–C14, N1, N2, O1 and O2 , of 0.0139 (9) Å for N1. The conformation of the amide is stabilized by one classical N1—H1···O1 (2.18 Å) and one non-classical C10—H10···O2 (2.23 Å) hydrogen bonds (Fig. 2), both with an S(6) graph-set motif (Bernstein et al., 1995).

Supra­molecular features top

The crystal packing is governed by several short contacts, which may be classified as non-classical hydrogen bonds (for reviews on weak non-classical hydrogen bonding, see Desiraju & Steiner, 1999; Steiner, 2002; Desiraju, 2005), and by partial stacking of the aromatic rings. Molecules of the title compound form columns with alternating enanti­omeric molecules along the c axis. Although no tight stacking of the aromatic rings can be established [distance between the ring centroids of 4.3719 (6) Å], the aromatic rings of neighboring molecules show partial stacking with several short contacts centered near their nitro-substituent: C14···C13i [3.3843 (15) Å; symmetry code: (i) x, -y+1/2, z-1/2], C14···C12i [3.2483 (15) Å], and C13···N2i [3.1860 (14) Å]. The C7—H7A···O1i hydrogen bond (2.53 Å) provides additional cohesion between neighboring enanti­omeric molecules in the columns (Fig. 3). Along the b axis, parallel columns are inter­connected by C10—H10···Cl1iii [2.86 Å; symmetry code: (iii) -x+1, -y+1, -z+1], and along the a axis by C7—H7C···O4ii [2.54 Å; symmetry code: (ii) x+1, y, z+1] non-classical hydrogen bonds (Fig. 4). Although the C6—H6B···O3v [2.68 Å; symmetry code: (v) -x+1, y+1/2, -z+1/2] contact also lies below the sum of van der Waals radii, its classification as a hydrogen bond is disputable due to an unfavorable angle of 108°.

Synthesis and crystallization top

The title compound was prepared as described by Warneke et al. (2014) by reaction of 4-nitro­aniline and cis-3-chloro-1,3-di­methyl-2-oxo­cyclo­pentane­carbonyl chloride in the presence of Et3N in THF. The product was purified by column chromatography on SiO2 (CHCl3) and readily afforded large transparent X-ray quality crystals upon slow evaporation of CHCl3/heptane solution (m.p. 402–403 K). 1H NMR (360 MHz, CDCl3): δ 8.89 (bs, 1H), 8.26–8.16 (m, 2H), 7.78–7.70 (m, 2H), 2.91–2.78 (m, 1H), 2.49–2.40 (m, 1H), 2.12–2.05 (m, 1H), 2.05–1.98 (m, 1H), 1.75 (s, 3H), 1.51 (s, 3H). 13C NMR (90 MHz, CDCl3): δ 212.4, 168.9, 143.7, 143.3, 125.0, 119.3, 69.7, 55.0, 35.6, 29.4, 25.0, 24.1. MS (EI): m/z (%) 310 (85) [M]+., 173 (85) [M–NHAr]+. HRMS (EI): m/z [M]+ calculated for C14H15ClN2O4 310.07203, found 310.07170.

Refinement top

H atoms were included at calculated positions using a riding model, with aromatic, methyl and amide C—H bond lengths of 0.99, 098 and 0.95 Å, respectively, and amide N—H bond lengths of 0.88 Å. The Uiso(H) values were fixed at 1.5Ueq(C) for methyl H atoms, and 1.2Ueq(C,N) for all other carrier atoms.

Related literature top

For related literature, see: Bernstein et al. (1995); Desiraju (2005); Desiraju & Steiner (1999); Fischer et al. (1985); Steiner (2002); Warneke et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Plot of the title molecule, (1), with the atom-numbering scheme. Displacement ellipsoids are represented at 50% probability levels.
[Figure 2] Fig. 2. Plot of compound (1) depicting one classical N1—H1···O1 and one non-classical C10—H10···O2 intramolecular hydrogen bond (blue), as well as intermolecular interactions with distances shorter than van der Waals contacts (red).
[Figure 3] Fig. 3. Plot of the pair of enantiomeric molecules of (1), showing short contacts between two aromatic rings and the C7—H7A···O1 hydrogen bond.
[Figure 4] Fig. 4. Crystal packing of (1), viewed along the c axis. C10—H10···Cl1 contacts are shown as blue dashed lines and C7—H7C···O4 contacts as green dashed lines.
cis-3-Chloro-1,3-dimethyl-N-(4-nitrophenyl)-2-oxocyclopentane-1-carboxamide top
Crystal data top
C14H15ClN2O4Dx = 1.470 Mg m3
Mr = 310.73Melting point: 402 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4117 (4) ÅCell parameters from 8547 reflections
b = 16.1679 (7) Åθ = 2.5–37.8°
c = 7.8201 (3) ŵ = 0.29 mm1
β = 103.382 (2)°T = 100 K
V = 1403.66 (10) Å3Block, colourless
Z = 40.28 × 0.18 × 0.16 mm
F(000) = 648
Data collection top
Bruker D8 Quest CMOS
diffractometer
6627 independent reflections
Radiation source: I-mu-S microsource X-ray tube5116 reflections with I > 2σ(I)
'laterally graded multilayer (Goebel) mirror' monochromatorRint = 0.028
ω and phi scansθmax = 37.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1917
Tmin = 0.681, Tmax = 0.747k = 2127
15441 measured reflectionsl = 129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5524P]
where P = (Fo2 + 2Fc2)/3
6627 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H15ClN2O4V = 1403.66 (10) Å3
Mr = 310.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4117 (4) ŵ = 0.29 mm1
b = 16.1679 (7) ÅT = 100 K
c = 7.8201 (3) Å0.28 × 0.18 × 0.16 mm
β = 103.382 (2)°
Data collection top
Bruker D8 Quest CMOS
diffractometer
6627 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
5116 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.747Rint = 0.028
15441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.06Δρmax = 0.58 e Å3
6627 reflectionsΔρmin = 0.36 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64522 (9)0.42645 (6)0.37961 (14)0.01331 (17)
C20.76549 (9)0.42549 (6)0.51672 (14)0.01232 (17)
C30.77769 (9)0.35857 (6)0.65852 (13)0.01139 (16)
C40.83111 (9)0.39694 (6)0.83990 (13)0.01175 (16)
C50.87160 (10)0.48290 (6)0.79734 (15)0.01608 (19)
H5A0.95610.48180.78570.019*
H5B0.86490.52280.89060.019*
C60.78602 (10)0.50660 (6)0.62191 (14)0.01600 (19)
H6A0.70910.52850.64120.019*
H6B0.82310.54890.55960.019*
C70.92411 (9)0.34331 (6)0.96019 (14)0.01468 (18)
H7A0.88940.28880.97230.022*
H7B0.94830.36951.07600.022*
H7C0.99470.33700.91000.022*
C80.86666 (10)0.40959 (7)0.41801 (16)0.0181 (2)
H8A0.85320.35610.35780.027*
H8B0.94490.40910.50240.027*
H8C0.86580.45360.33150.027*
C90.50005 (9)0.33261 (6)0.18533 (13)0.01140 (16)
C100.43082 (10)0.39401 (6)0.08226 (14)0.01465 (18)
H100.45250.45060.10060.018*
C110.33034 (9)0.37168 (6)0.04677 (14)0.01470 (18)
H110.28300.41290.11730.018*
C120.29953 (9)0.28902 (6)0.07204 (14)0.01272 (17)
C130.36802 (9)0.22669 (6)0.02663 (14)0.01327 (17)
H130.34630.17020.00630.016*
C140.46849 (9)0.24892 (6)0.15510 (14)0.01253 (17)
H140.51650.20730.22330.015*
N10.60174 (8)0.35022 (5)0.31966 (12)0.01282 (15)
H10.64240.30730.37150.015*
N20.19374 (8)0.26654 (6)0.20886 (13)0.01633 (17)
O10.75274 (7)0.28588 (5)0.63432 (10)0.01533 (15)
O20.59793 (8)0.49203 (5)0.32621 (13)0.02455 (19)
O30.16813 (9)0.19301 (6)0.23155 (13)0.0270 (2)
O40.13478 (8)0.32247 (6)0.29704 (12)0.02274 (18)
Cl10.69827 (2)0.40657 (2)0.93120 (4)0.01568 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0149 (4)0.0129 (4)0.0118 (4)0.0017 (3)0.0024 (4)0.0009 (3)
C20.0143 (4)0.0112 (4)0.0107 (4)0.0023 (3)0.0015 (3)0.0011 (3)
C30.0117 (4)0.0114 (4)0.0113 (4)0.0001 (3)0.0031 (3)0.0001 (3)
C40.0125 (4)0.0121 (4)0.0106 (4)0.0012 (3)0.0026 (3)0.0003 (3)
C50.0191 (5)0.0129 (4)0.0147 (5)0.0057 (3)0.0008 (4)0.0001 (3)
C60.0217 (5)0.0106 (4)0.0140 (5)0.0040 (3)0.0007 (4)0.0010 (3)
C70.0123 (4)0.0166 (4)0.0143 (5)0.0007 (3)0.0013 (4)0.0018 (3)
C80.0159 (5)0.0241 (5)0.0151 (5)0.0027 (4)0.0049 (4)0.0018 (4)
C90.0112 (4)0.0124 (4)0.0106 (4)0.0001 (3)0.0025 (3)0.0002 (3)
C100.0147 (4)0.0129 (4)0.0150 (5)0.0009 (3)0.0007 (4)0.0015 (3)
C110.0133 (4)0.0154 (4)0.0145 (5)0.0019 (3)0.0014 (4)0.0019 (3)
C120.0102 (4)0.0174 (4)0.0108 (4)0.0005 (3)0.0028 (3)0.0004 (3)
C130.0131 (4)0.0137 (4)0.0132 (4)0.0002 (3)0.0034 (4)0.0004 (3)
C140.0126 (4)0.0124 (4)0.0124 (4)0.0009 (3)0.0025 (3)0.0004 (3)
N10.0128 (4)0.0109 (3)0.0131 (4)0.0001 (3)0.0003 (3)0.0006 (3)
N20.0128 (4)0.0224 (4)0.0131 (4)0.0007 (3)0.0016 (3)0.0007 (3)
O10.0203 (4)0.0104 (3)0.0146 (4)0.0009 (2)0.0026 (3)0.0009 (2)
O20.0275 (4)0.0131 (3)0.0261 (5)0.0012 (3)0.0081 (4)0.0022 (3)
O30.0256 (4)0.0228 (4)0.0265 (5)0.0073 (3)0.0064 (4)0.0012 (3)
O40.0163 (4)0.0281 (4)0.0204 (4)0.0043 (3)0.0025 (3)0.0038 (3)
Cl10.01539 (11)0.01668 (11)0.01600 (12)0.00173 (8)0.00574 (9)0.00161 (8)
Geometric parameters (Å, º) top
C1—O21.2189 (13)C8—H8A0.9800
C1—N11.3701 (13)C8—H8B0.9800
C1—C21.5338 (15)C8—H8C0.9800
C2—C31.5324 (14)C9—C101.4017 (14)
C2—C61.5369 (14)C9—N11.4025 (13)
C2—C81.5515 (15)C9—C141.4061 (13)
C3—O11.2136 (12)C10—C111.3884 (15)
C3—C41.5390 (14)C10—H100.9500
C4—C71.5169 (14)C11—C121.3844 (15)
C4—C51.5253 (14)C11—H110.9500
C4—Cl11.8257 (10)C12—C131.3938 (14)
C5—C61.5371 (15)C12—N21.4616 (14)
C5—H5A0.9900C13—C141.3856 (14)
C5—H5B0.9900C13—H130.9500
C6—H6A0.9900C14—H140.9500
C6—H6B0.9900N1—H10.8800
C7—H7A0.9800N2—O31.2273 (13)
C7—H7B0.9800N2—O41.2373 (13)
C7—H7C0.9800
O2—C1—N1124.66 (10)C4—C7—H7C109.5
O2—C1—C2120.13 (9)H7A—C7—H7C109.5
N1—C1—C2115.13 (8)H7B—C7—H7C109.5
C3—C2—C1115.45 (8)C2—C8—H8A109.5
C3—C2—C6103.77 (8)C2—C8—H8B109.5
C1—C2—C6111.49 (8)H8A—C8—H8B109.5
C3—C2—C8106.84 (8)C2—C8—H8C109.5
C1—C2—C8107.60 (9)H8A—C8—H8C109.5
C6—C2—C8111.64 (9)H8B—C8—H8C109.5
O1—C3—C2126.31 (9)C10—C9—N1123.06 (9)
O1—C3—C4124.24 (9)C10—C9—C14119.77 (9)
C2—C3—C4109.42 (8)N1—C9—C14117.17 (9)
C7—C4—C5116.90 (9)C11—C10—C9119.64 (9)
C7—C4—C3114.34 (8)C11—C10—H10120.2
C5—C4—C3103.98 (8)C9—C10—H10120.2
C7—C4—Cl1109.35 (7)C12—C11—C10119.64 (9)
C5—C4—Cl1109.18 (7)C12—C11—H11120.2
C3—C4—Cl1101.95 (7)C10—C11—H11120.2
C4—C5—C6105.06 (8)C11—C12—C13121.84 (10)
C4—C5—H5A110.7C11—C12—N2118.95 (9)
C6—C5—H5A110.7C13—C12—N2119.20 (9)
C4—C5—H5B110.7C14—C13—C12118.54 (9)
C6—C5—H5B110.7C14—C13—H13120.7
H5A—C5—H5B108.8C12—C13—H13120.7
C2—C6—C5104.58 (8)C13—C14—C9120.55 (9)
C2—C6—H6A110.8C13—C14—H14119.7
C5—C6—H6A110.8C9—C14—H14119.7
C2—C6—H6B110.8C1—N1—C9127.61 (9)
C5—C6—H6B110.8C1—N1—H1116.2
H6A—C6—H6B108.9C9—N1—H1116.2
C4—C7—H7A109.5O3—N2—O4123.15 (10)
C4—C7—H7B109.5O3—N2—C12118.38 (9)
H7A—C7—H7B109.5O4—N2—C12118.47 (9)
O2—C1—C2—C3140.81 (11)C1—C2—C6—C5154.86 (9)
N1—C1—C2—C342.27 (13)C8—C2—C6—C584.75 (10)
O2—C1—C2—C622.73 (14)C4—C5—C6—C237.41 (11)
N1—C1—C2—C6160.35 (9)N1—C9—C10—C11179.12 (10)
O2—C1—C2—C8100.01 (12)C14—C9—C10—C111.15 (16)
N1—C1—C2—C876.91 (11)C9—C10—C11—C120.10 (16)
C1—C2—C3—O147.32 (14)C10—C11—C12—C131.21 (16)
C6—C2—C3—O1169.62 (10)C10—C11—C12—N2179.78 (10)
C8—C2—C3—O172.28 (13)C11—C12—C13—C141.02 (16)
C1—C2—C3—C4134.50 (9)N2—C12—C13—C14179.59 (9)
C6—C2—C3—C412.19 (11)C12—C13—C14—C90.26 (15)
C8—C2—C3—C4105.90 (9)C10—C9—C14—C131.34 (15)
O1—C3—C4—C739.21 (14)N1—C9—C14—C13178.91 (9)
C2—C3—C4—C7139.02 (9)O2—C1—N1—C92.35 (18)
O1—C3—C4—C5167.84 (10)C2—C1—N1—C9174.41 (10)
C2—C3—C4—C510.39 (11)C10—C9—N1—C14.49 (17)
O1—C3—C4—Cl178.65 (11)C14—C9—N1—C1175.77 (10)
C2—C3—C4—Cl1103.11 (8)C11—C12—N2—O3179.12 (11)
C7—C4—C5—C6156.09 (9)C13—C12—N2—O30.51 (15)
C3—C4—C5—C629.04 (11)C11—C12—N2—O40.39 (15)
Cl1—C4—C5—C679.18 (9)C13—C12—N2—O4179.00 (10)
C3—C2—C6—C529.97 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.882.182.8536 (12)134
C10—H10···O20.952.232.8467 (14)122
C7—H7A···O1i0.982.533.3577 (13)142
C7—H7C···O4ii0.982.543.4898 (15)165
C10—H10···Cl1iii0.952.863.5362 (10)129
C14—H14···Cl1iv0.952.963.9034 (10)171
C6—H6B···O3v0.992.683.1440 (14)109
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.882.182.8536 (12)133.6
C10—H10···O20.952.232.8467 (14)122.0
C7—H7A···O1i0.982.533.3577 (13)141.9
C7—H7C···O4ii0.982.543.4898 (15)164.5
C10—H10···Cl1iii0.952.863.5362 (10)129.4
C14—H14···Cl1iv0.952.963.9034 (10)171.1
C6—H6B···O3v0.992.683.1440 (14)108.9
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15ClN2O4
Mr310.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.4117 (4), 16.1679 (7), 7.8201 (3)
β (°) 103.382 (2)
V3)1403.66 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.28 × 0.18 × 0.16
Data collection
DiffractometerBruker D8 Quest CMOS
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.681, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
15441, 6627, 5116
Rint0.028
(sin θ/λ)max1)0.862
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 1.06
No. of reflections6627
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.36

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds