Download citation
Download citation
link to html
Three closely related methyl­ated hydrazine carbamates show different hydrogen-bonding patterns, although they all result in chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015010440/hg5443sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015010440/hg5443Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015010440/hg5443IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015010440/hg5443IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989015010440/hg5443Isup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989015010440/hg5443IIsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989015010440/hg5443IIIsup7.cml
Supplementary material

CCDC references: 1404006; 1404005; 1404004

Key indicators

Structure: I
  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.095
  • wR factor = 0.278
  • Data-to-parameter ratio = 18.4
Structure: II
  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.057
  • wR factor = 0.194
  • Data-to-parameter ratio = 10.7
Structure: III
  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in main residue
  • R factor = 0.104
  • wR factor = 0.197
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Datablock: I


Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ....... 0.922 Note
Author Response: sample (I) gave a poor-quality diffraction pattern, which initially indexed on a large triclinic cell. However, it became apparent that a monoclinic cell was a better description of the structure. The unit-cell transformation resulted in a rather low data completion percentage, but the refinement is (in our opinion) satisfactory and the hydrogen-bonding pattern has been established.


Alert level B PLAT234_ALERT_4_B Large Hirshfeld Difference C17 -- C18 .. 0.26 Ang.
Alert level C RFACR01_ALERT_3_C The value of the weighted R factor is > 0.25 Weighted R factor given 0.278 PLAT084_ALERT_3_C High wR2 Value (i.e. > 0.25) ................... 0.28 Report PLAT148_ALERT_3_C su on the a - Axis is (Too) Large ........ 0.006 Ang. PLAT148_ALERT_3_C su on the c - Axis is (Too) Large ........ 0.030 Ang. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) Range 4.6 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Uiso(max)/Uiso(min) ... 4.4 Ratio PLAT234_ALERT_4_C Large Hirshfeld Difference C16 -- C17 .. 0.25 Ang. PLAT241_ALERT_2_C High Ueq as Compared to Neighbors for ..... C16 Check PLAT241_ALERT_2_C High Ueq as Compared to Neighbors for ..... C18 Check PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... C14 Check PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... C17 Check PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.3 Note PLAT332_ALERT_2_C Large Phenyl C-C Range C14 -C19 0.16 Ang. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0096 Ang. PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 6.559 Check PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3 Report PLAT915_ALERT_3_C Low Friedel Pair Coverage ...................... 58 %
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 2 Report PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large. 0.14 Report PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 29 Do ! C2 -C1 -C20 -N4 94.00 37.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 30 Do ! C6 -C1 -C20 -N4 -85.00 37.00 1.555 1.555 1.555 1.555 PLAT791_ALERT_4_G The Model has Chirality at C10 (Chiral SPGR) S Verify PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 2 Report PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 251 Note
1 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 17 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 11 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check
Datablock: II
Alert level B PLAT915_ALERT_3_B Low Friedel Pair Coverage ...................... 39 % PLAT934_ALERT_3_B Number of (Iobs-Icalc)/SigmaW > 10 Outliers .... 2 Check
Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0071 Ang. PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.664 Check PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 7 Report
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 2 Report PLAT791_ALERT_4_G The Model has Chirality at C10 (Chiral SPGR) S Verify PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 3 Report
0 ALERT level A = Most likely a serious problem - resolve or explain 2 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check
Datablock: III

Alert level B PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s) ....... 1 Report PLAT415_ALERT_2_B Short Inter D-H..H-X H8B .. H2B .. 2.05 Ang.
Alert level C RFACG01_ALERT_3_C The value of the R factor is > 0.10 R factor given 0.104 PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... C13 Check PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0061 Ang. PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 38.578 Check PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 5.206 Check PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.147 Check PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 10 Report
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 2 Report PLAT301_ALERT_3_G Main Residue Disorder ............ Percentage = 4 Note PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 41 Check O2A -C11 -H11A 1.555 1.555 1.555 14.00 Deg. PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 43 Check O2B -C11 -H11B 1.555 1.555 1.555 27.80 Deg. PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 86 Check C11 -O2A -H11A 1.555 1.555 1.555 30.80 Deg. PLAT793_ALERT_4_G The Model has Chirality at C10 (Centro SPGR) S Verify PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 1 Report
0 ALERT level A = Most likely a serious problem - resolve or explain 2 ALERT level B = A potentially serious problem, consider carefully 7 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 8 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL024_ALERT_1_A The number of authors is greater than 5. Please specify the role of each of the co-authors for your paper.
Author Response: author contributions are as follows: TCMN and ACP: synthesis; MVNS and JLW supervision and project planning; JPA: structure refinement; WTAH: further refinement, data verification and cif preparation.


1 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Chemical context top

As part of our ongoing studies of hydrazine carbamates derived from L-serine with possible anti-tubercular activity (Pinheiro et al., 2011), we now describe the syntheses and structures of three methyl­ated derivatives, viz: benzyl (E)-3-hy­droxy-1-[2-(4-cyano­benzyl­idene)-1-methyl­hydrazinyl]-1-oxopropan-2-ylcarbamate (I), tert-butyl (E)-3-hy­droxy-1-[2-(4-cyano­benzyl­idene)-1-methyl­hydrazinyl]-1-oxopropan-2-ylcarbamate (II) and tert-butyl (E)-3-hy­droxy-1-[2-benzyl­idene-1-methyl­hydrazinyl]-1-oxopropan-2-ylcarbamate (III), formed by the reaction of the corresponding (E)-(S)-ROCONHCH(CH2OH)CONHN=CH-benzene (R = t-Bu or PhCH2) compound (Nogueira et al., 2013) with potassium carbonate and methyl iodide. In general, the tertiary butyl compounds form simple methyl­ated products as described here, whereas the benzyl compounds lead to cyclized oxazolidin-2-one products (Nogueira et al., 2013). However, compound (I) described herein has not cyclized. As described below, compound (III) has undergone an unexpected racemization during the methyl­ation step. The acidity of the α-hydrogen atom in serine derivatives has been variously reported (e.g., Blaskovich & Lajoie, 1993; Kovacs et al., 1984), and apparently can result in racemization in the presence of even a very weak base such as the carbonate ion. Similar racemizations have been observed in the cyclized oxazolidin-2-one products (Nogueira et al., 2015).

Structural commentary top

The molecular structure of (I) is shown in Fig. 1, which confirms that methyl­ation has occurred at N2 but no cyclization to an oxazolidin-2-one has occurred (Nogueira et al., 2015). Compound (I) crystallizes in a chiral space group but its absolute structure was indeterminate in the present experiment and C10 was assumed to have an S configuration to match the corresponding atom in the L-serine starting material. The atoms of the C14 benzene ring show notably larger displacement ellipsoids than the rest of the molecule, but attempts to model this as disorder did not lead to a significant improvement in fit. Atom N2 is statistically planar (bond-angle sum = 360°), which implies sp2 hybridization for this atom. The C9—N2 bond length of 1.358 (6)Å is typical of an amide and the N1—N2 bond length of 1.374 (5) is shorter than the reference value of 1.40 Å for a nominal N(sp2)—N(sp2) single bond. This suggests at least some electronic conjugation over the almost planar C7/N1/N2/C9/O1 grouping (r.m.s. deviation = 0.010 Å): the C1 benzene ring is twisted by 6.1 (2)° with respect to these atoms. The C7—N1—N2—C8 torsion angle of –1.9 (6)° shows that the carbon atoms are almost eclipsed with respect to the N—N bond whereas the C9—C10—C11—O2 torsion angle of –50.9 (5)° indicates a gauche conformation about the C10—C11 bond. The C9—C10—N3—H3A torsion angle is 38° and the separation between H2A (bonded to O2) and H3A is 2.5 Å.

The molecular structure of (II) can be seen in Fig. 2: again the methyl­ation of N2 has occurred as expected. Because the absolute structure was indeterminate, the configuration of C10 (S) was assumed to be the same as that of the corresponding atom in the L-serine starting material. In terms of the C7/N1/N2/C9/O1 grouping in (II), the C9—N2 and N1—N2 bond lengths are 1.385 (6) and 1.388 (5) Å, respectively, which are both notably longer than the corresponding bonds in (I), and the r.m.s. deviation from planarity of 0.049 Å for these five atoms is also larger than the corresponding value for (I). The dihedral angle between C7/N1/N2/C9/O1 and the C1-benzene ring in (II) is 10.5 (3)°. The C7—N1—N2—C8 torsion angle is 1.2 (7)° and the C9—C10—C11—O2 torsion angle is –47.4 (6)°, which are similar to the equivalent data for (I). The C9—C10—N3—H3 torsion angle in (II) is 30° and the separation between H2A and H3 is 2.7 Å. These values are evidently sufficiently different from the corresponding data for (I) to lead to a different hydrogen-bonding pattern in the crystal (see below).

Compound (III) crystallizes in a centrosymmetric space group, indicating that racemization of C10 has occurred during the methyl­ation of N2: the C10 atom in the asymmetric unit was arbitrarily assigned an S configuration. The O2—H2 hy­droxy group is disordered over two orientations in a 0.802 (7):0.198 (7) ratio. The geometric parameters for (III) are largely consistent with those for (I) and (II): the C7/N1/N2/C9/O1 grouping (r.m.s. deviation = 0.014 Å) subtends a dihedral angle of 1.9 (4)° with the C1–C6 benzene ring and the C9—N2 and N1—N2 bond lengths are 1.358 (5) and 1.381 (4) Å, respectively. The C7—N1—N2—C8 torsion angle is 0.8 (5)° and the C9—C10—C11—O2A (major disorder component) torsion angle is –54.9 (4)°. The C9—C10—C11—O2B torsion angle for the minor disorder component is –156.7 (8)°, which has a significant role to play in the hydrogen-bonding pattern in the crystal of (III).

Supra­molecular features top

In the extended structure of (I), the molecules are linked by short O2—H2A···O4i (i = 1 + x, y, z) and much longer N3—H3A···O4i hydrogen bonds (Table 1, Fig. 4) to the same acceptor oxygen atom, generating [100] chains, with adjacent molecules related by simple translation in the a-axis direction. An unusual R21(7) loop arises from these hydrogen bonds; alternately, this could be described as combined C(7) O—H···O and C(4) N—H···O chains. A pair of weak C—H···π inter­actions are also observed but there is no aromatic ππ stacking (shortest centroid–centroid separation > 4.7 Å).

The extended structure of (II) also features [100] chains (Fig. 5) with adjacent molecules related by translation, but in this case the molecules are only linked by C(7) O2—H2A···O4i (i = 1 + x, y, z) hydrogen bonds (Table 2) with almost the same local geometry as seen in (I). The N3—H3 grouping in (II) is twisted far enough away from O4i to not form an inter­molecular hydrogen bond (H3···O4i = 3.2 Å), but instead forms an intra­molecular link to O1. A very long inter­molecular C—H···N inter­action is observed but there is no ππ stacking in (II), as the shortest centroid–centroid separation is greater than 5.3 Å.

The packing in the centrosymmetric structure of (III) leads to [010] chains (Fig. 6) with adjacent molecules related by the 21 screw axis, so that the C1-benzene ring is `flipped' from one side of the chain to the other in adjacent molecules. As noted above, the hydroxyl group is disordered over two orientations. The hydrogen bond from the major orientation of O2A—H2A is still a bond to O4i (Table 3), where i = 1 – x, y – 1/2, 1/2 – z. The minor disorder component (O2B—H2B) forms an O—H···O hydrogen bond in the opposite chain direction to O1ii (ii = 1 – x, y + 1/2, 1/2 – z): O1 also accepts an intra­molecular N—H···O hydrogen bond, as seen in (II). Once again, no aromatic ππ stacking is observed in the crystal of (III), as the minimum centroid–centroid separation is greater than 4.6 Å.

Database survey top

There are no –OCONHCH(CH2OH)CON(CH3)N=CH– fragments reported in Version 5.36 of the Cambridge Structural Database (Groom & Allen, 2014) but there are 14 unmethyl­ated –OCONHCH(CH2OH)CONHN=CH– groupings with different substituents at each end of the fragment, all of which have been reported by us in the last few years (Howie et al., 2011 and references therein). All of these materials crystallize in chiral space groups.

Synthesis and crystallisation top

Potassium carbonate (1.76 mmol) was added to a solution of the appropriate (E)-(S)-ROCONHCH(CH2OH)CONHN=CH-benzene compound (Nogueira et al., 2013) in acetone (10 ml) and the reaction mixture was vigorously stirred at room temperature for 5 minutes, before adding methyl iodide (1.80 mmol). The reaction mixture was stirred at 323 K for 24–48 hours and the solvent removed by rotary evaporation. The residue was subjected to column chromatography on silica gel, using a chloro­form:methanol (100 95%) gradient. The colourless crystals used in the structure determinations were recrystallized from ethanol solution at room temperature. For further details and spectroscopic data, see: Nogueira et al. (2013).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 4. The crystal of (I) gave a poor diffraction pattern and indexing initially established a large triclinic unit cell [a = 9.512 (12), b = 13.003 (19), c = 22.94 (3) Å, α = 92.93 (2), β = 91.48 (3), γ = 98.13 (3)°, V = 2804 (7) Å3]. An atomic model could be developed in space group P1 with Z = 6, but a PLATON (Spek, 2009) symmetry check indicated that the smaller monoclinic cell reported below was more appropriate and the unit cell transformed by the matrix (-1/3 -1/3 0 / -2/3 1/3 0 / 0 0 -1). It is notable that the aromatic rings of the benzyl groups of all six molecules in the triclinic supercell showed a high degree of thermal motion. The transformation to monoclinic symmetry resulted in a rather low data completion percentage of 92%, but we consider that the refinement is satisfactory and a good geometrical precision results.

For each structure, the O- and N-bound H atoms were located in difference maps, repositioned in idealized locations and refined as riding atoms [H1N was freely refined in structure (III)]. The C-bound H atoms were placed geometrically (C—H = 0.95–1.00 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases. The H atoms of the hydroxyl groups were allowed to rotate about their C—O bond (SHELXL HFIX 83 instruction with O—H = 0.84 Å and C—O—H = 109.5°) to best fit the electron density. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density (AFIX 137 instruction).

Related literature top

For related literature, see: Blaskovich & Lajoie (1993); Groom & Allen (2014); Howie et al. (2011); Kovacs et al. (1984); Nogueira et al. (2013, 2015); Pinheiro et al. (2011).

Computing details top

For all compounds, data collection: CrystalClear (Rigaku, 2012); cell refinement: CrystalClear (Rigaku, 2012); data reduction: CrystalClear (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. The molecular structure of (II) showing 50% displacement ellipsoids.
[Figure 3] Fig. 3. The molecular structure of (III) showing 50% displacement ellipsoids. Only one orientation of the disordered O2—H2 group is shown.
[Figure 4] Fig. 4. Fragment of a [100] hydrogen-bonded chain in the crystal of (I). Symmetry code: (i) 1 + x, y, z. All C-bound H atoms are omitted for clarity.
[Figure 5] Fig. 5. Fragment of a [100] hydrogen-bonded chain in the crystal of (II). Symmetry code: (i) 1 + x, y, z. All C-bound H atoms are omitted for clarity.
[Figure 6] Fig. 6. Fragment of an [010] hydrogen-bonded chain in the crystal of (III). Symmetry codes: (i) 1 - x, y - 1/2, 1/2 - z; (ii) 1 - x, y + 1/2, 1/2 - z. All C-bound H atoms are omitted for clarity.
(I) Benzyl N-{(E)-1-[2-(4-cyanobenzylidene)-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate top
Crystal data top
C20H20N4O4F(000) = 400
Mr = 380.40Dx = 1.352 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5405 reflections
a = 4.995 (6) Åθ = 2.2–31.3°
b = 8.172 (8) ŵ = 0.10 mm1
c = 22.94 (3) ÅT = 100 K
β = 93.48 (3)°Chip, colourless
V = 934.7 (19) Å30.14 × 0.03 × 0.01 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
3270 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
Graphite monochromatorθmax = 31.5°, θmin = 2.7°
ω scansh = 77
13928 measured reflectionsk = 117
4691 independent reflectionsl = 3233
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.278 w = 1/[σ2(Fo2) + (0.1373P)2 + 0.3363P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.005
4691 reflectionsΔρmax = 0.39 e Å3
255 parametersΔρmin = 0.35 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.079 (13)
Crystal data top
C20H20N4O4V = 934.7 (19) Å3
Mr = 380.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.995 (6) ŵ = 0.10 mm1
b = 8.172 (8) ÅT = 100 K
c = 22.94 (3) Å0.14 × 0.03 × 0.01 mm
β = 93.48 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3270 reflections with I > 2σ(I)
13928 measured reflectionsRint = 0.070
4691 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0951 restraint
wR(F2) = 0.278H-atom parameters constrained
S = 1.10Δρmax = 0.39 e Å3
4691 reflectionsΔρmin = 0.35 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1557 (8)0.2306 (6)0.04534 (16)0.0387 (8)
C20.0584 (9)0.0833 (5)0.06903 (16)0.0389 (9)
H20.13800.01740.05670.047*
C30.1564 (8)0.0847 (5)0.11093 (16)0.0371 (8)
H30.22250.01530.12730.044*
C40.2746 (8)0.2330 (5)0.12891 (15)0.0358 (8)
C50.1737 (9)0.3795 (5)0.10501 (16)0.0393 (9)
H50.25410.48020.11710.047*
C60.0422 (9)0.3803 (6)0.06378 (18)0.0404 (9)
H60.11160.48060.04830.048*
C70.5009 (8)0.2375 (6)0.17309 (16)0.0378 (8)
H70.58720.33880.18200.045*
C80.9329 (10)0.2648 (6)0.25743 (18)0.0443 (10)
H8A1.00410.31560.22290.066*
H8B0.80630.34000.27450.066*
H8C1.08080.24090.28620.066*
C90.8664 (10)0.0289 (6)0.26783 (18)0.0416 (9)
C100.7063 (9)0.1831 (5)0.24991 (18)0.0388 (9)
H100.51070.15630.24570.047*
C110.7983 (9)0.2508 (5)0.19144 (16)0.0396 (9)
H11A0.73800.17530.15950.048*
H11B0.71120.35800.18350.048*
C120.5656 (8)0.4037 (6)0.31560 (16)0.0379 (8)
C130.4928 (10)0.6097 (6)0.3865 (2)0.0477 (11)
H13A0.31190.56430.39160.057*
H13B0.47530.70550.36020.057*
C140.6244 (14)0.6577 (9)0.4441 (2)0.0688 (17)
C150.8449 (18)0.7581 (12)0.4483 (4)0.105 (3)
H150.91310.80200.41390.126*
C160.970 (3)0.796 (2)0.5025 (7)0.163 (5)
H161.12200.86640.50530.195*
C170.871 (3)0.7322 (17)0.5505 (4)0.141 (5)
H170.95690.76130.58720.169*
C180.671 (3)0.6355 (18)0.5509 (4)0.149 (5)
H180.61740.58820.58620.179*
C190.531 (3)0.6011 (13)0.4962 (3)0.125 (4)
H190.37150.53810.49540.150*
C200.3731 (8)0.2306 (6)0.00082 (17)0.0411 (9)
N10.5835 (7)0.1082 (5)0.19964 (14)0.0360 (7)
N20.7956 (8)0.1136 (5)0.24061 (15)0.0407 (8)
N30.7554 (7)0.2999 (5)0.29708 (15)0.0422 (8)
H3A0.91700.30370.31460.051*
N40.5474 (8)0.2307 (6)0.03581 (15)0.0480 (9)
O11.0542 (7)0.0348 (4)0.30583 (13)0.0503 (9)
O21.0784 (6)0.2702 (4)0.19126 (12)0.0445 (7)
H2A1.13030.33630.21760.067*
O30.6668 (7)0.4855 (4)0.36255 (12)0.0440 (8)
O40.3405 (6)0.4203 (4)0.29257 (13)0.0443 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (2)0.038 (2)0.0309 (16)0.0001 (19)0.0025 (14)0.0043 (17)
C20.048 (2)0.035 (2)0.0324 (17)0.0014 (19)0.0040 (15)0.0005 (16)
C30.044 (2)0.032 (2)0.0344 (17)0.0029 (18)0.0044 (15)0.0008 (15)
C40.043 (2)0.0313 (19)0.0324 (16)0.0012 (18)0.0016 (14)0.0003 (16)
C50.053 (2)0.031 (2)0.0333 (18)0.0002 (18)0.0037 (16)0.0020 (15)
C60.049 (2)0.035 (2)0.0365 (19)0.0059 (18)0.0001 (16)0.0050 (16)
C70.044 (2)0.0329 (19)0.0360 (17)0.0007 (18)0.0012 (15)0.0032 (16)
C80.060 (3)0.040 (2)0.0316 (17)0.005 (2)0.0073 (17)0.0056 (16)
C90.050 (2)0.039 (2)0.0346 (18)0.0028 (19)0.0080 (16)0.0021 (17)
C100.039 (2)0.036 (2)0.0397 (19)0.0014 (17)0.0100 (16)0.0058 (16)
C110.052 (2)0.030 (2)0.0355 (18)0.0038 (18)0.0102 (16)0.0012 (15)
C120.043 (2)0.037 (2)0.0324 (17)0.0061 (18)0.0066 (15)0.0023 (16)
C130.057 (3)0.044 (3)0.042 (2)0.000 (2)0.0026 (19)0.0129 (19)
C140.092 (4)0.071 (4)0.042 (2)0.003 (3)0.009 (3)0.016 (3)
C150.116 (6)0.087 (6)0.107 (6)0.015 (5)0.035 (5)0.048 (5)
C160.189 (11)0.144 (11)0.145 (9)0.013 (10)0.080 (9)0.057 (9)
C170.232 (15)0.110 (9)0.075 (6)0.032 (9)0.048 (8)0.044 (6)
C180.242 (16)0.140 (11)0.066 (5)0.048 (11)0.006 (7)0.020 (6)
C190.207 (11)0.113 (8)0.054 (4)0.005 (8)0.005 (5)0.011 (5)
C200.046 (2)0.038 (2)0.0390 (18)0.0037 (19)0.0011 (16)0.0022 (18)
N10.0400 (17)0.0363 (18)0.0308 (14)0.0027 (15)0.0057 (12)0.0015 (13)
N20.050 (2)0.0362 (19)0.0343 (15)0.0043 (16)0.0108 (14)0.0038 (14)
N30.0452 (18)0.042 (2)0.0372 (16)0.0023 (16)0.0142 (13)0.0077 (14)
N40.053 (2)0.047 (2)0.0423 (18)0.0066 (19)0.0120 (15)0.0048 (18)
O10.058 (2)0.0464 (19)0.0429 (16)0.0028 (16)0.0232 (14)0.0009 (14)
O20.0532 (17)0.0387 (16)0.0403 (14)0.0021 (14)0.0072 (12)0.0024 (13)
O30.0546 (19)0.0439 (17)0.0321 (13)0.0040 (14)0.0090 (12)0.0074 (12)
O40.0466 (16)0.0429 (18)0.0421 (15)0.0021 (14)0.0093 (12)0.0093 (13)
Geometric parameters (Å, º) top
C1—C21.395 (6)C11—H11A0.9900
C1—C61.404 (7)C11—H11B0.9900
C1—C201.445 (5)C12—O41.221 (5)
C2—C31.397 (6)C12—O31.340 (5)
C2—H20.9500C12—N31.359 (6)
C3—C41.399 (6)C13—O31.465 (6)
C3—H30.9500C13—C141.492 (7)
C4—C51.398 (6)C13—H13A0.9900
C4—C71.472 (5)C13—H13B0.9900
C5—C61.391 (6)C14—C151.372 (11)
C5—H50.9500C14—C191.386 (11)
C6—H60.9500C15—C161.391 (12)
C7—N11.276 (6)C15—H150.9500
C7—H70.9500C16—C171.34 (2)
C8—N21.454 (6)C16—H160.9500
C8—H8A0.9800C17—C181.274 (17)
C8—H8B0.9800C17—H170.9500
C8—H8C0.9800C18—C191.428 (16)
C9—O11.242 (5)C18—H180.9500
C9—N21.358 (6)C19—H190.9500
C9—C101.535 (6)C20—N41.173 (5)
C10—N31.453 (5)N1—N21.374 (5)
C10—C111.546 (6)N3—H3A0.8800
C10—H101.0000O2—H2A0.8400
C11—O21.409 (6)
C2—C1—C6120.6 (3)C10—C11—H11B109.0
C2—C1—C20120.3 (4)H11A—C11—H11B107.8
C6—C1—C20119.0 (4)O4—C12—O3125.8 (4)
C1—C2—C3119.7 (4)O4—C12—N3125.2 (4)
C1—C2—H2120.1O3—C12—N3109.0 (3)
C3—C2—H2120.1O3—C13—C14106.0 (4)
C2—C3—C4120.2 (4)O3—C13—H13A110.5
C2—C3—H3119.9C14—C13—H13A110.5
C4—C3—H3119.9O3—C13—H13B110.5
C5—C4—C3119.4 (3)C14—C13—H13B110.5
C5—C4—C7119.5 (4)H13A—C13—H13B108.7
C3—C4—C7121.2 (4)C15—C14—C19116.6 (8)
C6—C5—C4121.2 (4)C15—C14—C13121.9 (6)
C6—C5—H5119.4C19—C14—C13121.5 (8)
C4—C5—H5119.4C14—C15—C16120.8 (11)
C5—C6—C1118.9 (4)C14—C15—H15119.6
C5—C6—H6120.6C16—C15—H15119.6
C1—C6—H6120.6C17—C16—C15118.6 (13)
N1—C7—C4121.3 (4)C17—C16—H16120.7
N1—C7—H7119.3C15—C16—H16120.7
C4—C7—H7119.3C18—C17—C16125.1 (10)
N2—C8—H8A109.5C18—C17—H17117.4
N2—C8—H8B109.5C16—C17—H17117.4
H8A—C8—H8B109.5C17—C18—C19117.2 (11)
N2—C8—H8C109.5C17—C18—H18121.4
H8A—C8—H8C109.5C19—C18—H18121.4
H8B—C8—H8C109.5C14—C19—C18121.4 (12)
O1—C9—N2121.3 (4)C14—C19—H19119.3
O1—C9—C10121.0 (4)C18—C19—H19119.3
N2—C9—C10117.6 (3)N4—C20—C1179.2 (4)
N3—C10—C9106.2 (3)C7—N1—N2120.9 (4)
N3—C10—C11111.4 (4)C9—N2—N1117.1 (3)
C9—C10—C11110.4 (4)C9—N2—C8120.1 (3)
N3—C10—H10109.6N1—N2—C8122.7 (3)
C9—C10—H10109.6C12—N3—C10123.6 (3)
C11—C10—H10109.6C12—N3—H3A118.2
O2—C11—C10113.0 (3)C10—N3—H3A118.2
O2—C11—H11A109.0C11—O2—H2A109.5
C10—C11—H11A109.0C12—O3—C13116.3 (4)
O2—C11—H11B109.0
C6—C1—C2—C30.8 (6)C14—C15—C16—C170 (2)
C20—C1—C2—C3178.3 (4)C15—C16—C17—C181 (2)
C1—C2—C3—C40.3 (6)C16—C17—C18—C194 (2)
C2—C3—C4—C50.7 (6)C15—C14—C19—C184.7 (15)
C2—C3—C4—C7179.9 (3)C13—C14—C19—C18174.5 (10)
C3—C4—C5—C60.1 (6)C17—C18—C19—C146 (2)
C7—C4—C5—C6179.1 (3)C2—C1—C20—N494 (37)
C4—C5—C6—C11.2 (6)C6—C1—C20—N485 (37)
C2—C1—C6—C51.6 (6)C4—C7—N1—N2179.7 (3)
C20—C1—C6—C5177.6 (4)O1—C9—N2—N1179.3 (4)
C5—C4—C7—N1173.8 (4)C10—C9—N2—N10.8 (6)
C3—C4—C7—N15.4 (6)O1—C9—N2—C82.6 (7)
O1—C9—C10—N319.1 (6)C10—C9—N2—C8177.5 (4)
N2—C9—C10—N3161.0 (4)C7—N1—N2—C9178.4 (4)
O1—C9—C10—C11101.8 (5)C7—N1—N2—C81.8 (6)
N2—C9—C10—C1178.1 (5)O4—C12—N3—C105.8 (7)
N3—C10—C11—O266.8 (5)O3—C12—N3—C10174.9 (4)
C9—C10—C11—O250.9 (5)C9—C10—N3—C12142.7 (4)
O3—C13—C14—C1576.1 (8)C11—C10—N3—C1297.1 (5)
O3—C13—C14—C19103.1 (8)O4—C12—O3—C132.4 (6)
C19—C14—C15—C161.5 (15)N3—C12—O3—C13176.9 (4)
C13—C14—C15—C16177.6 (10)C14—C13—O3—C12168.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C14-C19 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.882.403.091 (6)135
O2—H2A···O4i0.842.082.873 (5)158
C16—H16···Cg2ii0.952.783.558 (18)140
C19—H19···Cg2iii0.952.863.598 (13)135
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1; (iii) x+1, y1/2, z+1.
(II) tert-Butyl N-{(E)-1-[2-(4-cyanobenzylidene)-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate top
Crystal data top
C17H22N4O4F(000) = 368
Mr = 346.39Dx = 1.307 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2232 reflections
a = 5.348 (3) Åθ = 2.6–31.2°
b = 7.883 (5) ŵ = 0.10 mm1
c = 20.903 (14) ÅT = 100 K
β = 92.763 (1)°Slab, colourless
V = 880.2 (10) Å30.08 × 0.08 × 0.02 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2143 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 26.0°, θmin = 2.9°
ω scansh = 65
3672 measured reflectionsk = 97
2483 independent reflectionsl = 2225
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.194 w = 1/[σ2(Fo2) + (0.0993P)2 + 0.4415P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2483 reflectionsΔρmax = 0.31 e Å3
231 parametersΔρmin = 0.35 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (8)
Crystal data top
C17H22N4O4V = 880.2 (10) Å3
Mr = 346.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.348 (3) ŵ = 0.10 mm1
b = 7.883 (5) ÅT = 100 K
c = 20.903 (14) Å0.08 × 0.08 × 0.02 mm
β = 92.763 (1)°
Data collection top
Rigaku Mercury CCD
diffractometer
2143 reflections with I > 2σ(I)
3672 measured reflectionsRint = 0.023
2483 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.194H-atom parameters constrained
S = 1.13Δρmax = 0.31 e Å3
2483 reflectionsΔρmin = 0.35 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1123 (9)0.5292 (7)0.3916 (2)0.0253 (11)
H10.18510.63450.38060.030*
C20.0770 (9)0.5247 (7)0.4346 (2)0.0283 (12)
H20.13250.62720.45320.034*
C30.1848 (9)0.3741 (8)0.4505 (2)0.0268 (11)
C40.1071 (10)0.2210 (7)0.4233 (2)0.0273 (12)
H40.18290.11700.43470.033*
C50.0802 (9)0.2224 (7)0.3799 (2)0.0260 (12)
H50.13000.11940.36060.031*
C60.1972 (9)0.3760 (7)0.3641 (2)0.0235 (10)
C70.3919 (9)0.3849 (7)0.3194 (2)0.0249 (10)
H70.47500.48950.31270.030*
C80.7748 (9)0.4254 (6)0.2344 (2)0.0254 (11)
H8A0.85290.46550.27500.038*
H8B0.65640.51100.21740.038*
H8C0.90430.40610.20360.038*
C90.6871 (9)0.1258 (7)0.2084 (2)0.0242 (11)
C100.5475 (10)0.0357 (6)0.2249 (2)0.0264 (12)
H100.36970.00780.23340.032*
C110.6754 (9)0.1158 (7)0.2847 (2)0.0279 (11)
H11A0.63360.04780.32260.034*
H11B0.60610.23110.29030.034*
C120.3719 (9)0.2554 (7)0.1527 (2)0.0234 (11)
C130.2467 (9)0.4533 (7)0.0650 (2)0.0234 (11)
C140.3177 (9)0.6125 (7)0.1010 (2)0.0264 (11)
H14A0.27010.60180.14560.040*
H14B0.49890.63000.10010.040*
H14C0.23030.70950.08100.040*
C150.0334 (9)0.4161 (8)0.0670 (3)0.0333 (13)
H15A0.07110.30820.04530.050*
H15B0.08030.40870.11160.050*
H15C0.12850.50740.04530.050*
C160.3205 (9)0.4594 (7)0.0040 (2)0.0278 (12)
H16A0.29020.34840.02410.042*
H16B0.22050.54580.02720.042*
H16C0.49850.48800.00540.042*
C170.3795 (10)0.3679 (8)0.4971 (2)0.0306 (12)
N10.4545 (7)0.2521 (5)0.28820 (18)0.0224 (9)
N20.6425 (8)0.2680 (5)0.24509 (19)0.0233 (9)
N30.5555 (8)0.1424 (6)0.16859 (19)0.0280 (10)
H30.68370.13350.14390.034*
N40.5229 (9)0.3672 (7)0.5357 (2)0.0356 (11)
O10.8318 (6)0.1316 (5)0.16515 (16)0.0292 (9)
O20.9367 (7)0.1279 (5)0.28307 (16)0.0339 (9)
H2A0.97420.18740.25160.041*
O30.3944 (6)0.3085 (5)0.09164 (16)0.0256 (8)
O40.2146 (6)0.3015 (5)0.18845 (16)0.0292 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (3)0.017 (3)0.027 (2)0.001 (2)0.000 (2)0.002 (2)
C20.035 (3)0.027 (3)0.023 (2)0.009 (3)0.004 (2)0.005 (2)
C30.031 (2)0.031 (3)0.018 (2)0.003 (3)0.0011 (18)0.002 (2)
C40.036 (3)0.020 (3)0.026 (3)0.006 (2)0.000 (2)0.000 (2)
C50.030 (2)0.020 (3)0.028 (3)0.005 (2)0.002 (2)0.002 (2)
C60.030 (2)0.021 (3)0.019 (2)0.004 (2)0.0026 (18)0.001 (2)
C70.033 (2)0.016 (2)0.026 (2)0.003 (2)0.0020 (19)0.001 (2)
C80.029 (3)0.018 (3)0.029 (3)0.005 (2)0.000 (2)0.002 (2)
C90.029 (3)0.021 (3)0.022 (2)0.003 (2)0.0025 (19)0.000 (2)
C100.031 (3)0.022 (3)0.027 (3)0.003 (2)0.010 (2)0.007 (2)
C110.041 (3)0.018 (3)0.025 (2)0.001 (3)0.012 (2)0.002 (2)
C120.023 (2)0.020 (3)0.028 (3)0.001 (2)0.0047 (19)0.002 (2)
C130.022 (2)0.019 (3)0.029 (2)0.005 (2)0.0001 (18)0.001 (2)
C140.030 (2)0.021 (3)0.029 (2)0.004 (2)0.0031 (19)0.003 (2)
C150.028 (3)0.031 (3)0.040 (3)0.004 (3)0.004 (2)0.008 (2)
C160.033 (3)0.025 (3)0.025 (3)0.007 (2)0.002 (2)0.001 (2)
C170.038 (3)0.025 (3)0.029 (3)0.003 (3)0.001 (2)0.006 (3)
N10.024 (2)0.022 (2)0.021 (2)0.0006 (19)0.0028 (15)0.0007 (17)
N20.031 (2)0.015 (2)0.024 (2)0.0043 (19)0.0019 (17)0.0020 (17)
N30.031 (2)0.027 (2)0.027 (2)0.009 (2)0.0088 (17)0.010 (2)
N40.041 (3)0.031 (3)0.035 (2)0.003 (3)0.012 (2)0.002 (2)
O10.0357 (19)0.023 (2)0.0300 (19)0.0063 (17)0.0086 (15)0.0027 (16)
O20.044 (2)0.031 (2)0.0270 (18)0.002 (2)0.0030 (15)0.0058 (18)
O30.0299 (18)0.0225 (18)0.0247 (17)0.0042 (16)0.0039 (13)0.0062 (15)
O40.0305 (18)0.028 (2)0.0304 (19)0.0073 (18)0.0109 (15)0.0062 (16)
Geometric parameters (Å, º) top
C1—C21.386 (7)C11—O21.403 (6)
C1—C61.422 (7)C11—H11A0.9900
C1—H10.9500C11—H11B0.9900
C2—C31.368 (8)C12—O41.208 (5)
C2—H20.9500C12—O31.354 (6)
C3—C41.405 (8)C12—N31.355 (6)
C3—C171.461 (7)C13—O31.481 (6)
C4—C51.384 (7)C13—C141.503 (8)
C4—H40.9500C13—C161.514 (6)
C5—C61.409 (8)C13—C151.529 (7)
C5—H50.9500C14—H14A0.9800
C6—C71.435 (6)C14—H14B0.9800
C7—N11.286 (6)C14—H14C0.9800
C7—H70.9500C15—H15A0.9800
C8—N21.450 (6)C15—H15B0.9800
C8—H8A0.9800C15—H15C0.9800
C8—H8B0.9800C16—H16A0.9800
C8—H8C0.9800C16—H16B0.9800
C9—O11.219 (6)C16—H16C0.9800
C9—N21.385 (6)C17—N41.139 (6)
C9—C101.524 (7)N1—N21.388 (5)
C10—N31.449 (6)N3—H30.8800
C10—C111.532 (7)O2—H2A0.8400
C10—H101.0000
C2—C1—C6119.9 (5)C10—C11—H11B108.7
C2—C1—H1120.1H11A—C11—H11B107.6
C6—C1—H1120.1O4—C12—O3125.9 (5)
C3—C2—C1120.6 (5)O4—C12—N3124.3 (4)
C3—C2—H2119.7O3—C12—N3109.8 (4)
C1—C2—H2119.7O3—C13—C14109.7 (4)
C2—C3—C4120.7 (4)O3—C13—C16103.0 (4)
C2—C3—C17120.9 (5)C14—C13—C16112.3 (4)
C4—C3—C17118.4 (5)O3—C13—C15110.3 (4)
C5—C4—C3119.8 (5)C14—C13—C15111.7 (4)
C5—C4—H4120.1C16—C13—C15109.4 (4)
C3—C4—H4120.1C13—C14—H14A109.5
C4—C5—C6120.2 (5)C13—C14—H14B109.5
C4—C5—H5119.9H14A—C14—H14B109.5
C6—C5—H5119.9C13—C14—H14C109.5
C5—C6—C1118.8 (4)H14A—C14—H14C109.5
C5—C6—C7122.6 (5)H14B—C14—H14C109.5
C1—C6—C7118.6 (5)C13—C15—H15A109.5
N1—C7—C6120.4 (5)C13—C15—H15B109.5
N1—C7—H7119.8H15A—C15—H15B109.5
C6—C7—H7119.8C13—C15—H15C109.5
N2—C8—H8A109.5H15A—C15—H15C109.5
N2—C8—H8B109.5H15B—C15—H15C109.5
H8A—C8—H8B109.5C13—C16—H16A109.5
N2—C8—H8C109.5C13—C16—H16B109.5
H8A—C8—H8C109.5H16A—C16—H16B109.5
H8B—C8—H8C109.5C13—C16—H16C109.5
O1—C9—N2120.9 (5)H16A—C16—H16C109.5
O1—C9—C10122.3 (4)H16B—C16—H16C109.5
N2—C9—C10116.8 (4)N4—C17—C3176.4 (6)
N3—C10—C9105.5 (4)C7—N1—N2118.0 (4)
N3—C10—C11113.2 (5)C9—N2—N1115.8 (4)
C9—C10—C11109.0 (4)C9—N2—C8120.6 (4)
N3—C10—H10109.7N1—N2—C8123.4 (4)
C9—C10—H10109.7C12—N3—C10122.1 (4)
C11—C10—H10109.7C12—N3—H3119.0
O2—C11—C10114.4 (4)C10—N3—H3119.0
O2—C11—H11A108.7C11—O2—H2A109.5
C10—C11—H11A108.7C12—O3—C13121.5 (4)
O2—C11—H11B108.7
C6—C1—C2—C30.5 (7)C9—C10—C11—O247.4 (6)
C1—C2—C3—C40.5 (7)C6—C7—N1—N2179.5 (4)
C1—C2—C3—C17178.3 (4)O1—C9—N2—N1173.2 (4)
C2—C3—C4—C50.0 (7)C10—C9—N2—N16.9 (6)
C17—C3—C4—C5178.9 (4)O1—C9—N2—C82.4 (7)
C3—C4—C5—C61.6 (7)C10—C9—N2—C8177.5 (4)
C4—C5—C6—C12.5 (7)C7—N1—N2—C9174.2 (4)
C4—C5—C6—C7179.9 (4)C7—N1—N2—C81.2 (7)
C2—C1—C6—C52.0 (7)O4—C12—N3—C1014.8 (8)
C2—C1—C6—C7179.4 (4)O3—C12—N3—C10165.8 (5)
C5—C6—C7—N15.0 (7)C9—C10—N3—C12150.2 (5)
C1—C6—C7—N1172.3 (4)C11—C10—N3—C1290.7 (6)
O1—C9—C10—N319.4 (7)O4—C12—O3—C139.9 (8)
N2—C9—C10—N3160.7 (4)N3—C12—O3—C13169.5 (4)
O1—C9—C10—C11102.5 (5)C14—C13—O3—C1263.4 (5)
N2—C9—C10—C1177.5 (5)C16—C13—O3—C12176.8 (4)
N3—C10—C11—O269.7 (6)C15—C13—O3—C1260.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.882.272.620 (6)104
O2—H2A···O4i0.842.092.877 (5)156
C4—H4···N4ii0.952.613.549 (8)168
Symmetry codes: (i) x+1, y, z; (ii) x1, y1/2, z+1.
(III) tert-Butyl N-[(E)-1-(2-benzylidene-1-methylhydrazinyl)-3-hydroxy-1-oxopropan-2-yl]carbamate top
Crystal data top
C16H23N3O4F(000) = 688
Mr = 321.37Dx = 1.257 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 3225 reflections
a = 10.454 (7) Åθ = 2.0–27.5°
b = 10.571 (7) ŵ = 0.09 mm1
c = 15.664 (11) ÅT = 100 K
β = 101.172 (12)°Blade, colourless
V = 1698 (2) Å30.16 × 0.05 × 0.01 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2716 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
ω scansh = 1112
8546 measured reflectionsk = 139
3319 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.104Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.0376P)2 + 3.1065P]
where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max = 0.002
220 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H23N3O4V = 1698 (2) Å3
Mr = 321.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.454 (7) ŵ = 0.09 mm1
b = 10.571 (7) ÅT = 100 K
c = 15.664 (11) Å0.16 × 0.05 × 0.01 mm
β = 101.172 (12)°
Data collection top
Rigaku Mercury CCD
diffractometer
2716 reflections with I > 2σ(I)
8546 measured reflectionsRint = 0.048
3319 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1040 restraints
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 0.44 e Å3
3319 reflectionsΔρmin = 0.26 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7859 (4)0.4700 (4)0.0477 (3)0.0348 (9)
H10.77840.40090.08720.042*
C20.8683 (4)0.5702 (4)0.0568 (3)0.0412 (11)
H20.91700.56950.10210.049*
C30.8788 (4)0.6708 (4)0.0004 (3)0.0430 (11)
H30.93490.73950.00570.052*
C40.8078 (4)0.6721 (4)0.0669 (3)0.0386 (10)
H40.81580.74150.10610.046*
C50.7255 (4)0.5723 (4)0.0762 (3)0.0327 (9)
H50.67690.57360.12150.039*
C60.7141 (4)0.4698 (4)0.0188 (2)0.0311 (9)
C70.6264 (4)0.3627 (4)0.0243 (2)0.0296 (9)
H70.61990.29560.01660.035*
C80.4643 (4)0.1543 (4)0.0243 (3)0.0344 (9)
H8A0.44220.18800.03500.052*
H8B0.39560.09620.03430.052*
H8C0.54740.10870.03170.052*
C90.4092 (3)0.2560 (3)0.1529 (2)0.0271 (8)
C100.4332 (4)0.3650 (4)0.2184 (2)0.0285 (8)
H100.43470.44650.18620.034*
C110.5617 (4)0.3500 (4)0.2828 (3)0.0362 (10)
H11A0.56510.25960.29950.043*0.198 (7)
H11B0.57000.42470.32560.043*0.802 (7)
H11C0.63490.36510.25020.043*
C120.2675 (4)0.4729 (4)0.2834 (2)0.0281 (8)
C130.0726 (4)0.5471 (4)0.3365 (3)0.0341 (9)
C140.0564 (4)0.4811 (5)0.3367 (3)0.0520 (13)
H14A0.04110.40450.37250.078*
H14B0.09700.45800.27700.078*
H14C0.11440.53810.36070.078*
C150.1439 (5)0.5729 (6)0.4287 (3)0.0623 (15)
H15A0.15760.49320.46110.093*
H15B0.09180.63030.45740.093*
H15C0.22850.61210.42730.093*
C160.0522 (5)0.6640 (5)0.2808 (4)0.0669 (16)
H16A0.13570.70760.28380.100*
H16B0.00930.72040.30180.100*
H16C0.01690.64010.22040.100*
N10.5586 (3)0.3598 (3)0.08443 (19)0.0242 (7)
N20.4760 (3)0.2584 (3)0.08675 (19)0.0266 (7)
N30.3211 (3)0.3649 (3)0.2618 (2)0.0314 (8)
H1N0.275 (4)0.295 (4)0.251 (3)0.038*
O10.3346 (3)0.1683 (2)0.16179 (18)0.0340 (7)
O2A0.5728 (3)0.2373 (3)0.3258 (2)0.0362 (10)*0.802 (7)
H2A0.57700.17660.29170.043*0.802 (7)
O2B0.5960 (13)0.4007 (12)0.3635 (8)0.029 (4)0.198 (7)
H2B0.59340.48000.36000.035*0.198 (7)
O30.1477 (3)0.4493 (2)0.29998 (18)0.0335 (7)
O40.3204 (3)0.5758 (2)0.28835 (19)0.0383 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.042 (2)0.029 (2)0.0071 (18)0.0076 (17)0.0056 (18)
C20.032 (2)0.056 (3)0.038 (2)0.001 (2)0.0133 (18)0.016 (2)
C30.039 (2)0.040 (3)0.051 (3)0.005 (2)0.012 (2)0.012 (2)
C40.039 (2)0.035 (2)0.043 (2)0.0030 (19)0.0095 (19)0.0015 (19)
C50.033 (2)0.035 (2)0.032 (2)0.0011 (17)0.0091 (17)0.0036 (18)
C60.027 (2)0.035 (2)0.031 (2)0.0035 (17)0.0064 (16)0.0084 (18)
C70.034 (2)0.031 (2)0.0233 (19)0.0052 (17)0.0046 (16)0.0030 (16)
C80.040 (2)0.027 (2)0.036 (2)0.0023 (17)0.0084 (18)0.0113 (18)
C90.031 (2)0.0163 (18)0.034 (2)0.0006 (15)0.0040 (16)0.0021 (15)
C100.035 (2)0.0245 (19)0.031 (2)0.0056 (16)0.0168 (17)0.0027 (16)
C110.036 (2)0.046 (3)0.028 (2)0.0073 (19)0.0087 (17)0.0123 (19)
C120.029 (2)0.028 (2)0.0270 (19)0.0001 (16)0.0057 (15)0.0018 (16)
C130.034 (2)0.031 (2)0.040 (2)0.0102 (17)0.0119 (18)0.0056 (18)
C140.035 (2)0.052 (3)0.074 (3)0.009 (2)0.021 (2)0.011 (3)
C150.043 (3)0.089 (4)0.057 (3)0.016 (3)0.014 (2)0.033 (3)
C160.063 (3)0.052 (3)0.091 (4)0.026 (3)0.026 (3)0.022 (3)
N10.0251 (16)0.0186 (15)0.0286 (16)0.0003 (12)0.0046 (13)0.0010 (13)
N20.0318 (17)0.0237 (16)0.0242 (16)0.0026 (14)0.0053 (13)0.0036 (13)
N30.0373 (19)0.0188 (16)0.043 (2)0.0010 (14)0.0211 (16)0.0022 (15)
O10.0369 (16)0.0228 (14)0.0443 (17)0.0052 (12)0.0125 (13)0.0011 (12)
O2B0.043 (8)0.017 (7)0.027 (7)0.006 (6)0.005 (6)0.001 (5)
O30.0355 (15)0.0233 (14)0.0465 (16)0.0034 (12)0.0200 (13)0.0026 (12)
O40.0441 (17)0.0231 (14)0.0529 (18)0.0055 (13)0.0226 (14)0.0072 (13)
Geometric parameters (Å, º) top
C1—C21.389 (6)C11—H11A0.9900
C1—C61.398 (5)C11—H11B1.0278
C1—H10.9500C11—H11C1.0114
C2—C31.382 (6)C12—O41.216 (4)
C2—H20.9500C12—N31.344 (5)
C3—C41.391 (6)C12—O31.350 (4)
C3—H30.9500C13—O31.478 (4)
C4—C51.386 (5)C13—C161.504 (6)
C4—H40.9500C13—C151.516 (6)
C5—C61.398 (6)C13—C141.519 (6)
C5—H50.9500C14—H14A0.9800
C6—C71.470 (5)C14—H14B0.9800
C7—N11.284 (5)C14—H14C0.9800
C7—H70.9500C15—H15A0.9800
C8—N21.462 (5)C15—H15B0.9800
C8—H8A0.9800C15—H15C0.9800
C8—H8B0.9800C16—H16A0.9800
C8—H8C0.9800C16—H16B0.9800
C9—O11.236 (4)C16—H16C0.9800
C9—N21.358 (5)N1—N21.381 (4)
C9—C101.531 (5)N3—H1N0.88 (4)
C10—N31.465 (5)O2A—H11A0.4685
C10—C111.523 (5)O2A—H2A0.8421
C10—H101.0000O2B—H11B0.6548
C11—O2B1.356 (13)O2B—H2B0.8400
C11—O2A1.363 (5)
C2—C1—C6120.7 (4)O2B—C11—H11C108.6
C2—C1—H1119.6O2A—C11—H11C112.7
C6—C1—H1119.6C10—C11—H11C107.8
C3—C2—C1119.5 (4)H11A—C11—H11C107.0
C3—C2—H2120.2H11B—C11—H11C103.4
C1—C2—H2120.2O4—C12—N3124.7 (3)
C2—C3—C4120.4 (4)O4—C12—O3125.4 (3)
C2—C3—H3119.8N3—C12—O3109.8 (3)
C4—C3—H3119.8O3—C13—C16112.1 (3)
C5—C4—C3120.2 (4)O3—C13—C15107.2 (3)
C5—C4—H4119.9C16—C13—C15113.1 (4)
C3—C4—H4119.9O3—C13—C14102.6 (3)
C4—C5—C6120.0 (4)C16—C13—C14110.6 (4)
C4—C5—H5120.0C15—C13—C14110.7 (4)
C6—C5—H5120.0C13—C14—H14A109.5
C1—C6—C5119.1 (4)C13—C14—H14B109.5
C1—C6—C7118.4 (4)H14A—C14—H14B109.5
C5—C6—C7122.4 (3)C13—C14—H14C109.5
N1—C7—C6120.1 (3)H14A—C14—H14C109.5
N1—C7—H7120.0H14B—C14—H14C109.5
C6—C7—H7120.0C13—C15—H15A109.5
N2—C8—H8A109.5C13—C15—H15B109.5
N2—C8—H8B109.5H15A—C15—H15B109.5
H8A—C8—H8B109.5C13—C15—H15C109.5
N2—C8—H8C109.5H15A—C15—H15C109.5
H8A—C8—H8C109.5H15B—C15—H15C109.5
H8B—C8—H8C109.5C13—C16—H16A109.5
O1—C9—N2121.9 (3)C13—C16—H16B109.5
O1—C9—C10121.0 (3)H16A—C16—H16B109.5
N2—C9—C10117.1 (3)C13—C16—H16C109.5
N3—C10—C11112.0 (3)H16A—C16—H16C109.5
N3—C10—C9105.5 (3)H16B—C16—H16C109.5
C11—C10—C9112.0 (3)C7—N1—N2118.3 (3)
N3—C10—H10109.1C9—N2—N1116.8 (3)
C11—C10—H10109.1C9—N2—C8120.5 (3)
C9—C10—H10109.1N1—N2—C8122.5 (3)
O2B—C11—O2A84.4 (6)C12—N3—C10121.8 (3)
O2B—C11—C10128.1 (6)C12—N3—H1N121 (3)
O2A—C11—C10113.4 (3)C10—N3—H1N112 (3)
O2B—C11—H11A98.4C11—O2A—H11A30.8
O2A—C11—H11A14.0C11—O2A—H2A111.3
C10—C11—H11A104.9H11A—O2A—H2A81.1
O2B—C11—H11B27.8C11—O2B—H11B47.0
O2A—C11—H11B111.2C11—O2B—H2B109.4
C10—C11—H11B107.7H11B—O2B—H2B63.3
H11A—C11—H11B125.2C12—O3—C13121.8 (3)
C6—C1—C2—C30.2 (6)C9—C10—C11—O2A54.9 (4)
C1—C2—C3—C40.1 (6)C6—C7—N1—N2179.1 (3)
C2—C3—C4—C50.2 (7)O1—C9—N2—N1178.6 (3)
C3—C4—C5—C60.2 (6)C10—C9—N2—N10.5 (5)
C2—C1—C6—C50.3 (6)O1—C9—N2—C81.7 (5)
C2—C1—C6—C7178.8 (4)C10—C9—N2—C8176.5 (3)
C4—C5—C6—C10.3 (6)C7—N1—N2—C9177.7 (3)
C4—C5—C6—C7178.7 (4)C7—N1—N2—C80.8 (5)
C1—C6—C7—N1179.7 (4)O4—C12—N3—C1017.6 (6)
C5—C6—C7—N11.3 (6)O3—C12—N3—C10163.4 (3)
O1—C9—C10—N321.4 (5)C11—C10—N3—C1295.9 (4)
N2—C9—C10—N3160.5 (3)C9—C10—N3—C12141.9 (4)
O1—C9—C10—C11100.8 (4)O4—C12—O3—C137.2 (6)
N2—C9—C10—C1177.4 (4)N3—C12—O3—C13171.8 (3)
N3—C10—C11—O2B38.4 (9)C16—C13—O3—C1257.0 (5)
C9—C10—C11—O2B156.7 (8)C15—C13—O3—C1267.7 (5)
N3—C10—C11—O2A63.5 (4)C14—C13—O3—C12175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O10.88 (4)2.11 (4)2.623 (4)116 (3)
O2A—H2A···O4i0.842.092.852 (4)150
O2B—H2B···O1ii0.842.182.966 (13)156
C7—H7···O2Aiii0.952.453.229 (5)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (I) top
Cg2 is the centroid of the C14-C19 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.882.403.091 (6)135
O2—H2A···O4i0.842.082.873 (5)158
C16—H16···Cg2ii0.952.783.558 (18)140
C19—H19···Cg2iii0.952.863.598 (13)135
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1; (iii) x+1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.882.272.620 (6)104
O2—H2A···O4i0.842.092.877 (5)156
C4—H4···N4ii0.952.613.549 (8)168
Symmetry codes: (i) x+1, y, z; (ii) x1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O10.88 (4)2.11 (4)2.623 (4)116 (3)
O2A—H2A···O4i0.842.092.852 (4)150
O2B—H2B···O1ii0.842.182.966 (13)156
C7—H7···O2Aiii0.952.453.229 (5)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC20H20N4O4C17H22N4O4C16H23N3O4
Mr380.40346.39321.37
Crystal system, space groupMonoclinic, P21Monoclinic, P21Monoclinic, P21/c
Temperature (K)100100100
a, b, c (Å)4.995 (6), 8.172 (8), 22.94 (3)5.348 (3), 7.883 (5), 20.903 (14)10.454 (7), 10.571 (7), 15.664 (11)
β (°) 93.48 (3) 92.763 (1) 101.172 (12)
V3)934.7 (19)880.2 (10)1698 (2)
Z224
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.100.09
Crystal size (mm)0.14 × 0.03 × 0.010.08 × 0.08 × 0.020.16 × 0.05 × 0.01
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Rigaku Mercury CCD
diffractometer
Rigaku Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13928, 4691, 3270 3672, 2483, 2143 8546, 3319, 2716
Rint0.0700.0230.048
(sin θ/λ)max1)0.7340.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.278, 1.10 0.057, 0.194, 1.13 0.104, 0.197, 1.23
No. of reflections469124833319
No. of parameters255231220
No. of restraints110
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.350.31, 0.350.44, 0.26

Computer programs: CrystalClear (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds