Download citation
Download citation
link to html
The asymmetric unit of the title compound, (C8H12N)2[PtCl6], contains one independent protonated 2,4,6-trimethyl­pyridinium cation and one half of a centrosymmetric [PtCl6]2− anion. The Pt ion has an almost ideal octa­hedral coordination. In the crystal structure, intra­molecular N—H...Cl and inter­molecular C—H...Cl hydrogen bonds result in the formation of a supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680802881X/hk2526sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680802881X/hk2526Isup2.hkl
Contains datablock I

CCDC reference: 705958

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.037
  • wR factor = 0.088
  • Data-to-parameter ratio = 25.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Pt1 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 800 Deg. PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C1 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C5 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C8 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C8 H12 N
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In recent years, there has been considerable interest in proton transfer systems and their structures (Rafizadeh et al., 2006; Yousefi, Amani & Khavasi, 2007; Abedi et al., 2008; Hojjat Kashani et al., 2008). Several proton transfer systems using 2,4,6-trimethylpyridine, with proton donor molecules, such as [2,4,6-tmpy.H]2[H2BTEC], (II), (Biradha & Zaworotko, 1998), {[2,4,6-tmpy.H]10[Er(H2O)Cl5]2[ErCl6]3Cl}, (III), (Hallfeldt & Urland, 2002), [2,4,6-tmpy.H][2-NBA], (IV) and [2,4,6-tmpy.H][3,5-NBA], (V), (Foces-Foces et al., 1999) [where 2,4,6-tmpy.H is 2,4,6-trimethylpyridinium, H2BTEC is dihydrogen-1,2,4,5-benzenetetracarboxylate, 2-NBA is 2-nitrobenzoate and 3,5-NBA is 3,5- nitrobenzoate] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several proton transfer systems using H2[PtCl6] with proton acceptor molecules, such as [HpyBr-3]2[PtCl6].2H2O, (VI), and [HpyI-3]2[PtCl6].2H2O, (VII),(Zordan & Brammer, 2004), [BMIM]2[PtCl6], (VIII), and [EMIM]2[PtCl6], (IX), (Hasan et al., 2001), {(DABCO)H2[PtCl6]}, (X), (Juan et al., 1998), {p-C6H4(CH2ImMe)2[PtCl6]}, (XI), (Li & Liu, 2003), [het][PtCl6].2H2O, (XII), (Hu et al., 2003), [9-MeGuaH]2[PtCl6].2H2O, (XIII), (Terzis & Mentzafos, 1983), [HpyCl-3]3[PtCl6]Cl, (XIV), (Zordan et al., 2005), [2,9-dmphen.H]2[PtCl6], (XV), (Yousefi, Ahmadi et al., 2007), [H2DA18C6][PtCl6].2H2O, (XVI), (Yousefi et al., 2007a), [2,6-dmpy.H]2[PtCl6], (XVII), (Amani et al., 2008) and [TBA]3[PtCl6]Cl, (XVIII), (Yousefi et al., 2007b) [where hpy is halo-pyridinium, BMIM+ is 1-n-butyl-3-methylimidazolium, EMIM+ is 1-ethyl-3-methyl- imidazolium, DABCO is 1,4-diazabicyclooctane, Im is imidazolium, het is 2-(α-hydroxyethyl)thiamine, 9-MeGuaH is 9-methylguaninium, 2,9-dmphen.H is 2,9-dimethyl-1,10-phenanthrolinium, H2DA18C6 is 1,10-Diazonia-18-crown-6, 2,6-dmpy.H is 2,6-dimethylpyridinium and TBA is tribenzylammonium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1) contains one independent protonated 2,4,6-trimethylpyridinium cation and one half of a centrosymmetric [PtCl6]2- anion. The Pt ion has an octahedral coordination. In cation, the bond lengths and angles are in good agreement with the corresponding values in (II) and (IV). In [PtCl6]2- anion, the Pt—Cl bond lengths and Cl—Pt—Cl bond angles (Table 1) are also within normal ranges, as in (XVI), (XVII) and (XVIII).

In the crystal structure (Fig. 2), intramolecular N—H···Cl and intermolecular C—H···Cl hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Rafizadeh et al. (2006); Yousefi, Amani & Khavasi (2007); Abedi et al. (2008); Hojjat Kashani et al. (2008). For related literature, see: Biradha & Zaworotko (1998); Hallfeldt & Urland (2002); Foces-Foces et al. (1999); Zordan & Brammer (2004); Hasan et al. (2001); Juan et al. (1998); Li & Liu (2003); Hu et al. (2003); Terzis & Mentzafos (1983); Zordan et al. (2005); Yousefi, Ahmadi et al. (2007); Yousefi et al. (2007a,b); Amani et al. (2008).

Experimental top

For the preparation of the title compound, (I), a solution of 2,4,6-trimethylpyridine (0.18 g, 1.48 mmol) in methanol (15 ml) was added to a solution of H2PtCl6.6H2O, (0.38 g, 0.74 mmol) in acetonitrile (25 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, orange prismatic crystals of (I) were isolated (yield; 0.35 g; 72.5%).

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (a) x, y + 1, z].
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Bis(2,4,6-trimethylpyridinium)hexachloridoplatinate(IV) top
Crystal data top
(C8H12N)2[PtCl6]Z = 1
Mr = 652.15F(000) = 314
Triclinic, P1Dx = 1.927 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6302 (8) ÅCell parameters from 1715 reflections
b = 9.1328 (9) Åθ = 3.0–29.1°
c = 9.4599 (10) ŵ = 6.96 mm1
α = 99.201 (8)°T = 298 K
β = 109.683 (8)°Prism, orange
γ = 108.471 (8)°0.32 × 0.30 × 0.25 mm
V = 561.87 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2962 independent reflections
Radiation source: fine-focus sealed tube2952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ϕ and ω scansθmax = 29.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1010
Tmin = 0.121, Tmax = 0.176k = 1212
6510 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0557P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.010
2962 reflectionsΔρmax = 1.20 e Å3
116 parametersΔρmin = 1.44 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.115 (6)
Crystal data top
(C8H12N)2[PtCl6]γ = 108.471 (8)°
Mr = 652.15V = 561.87 (12) Å3
Triclinic, P1Z = 1
a = 7.6302 (8) ÅMo Kα radiation
b = 9.1328 (9) ŵ = 6.96 mm1
c = 9.4599 (10) ÅT = 298 K
α = 99.201 (8)°0.32 × 0.30 × 0.25 mm
β = 109.683 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2962 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2952 reflections with I > 2σ(I)
Tmin = 0.121, Tmax = 0.176Rint = 0.099
6510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.18Δρmax = 1.20 e Å3
2962 reflectionsΔρmin = 1.44 e Å3
116 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.00000.50000.00000.03163 (12)
Cl10.1751 (2)0.65180 (16)0.26337 (11)0.0496 (3)
Cl20.2671 (2)0.5772 (2)0.01978 (15)0.0522 (3)
Cl30.1501 (2)0.27660 (16)0.07023 (13)0.0486 (3)
N10.2844 (7)0.7163 (6)0.3174 (5)0.0473 (9)
H1D0.29180.67520.22610.057*
C10.2767 (12)0.4641 (8)0.3642 (6)0.0567 (14)
H1A0.16450.47370.33640.068*
H1B0.40170.39930.27380.068*
H1C0.26700.41370.44650.068*
C20.2721 (8)0.6278 (7)0.4197 (5)0.0448 (10)
C30.2540 (10)0.6948 (7)0.5686 (6)0.0496 (11)
H30.24480.63660.64100.059*
C40.2496 (10)0.8492 (8)0.6091 (6)0.0533 (12)
C50.2300 (17)0.9231 (11)0.7709 (8)0.077 (2)
H5A0.34640.94690.76200.092*
H5B0.10941.02110.82270.092*
H5C0.22150.84830.83100.092*
C60.2651 (10)0.9340 (7)0.4965 (7)0.0540 (12)
H60.26111.03800.52210.065*
C70.2858 (9)0.8639 (7)0.3499 (6)0.0493 (11)
C80.3106 (14)0.9436 (10)0.2211 (9)0.0687 (18)
H8A0.43700.87750.13250.082*
H8B0.20070.95620.18980.082*
H8C0.31001.04780.25890.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03766 (15)0.03245 (15)0.02614 (14)0.01452 (9)0.01484 (8)0.00745 (7)
Cl10.0642 (7)0.0451 (6)0.0288 (4)0.0166 (5)0.0150 (4)0.0042 (3)
Cl20.0546 (6)0.0726 (8)0.0457 (5)0.0397 (6)0.0252 (5)0.0200 (5)
Cl30.0621 (7)0.0406 (6)0.0440 (5)0.0148 (5)0.0274 (5)0.0148 (4)
N10.049 (2)0.052 (2)0.0380 (16)0.0178 (18)0.0172 (15)0.0113 (15)
C10.076 (4)0.061 (3)0.045 (2)0.039 (3)0.028 (2)0.016 (2)
C20.052 (2)0.047 (2)0.0385 (18)0.024 (2)0.0190 (17)0.0110 (16)
C30.062 (3)0.052 (3)0.041 (2)0.028 (2)0.0239 (19)0.0121 (18)
C40.062 (3)0.054 (3)0.044 (2)0.026 (2)0.023 (2)0.0060 (19)
C50.116 (7)0.067 (5)0.052 (3)0.044 (5)0.039 (4)0.005 (3)
C60.059 (3)0.042 (3)0.057 (3)0.018 (2)0.023 (2)0.012 (2)
C70.046 (2)0.047 (3)0.049 (2)0.0134 (19)0.0164 (18)0.0172 (19)
C80.074 (4)0.063 (4)0.067 (3)0.025 (3)0.024 (3)0.033 (3)
Geometric parameters (Å, º) top
Pt1—Cl12.3225 (11)C3—H30.9300
Pt1—Cl1i2.3225 (11)C4—C61.409 (9)
Pt1—Cl22.3199 (12)C4—C51.507 (8)
Pt1—Cl2i2.3199 (12)C5—H5A0.9600
Pt1—Cl3i2.3197 (13)C5—H5B0.9600
Pt1—Cl32.3197 (13)C5—H5C0.9600
N1—H1D0.8600C6—C71.365 (9)
C1—C21.488 (8)C6—H60.9300
C1—H1A0.9600C7—N11.338 (8)
C1—H1B0.9600C7—C81.505 (8)
C1—H1C0.9600C8—H8A0.9600
C2—N11.355 (7)C8—H8B0.9600
C2—C31.385 (6)C8—H8C0.9600
C3—C41.388 (8)
Cl1—Pt1—Cl1i180.0C2—C3—C4119.7 (5)
Cl2—Pt1—Cl1i89.35 (5)C2—C3—H3120.2
Cl2i—Pt1—Cl1i90.65 (5)C4—C3—H3120.2
Cl2—Pt1—Cl190.65 (5)C3—C4—C6118.9 (5)
Cl2—Pt1—Cl2i180.0C3—C4—C5120.0 (6)
Cl3—Pt1—Cl190.10 (5)C6—C4—C5121.1 (6)
Cl3i—Pt1—Cl1i90.10 (5)C4—C5—H5A109.5
Cl3—Pt1—Cl1i89.90 (5)C4—C5—H5B109.5
Cl3—Pt1—Cl290.45 (6)H5A—C5—H5B109.5
Cl3i—Pt1—Cl2i90.45 (6)C4—C5—H5C109.5
Cl3—Pt1—Cl2i89.55 (6)H5A—C5—H5C109.5
Cl3i—Pt1—Cl3180.0H5B—C5—H5C109.5
C2—N1—H1D118.0C7—C6—C4120.1 (5)
C7—N1—C2123.9 (5)C7—C6—H6119.9
C7—N1—H1D118.0C4—C6—H6119.9
C2—C1—H1A109.5N1—C7—C6118.9 (5)
C2—C1—H1B109.5N1—C7—C8117.6 (6)
H1A—C1—H1B109.5C6—C7—C8123.5 (6)
C2—C1—H1C109.5C7—C8—H8A109.5
H1A—C1—H1C109.5C7—C8—H8B109.5
H1B—C1—H1C109.5H8A—C8—H8B109.5
N1—C2—C3118.5 (5)C7—C8—H8C109.5
N1—C2—C1117.3 (4)H8A—C8—H8C109.5
C3—C2—C1124.2 (5)H8B—C8—H8C109.5
C1—C2—N1—C7178.8 (6)C3—C4—C6—C70.6 (10)
C3—C2—N1—C71.9 (9)C5—C4—C6—C7179.0 (7)
N1—C2—C3—C40.2 (9)C4—C6—C7—N12.2 (10)
C1—C2—C3—C4179.5 (6)C4—C6—C7—C8177.8 (7)
C2—C3—C4—C60.4 (10)C6—C7—N1—C22.9 (9)
C2—C3—C4—C5180.0 (7)C8—C7—N1—C2177.0 (6)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl20.862.453.301 (5)173
C1—H1C···Cl1ii0.962.813.743 (6)165
C8—H8A···Cl3iii0.962.803.731 (10)163
Symmetry codes: (ii) x, y+1, z+1; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula(C8H12N)2[PtCl6]
Mr652.15
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.6302 (8), 9.1328 (9), 9.4599 (10)
α, β, γ (°)99.201 (8), 109.683 (8), 108.471 (8)
V3)561.87 (12)
Z1
Radiation typeMo Kα
µ (mm1)6.96
Crystal size (mm)0.32 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.121, 0.176
No. of measured, independent and
observed [I > 2σ(I)] reflections
6510, 2962, 2952
Rint0.099
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.18
No. of reflections2962
No. of parameters116
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 1.44

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Pt1—Cl12.3225 (11)Pt1—Cl32.3197 (13)
Pt1—Cl22.3199 (12)
Cl2—Pt1—Cl1i89.35 (5)Cl3—Pt1—Cl1i89.90 (5)
Cl2—Pt1—Cl190.65 (5)Cl3—Pt1—Cl290.45 (6)
Cl3—Pt1—Cl190.10 (5)Cl3—Pt1—Cl2i89.55 (6)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl20.862.453.301 (5)173.00
C1—H1C···Cl1ii0.962.813.743 (6)165.00
C8—H8A···Cl3iii0.962.803.731 (10)163.00
Symmetry codes: (ii) x, y+1, z+1; (iii) x1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds