Download citation
Download citation
link to html
In the mol­ecule of the title compound, [InCl3(C12H12N2)(C2H6OS)], the InIII atom is six-coordinated in a distorted octa­hedral configuration by two N atoms from the chelating 4,4′-dimethyl-2,2′-bipyridine ligand, one O atom from dimethyl sulfoxide and three Cl atoms. In the crystal structure, inter­molecular C—H...Cl hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808029553/hk2532sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808029553/hk2532Isup2.hkl
Contains datablock I

CCDC reference: 705978

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.036
  • wR factor = 0.086
  • Data-to-parameter ratio = 25.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for S1 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C4 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C10
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, we reported the syntheses and crystal structures of [Zn(5,5'-dmbpy)Cl2], (II), (Khalighi et al., 2008), [Zn(6-mbpy)Cl2], (III), (Ahmadi, Kalateh et al., 2008), [Cd(5,5'-dmbpy)(µ-Cl)2]n, (IV), (Ahmadi, Khalighi et al., 2008), (Hg(4,4'-dmbpy)I2], (V), (Yousefi, Tadayon Pour et al., 2008) and [Cu(5,5'-dcbpy)(en)(H2O)2].2.5H2O, (VI), (Yousefi, Khalighi et al., 2008) [where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6-mbpy is 6-methyl-2,2'-bipyridine, 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dcbpy is 2,2'-bipyridine-5,5'-dicarboxylate and en is ethylenediamine]. We have also reported the synthesis and crystal structures of iron(III) complexes of [Fe(bipy)Cl3(DMSO)], (VII) and [Fe(phen)Cl3(DMSO)], (VIII), (Amani et al., 2007) and [Fe(phen)Cl3(CH3OH)].CH3OH, (IX), (Khavasi et al., 2007) [where bipy is 2,2'-bipyridine, DMSO is dimethyl sulfoxide and phen is 1,10-phenanthroline]. There are several InIII complexes, with formula, [In(N—N)Cl3(L)], (L = DMSO, H2O and EtOH), such as [In(bipy)Cl3(H2O)], (X), [In(bipy)Cl3(EtOH)], (XI) and [In(bipy)Cl3(H2O)].H2O, (XII), (Malyarick et al., 1992), [In(phen)Cl3(DMSO)], (XIII), (Nan et al., 1987), [In(phen)Cl3(H2O)], (XIV) and [In(phen)Cl3(EtOH)].EtOH, (XV), (Ilyukhin & Malyarick, 1994) have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (Fig. 1), the InIII atom is six-coordinated in a distorted octahedral configuration by two N atoms from 4,4'-dimethyl-2,2' -bipyridine, one O atom from dimethyl sulfoxide and three Cl atoms. The In—Cl and In—N bond lengths and angles (Table 1) are within normal ranges, as in (XI), (XII), (XIII) and (XV).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Ahmadi, Kalateh et al. (2008); Ahmadi, Khalighi et al. (2008); Amani et al. (2007); Ilyukhin & Malyarick (1994); Khavasi et al. (2007); Khalighi et al. (2008); Malyarick et al. (1992); Nan et al. (1987); Yousefi, Khalighi et al. (2008); Yousefi, Tadayon Pour et al. (2008).

Experimental top

For the preparation of the title compound, (I), a solution of 4,4'-dimethyl -2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (10 ml) was added to a solution of InCl3.4H2O (0.16 g, 0.55 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray analysis were isolated after one week by methanol diffusion to a colorless solution in DMSO (yield; 0.19 g, 71.4%).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Trichlorido(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')(dimethyl sulfoxide-κO)indium(III) top
Crystal data top
[InCl3(C12H12N2)(C2H6OS)]F(000) = 960
Mr = 483.54Dx = 1.704 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2052 reflections
a = 8.2565 (17) Åθ = 1.7–29.3°
b = 23.456 (5) ŵ = 1.79 mm1
c = 10.121 (2) ÅT = 298 K
β = 105.95 (3)°Prism, colorless
V = 1884.7 (7) Å30.49 × 0.46 × 0.44 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5046 independent reflections
Radiation source: fine-focus sealed tube4804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 29.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.404, Tmax = 0.455k = 2832
13791 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0263P)2 + 2.6542P]
where P = (Fo2 + 2Fc2)/3
5046 reflections(Δ/σ)max = 0.018
201 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[InCl3(C12H12N2)(C2H6OS)]V = 1884.7 (7) Å3
Mr = 483.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2565 (17) ŵ = 1.79 mm1
b = 23.456 (5) ÅT = 298 K
c = 10.121 (2) Å0.49 × 0.46 × 0.44 mm
β = 105.95 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5046 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4804 reflections with I > 2σ(I)
Tmin = 0.404, Tmax = 0.455Rint = 0.038
13791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.16Δρmax = 0.86 e Å3
5046 reflectionsΔρmin = 0.69 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.67799 (2)0.143868 (8)0.722848 (19)0.03114 (7)
Cl10.46060 (14)0.15508 (4)0.50881 (9)0.0586 (2)
Cl20.89844 (14)0.10102 (4)0.63344 (12)0.0620 (3)
Cl30.78999 (10)0.24070 (3)0.74202 (8)0.04094 (16)
S10.41807 (11)0.23105 (4)0.82159 (9)0.04457 (18)
O10.4998 (3)0.17216 (10)0.8405 (2)0.0410 (5)
N10.5893 (3)0.05448 (10)0.7626 (2)0.0345 (5)
N20.8245 (3)0.11591 (10)0.9400 (2)0.0329 (5)
C10.4701 (4)0.02601 (15)0.6694 (3)0.0443 (7)
H10.41250.04470.58920.053*
C20.4290 (4)0.03006 (14)0.6877 (3)0.0440 (7)
H20.34520.04840.62070.053*
C30.5131 (4)0.05872 (13)0.8059 (3)0.0378 (6)
C40.4753 (5)0.12005 (14)0.8289 (4)0.0501 (8)
H4A0.43980.12320.91130.060*
H4B0.57470.14260.83780.060*
H4C0.38720.13350.75220.060*
C50.6370 (4)0.02882 (13)0.9026 (3)0.0369 (6)
H50.69680.04680.98320.044*
C60.6714 (3)0.02770 (12)0.8790 (3)0.0308 (5)
C70.8006 (3)0.06232 (12)0.9795 (3)0.0311 (5)
C80.8859 (4)0.04184 (13)1.1078 (3)0.0359 (6)
H80.86740.00471.13250.043*
C91.0000 (4)0.07688 (13)1.2006 (3)0.0374 (6)
C101.0914 (5)0.05639 (17)1.3414 (4)0.0530 (9)
H10A1.06200.07991.40890.064*
H10B1.21060.05851.35320.064*
H10C1.06010.01761.35240.064*
C111.0221 (4)0.13209 (14)1.1568 (3)0.0403 (6)
H111.09700.15691.21470.048*
C120.9325 (4)0.14978 (13)1.0270 (3)0.0400 (6)
H120.94820.18670.99950.048*
C130.5259 (7)0.2699 (2)0.9695 (5)0.0731 (13)
H13A0.64070.27570.96860.088*
H13B0.52340.24891.05040.088*
H13C0.47200.30610.96990.088*
C140.2249 (5)0.2199 (2)0.8626 (5)0.0722 (13)
H14A0.24640.20140.95030.087*
H14B0.15270.19630.79350.087*
H14C0.17110.25590.86610.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.03794 (11)0.02645 (10)0.03083 (10)0.00110 (7)0.01249 (7)0.00088 (7)
Cl10.0729 (6)0.0538 (5)0.0380 (4)0.0016 (4)0.0033 (4)0.0062 (3)
Cl20.0772 (6)0.0409 (4)0.0877 (7)0.0027 (4)0.0561 (6)0.0066 (4)
Cl30.0448 (4)0.0282 (3)0.0536 (4)0.0030 (3)0.0197 (3)0.0006 (3)
S10.0475 (4)0.0469 (4)0.0438 (4)0.0125 (3)0.0200 (3)0.0068 (3)
O10.0441 (11)0.0412 (12)0.0434 (11)0.0053 (9)0.0216 (9)0.0042 (9)
N10.0379 (12)0.0297 (12)0.0350 (11)0.0049 (9)0.0085 (9)0.0006 (9)
N20.0326 (11)0.0296 (11)0.0373 (12)0.0019 (9)0.0111 (9)0.0009 (9)
C10.0473 (17)0.0394 (16)0.0392 (15)0.0067 (14)0.0002 (13)0.0022 (12)
C20.0460 (17)0.0384 (16)0.0441 (16)0.0122 (13)0.0067 (13)0.0062 (13)
C30.0455 (15)0.0313 (14)0.0406 (14)0.0055 (12)0.0183 (12)0.0046 (11)
C40.068 (2)0.0322 (16)0.0527 (19)0.0109 (15)0.0213 (17)0.0040 (14)
C50.0446 (15)0.0312 (14)0.0354 (13)0.0030 (12)0.0116 (12)0.0015 (11)
C60.0335 (12)0.0290 (13)0.0311 (12)0.0019 (10)0.0109 (10)0.0028 (10)
C70.0329 (12)0.0294 (13)0.0321 (12)0.0000 (10)0.0109 (10)0.0018 (10)
C80.0405 (14)0.0284 (13)0.0382 (14)0.0002 (11)0.0095 (11)0.0007 (11)
C90.0377 (14)0.0364 (15)0.0356 (14)0.0029 (12)0.0059 (11)0.0030 (11)
C100.061 (2)0.051 (2)0.0391 (16)0.0022 (17)0.0007 (15)0.0011 (14)
C110.0388 (15)0.0365 (15)0.0424 (15)0.0051 (12)0.0058 (12)0.0067 (12)
C120.0416 (15)0.0314 (14)0.0478 (16)0.0073 (12)0.0136 (13)0.0020 (12)
C130.091 (3)0.064 (3)0.079 (3)0.017 (2)0.048 (3)0.028 (2)
C140.042 (2)0.100 (4)0.079 (3)0.017 (2)0.025 (2)0.007 (3)
Geometric parameters (Å, º) top
Cl1—In12.4180 (12)C7—N21.350 (4)
Cl2—In12.4592 (10)C7—C81.382 (4)
Cl3—In12.4398 (9)C8—C91.400 (4)
O1—In12.233 (2)C8—H80.9300
O1—S11.526 (2)C9—C111.397 (4)
N1—In12.293 (2)C9—C101.497 (4)
N2—In12.294 (2)C10—H10A0.9600
C1—N11.339 (4)C10—H10B0.9600
C1—C21.383 (5)C10—H10C0.9600
C1—H10.9300C11—C121.382 (5)
C2—C31.382 (5)C11—H110.9300
C2—H20.9300C12—N21.331 (4)
C3—C51.395 (4)C12—H120.9300
C3—C41.504 (4)C13—S11.770 (5)
C4—H4A0.9600C13—H13A0.9600
C4—H4B0.9600C13—H13B0.9600
C4—H4C0.9600C13—H13C0.9600
C5—C61.390 (4)C14—S11.775 (4)
C5—H50.9300C14—H14A0.9600
C6—N11.343 (4)C14—H14B0.9600
C6—C71.495 (4)C14—H14C0.9600
Cl1—In1—Cl299.03 (4)H4B—C4—H4C109.5
Cl1—In1—Cl398.15 (3)C6—C5—C3120.3 (3)
Cl3—In1—Cl296.15 (3)C6—C5—H5119.9
O1—In1—Cl190.56 (7)C3—C5—H5119.9
O1—In1—Cl2168.67 (6)N1—C6—C5121.3 (3)
O1—In1—Cl388.39 (6)N1—C6—C7115.9 (2)
O1—In1—N183.64 (9)C5—C6—C7122.8 (3)
O1—In1—N279.94 (9)N2—C7—C8121.6 (3)
N1—In1—Cl193.59 (7)N2—C7—C6116.1 (2)
N1—In1—Cl289.72 (7)C8—C7—C6122.3 (3)
N1—In1—Cl3165.87 (6)C7—C8—C9120.1 (3)
N2—In1—Cl1162.86 (7)C7—C8—H8119.9
N2—In1—Cl289.26 (7)C9—C8—H8119.9
N2—In1—Cl395.83 (7)C11—C9—C8117.0 (3)
N1—In1—N271.34 (9)C11—C9—C10121.6 (3)
O1—S1—C13104.9 (2)C8—C9—C10121.4 (3)
O1—S1—C14103.4 (2)C9—C10—H10A109.5
C13—S1—C1498.8 (2)C9—C10—H10B109.5
H14B—C14—H14C109.5H10A—C10—H10B109.5
S1—O1—In1122.38 (12)C9—C10—H10C109.5
C1—N1—C6118.7 (3)H10A—C10—H10C109.5
C1—N1—In1122.7 (2)H10B—C10—H10C109.5
C6—N1—In1118.26 (18)C12—C11—C9119.8 (3)
C12—N2—C7119.1 (3)C12—C11—H11120.1
C12—N2—In1123.0 (2)C9—C11—H11120.1
C7—N2—In1117.94 (18)N2—C12—C11122.4 (3)
N1—C1—C2122.7 (3)N2—C12—H12118.8
N1—C1—H1118.7C11—C12—H12118.8
C2—C1—H1118.7S1—C13—H13A109.5
C3—C2—C1119.7 (3)S1—C13—H13B109.5
C3—C2—H2120.2H13A—C13—H13B109.5
C1—C2—H2120.2S1—C13—H13C109.5
C2—C3—C5117.4 (3)H13A—C13—H13C109.5
C2—C3—C4121.6 (3)H13B—C13—H13C109.5
C5—C3—C4121.1 (3)S1—C14—H14A109.5
C3—C4—H4A109.5S1—C14—H14B109.5
C3—C4—H4B109.5H14A—C14—H14B109.5
H4A—C4—H4B109.5S1—C14—H14C109.5
C3—C4—H4C109.5H14A—C14—H14C109.5
H4A—C4—H4C109.5
S1—O1—In1—N1154.51 (17)N1—C1—C2—C30.1 (5)
S1—O1—In1—N2133.38 (17)C1—C2—C3—C50.2 (5)
S1—O1—In1—Cl160.97 (15)C1—C2—C3—C4178.7 (3)
S1—O1—In1—Cl337.17 (15)C2—C3—C5—C60.4 (5)
S1—O1—In1—Cl2151.0 (2)C4—C3—C5—C6179.4 (3)
C1—N1—In1—O198.2 (3)C3—C5—C6—N11.2 (4)
C6—N1—In1—O188.1 (2)C3—C5—C6—C7179.0 (3)
C1—N1—In1—N2179.7 (3)C5—C6—N1—C11.3 (4)
C6—N1—In1—N26.6 (2)C7—C6—N1—C1178.9 (3)
C1—N1—In1—Cl18.0 (3)C5—C6—N1—In1172.7 (2)
C6—N1—In1—Cl1178.3 (2)C7—C6—N1—In17.1 (3)
C1—N1—In1—Cl3154.2 (2)N1—C6—C7—N22.2 (4)
C6—N1—In1—Cl332.1 (4)C5—C6—C7—N2177.6 (3)
C1—N1—In1—Cl291.0 (3)N1—C6—C7—C8175.1 (3)
C6—N1—In1—Cl282.7 (2)C5—C6—C7—C85.1 (4)
C12—N2—In1—O188.9 (2)C8—C7—N2—C120.2 (4)
C7—N2—In1—O191.9 (2)C6—C7—N2—C12177.1 (3)
C12—N2—In1—N1175.5 (3)C8—C7—N2—In1179.0 (2)
C7—N2—In1—N15.30 (19)C6—C7—N2—In13.7 (3)
C12—N2—In1—Cl1146.1 (2)N2—C7—C8—C90.2 (4)
C7—N2—In1—Cl134.7 (4)C6—C7—C8—C9177.0 (3)
C12—N2—In1—Cl31.6 (2)C7—C8—C9—C110.2 (4)
C7—N2—In1—Cl3179.24 (19)C7—C8—C9—C10178.6 (3)
C12—N2—In1—Cl294.5 (2)C8—C9—C11—C120.3 (5)
C7—N2—In1—Cl284.65 (19)C10—C9—C11—C12178.5 (3)
In1—O1—S1—C13105.2 (2)C9—C11—C12—N20.3 (5)
In1—O1—S1—C14151.6 (2)C11—C12—N2—C70.3 (5)
C2—C1—N1—C60.6 (5)C11—C12—N2—In1178.9 (2)
C2—C1—N1—In1173.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.773.427 (4)128
C10—H10C···Cl2i0.962.803.700 (4)156
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[InCl3(C12H12N2)(C2H6OS)]
Mr483.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.2565 (17), 23.456 (5), 10.121 (2)
β (°) 105.95 (3)
V3)1884.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.49 × 0.46 × 0.44
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.404, 0.455
No. of measured, independent and
observed [I > 2σ(I)] reflections
13791, 5046, 4804
Rint0.038
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.16
No. of reflections5046
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.69

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cl1—In12.4180 (12)O1—In12.233 (2)
Cl2—In12.4592 (10)N1—In12.293 (2)
Cl3—In12.4398 (9)N2—In12.294 (2)
Cl1—In1—Cl299.03 (4)N1—In1—Cl193.59 (7)
Cl1—In1—Cl398.15 (3)N1—In1—Cl289.72 (7)
Cl3—In1—Cl296.15 (3)N1—In1—Cl3165.87 (6)
O1—In1—Cl190.56 (7)N2—In1—Cl1162.86 (7)
O1—In1—Cl2168.67 (6)N2—In1—Cl289.26 (7)
O1—In1—Cl388.39 (6)N2—In1—Cl395.83 (7)
O1—In1—N183.64 (9)N1—In1—N271.34 (9)
O1—In1—N279.94 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.773.427 (4)128.00
C10—H10C···Cl2i0.962.803.700 (4)156.00
Symmetry code: (i) x+2, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds