Download citation
Download citation
link to html
The title compound, [Cu(C3F5O2)(C3H9OP)4](C3F5O2), comprises a cationic CuII complex and a disordered penta­fluoro­propionate counter-ion. The metal atom has a distorted square-pyramidal coordination environment formed by four O atoms originating from trimethyl­phosphine oxide mol­ecules and the remaining one belonging to the monodentate penta­fluoro­propionate anion, which is situated in the basal plane of the pyramid. The mol­ecules are held together in the crystal by a net of weak C—H...O and C—H...F hydrogen bonds. The counter anion is disordered over two sets of sites in a 0.629 (5):0.371 (5) ratio.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811031114/hp2011sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811031114/hp2011Isup2.hkl
Contains datablock I

CCDC reference: 298181

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.047
  • wR factor = 0.124
  • Data-to-parameter ratio = 17.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.08 PLAT213_ALERT_2_C Atom F10A has ADP max/min Ratio ..... 3.2 prola PLAT213_ALERT_2_C Atom O8B has ADP max/min Ratio ..... 3.9 prola PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 4 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 87 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 805
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 18 PLAT003_ALERT_2_G Number of Uiso or Uij Restrained Atom Sites .... 6 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT242_ALERT_2_G Check Low Ueq as Compared to Neighbors for C16A PLAT242_ALERT_2_G Check Low Ueq as Compared to Neighbors for C18A PLAT242_ALERT_2_G Check Low Ueq as Compared to Neighbors for C16B PLAT301_ALERT_3_G Note: Main Residue Disorder ................... 24 Perc. PLAT794_ALERT_5_G Note: Tentative Bond Valency for Cu1 (II) 2.10 PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms .... ! PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 33
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 8 ALERT level C = Check. Ensure it is not caused by an omission or oversight 10 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 10 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

During our ongoing studies on metal complexes with tertiary phosphines (Szymańska et al., 2007) and perfluorinated carboxylates (Piszczek et al., 2008; Szymańska et al., 2009) suitable for chemical vapour deposition (CVD), the title compound was accidentally isolated. It is the first report on the crystal structure of a Cu complex with trimethylphosphine oxides. There is however some literature on coordination compounds of trimethylphosphine oxide ligands with other metals from the first transition series such as: Sc(III) (Hill et al., 2003), Ti(III) (Johnson & Bergman, 2001), V(III) (Veige et al., 2003), Fe(II) (Cotton et al., 1991), Co(II) (Edelmann & Behrens, 1986), Ni(II) (Klein et al., 1999), Zn(II) (Hlavinka & Hagadorn, 2005).

Furthermore, there are also only two reports on crystal structures of CuII complexes containing coordinating pentafluoropropionate ions (Jiang et al., 1998; Zhang et al., 1999).

The title compound has one monocationic CuII complex and one pentafluoropropionate counter-ion present in the asymmetric unit (Fig.1). The geometry around the CuII ion is a distorted square-pyramid formed by four O atoms originating from trimethylphosphine oxide molecules and one from the monodentate pentafluoropropionate ion, which is located in the base plane of the pyramid. The corresponding bond lengths and angles are presented in Table 1. The geometrical features of the ligands are in good agreement with reported values. The counter-ion is disordered over two positions with refined site occupancies of 0.629 (5):0.371 (5). There are weak intramolecular C—H···O interactions between the methyl groups of three distinct trimethylphosphine oxides (P1, P2 and P4) involving the atoms C3, C5 and C10, that act as donors, and O5 (from the counter-ion), as well as O4 and O3 (from the oxide ligands), that act as acceptors, respectively (Table 2). The C9 methyl group from P3 however, interacts with the counter-ion by weak C9—H9A···F7A hydrogen bonding with a C···F distance of 3.322 (6) Å, and a C—H—F angle of 150°. The packing is further stabilized by numerous weak intermolecular C—H···O and C—H···F interactions.

Related literature top

For our previous studies on metal complexes suitable for chemical

vapour deposition (CVD), see: Szymańska et al. (2007, 2009); Piszczek et al. (2008). For crystal structures of metal complexes with trimethylphosphine oxide ligands involving metal ions from the first transition series, see: Hill et al. (2003) for Sc(III); Johnson & Bergman (2001) for Ti(III); Veige et al. (2003) for V(III); Cotton et al. (1991) for Fe(II); Edelmann & Behrens (1986) for Co(II); Klein et al. (1999) for Ni(II); Hlavinka & Hagadorn (2005) for Zn(II). For crystallographic data on CuII complexes with a pentafluoropropionate ligand, see: Jiang et al. (1998); Zhang et al. (1999).

Experimental top

(C2F5COO)2Cu (1.04 mmol) was placed in a Schlenk tube, dissolved in 25 ml of freshly distilled acetonitrile, and copper powder (5 mmol) was added. The obtained suspension was stirred until the solution was pale yellow. Then PMe3 (2.1 ml of a 1 M THF solution) was added and the reaction mixture was stirred for 18 h at ambient temperature, and filtered. The solvent was evaporated under reduced pressure, yielding [Cu2(PMe3)2(µ–C2F5CO2)2] as a pale yellow, viscous oil. Crystals of the title CuII complex suitable for X-ray studies were obtained after a few months, presumably upon slow oxidation by diffused air.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.98 and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C). The counter-ion was found to be disordered and modeled in two positions. Refinement included bond lengths restraints applied to the O8B—O7B, C17B—O7B and C17B—O8B as well as to ADPs of 'A' part.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; the other orientation of the disordered counter-ion has been omitted for clarity.
(Pentafluoropropionato-κO)tetrakis(trimethylphosphine oxide-κO)copper(II) pentafluoropropionate top
Crystal data top
[Cu(C3F5O2)(C3H9OP)4](C3F5O2)Z = 2
Mr = 757.89F(000) = 774
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5955 (8) ÅCell parameters from 5155 reflections
b = 12.2627 (11) Åθ = 2.2–28.1°
c = 14.1848 (12) ŵ = 0.96 mm1
α = 82.720 (2)°T = 100 K
β = 80.501 (1)°Plate, colorless
γ = 82.899 (2)°0.48 × 0.17 × 0.03 mm
V = 1623.9 (2) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
7148 independent reflections
Radiation source: fine-focus sealed tube6207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1012
Tmin = 0.655, Tmax = 0.972k = 1215
10254 measured reflectionsl = 1218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0677P)2 + 1.8569P]
where P = (Fo2 + 2Fc2)/3
7148 reflections(Δ/σ)max = 0.004
416 parametersΔρmax = 1.33 e Å3
33 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cu(C3F5O2)(C3H9OP)4](C3F5O2)γ = 82.899 (2)°
Mr = 757.89V = 1623.9 (2) Å3
Triclinic, P1Z = 2
a = 9.5955 (8) ÅMo Kα radiation
b = 12.2627 (11) ŵ = 0.96 mm1
c = 14.1848 (12) ÅT = 100 K
α = 82.720 (2)°0.48 × 0.17 × 0.03 mm
β = 80.501 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
7148 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
6207 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.972Rint = 0.016
10254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04733 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 1.33 e Å3
7148 reflectionsΔρmin = 0.64 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.08108 (3)0.78725 (2)0.19051 (2)0.01610 (10)
P10.24449 (7)0.85300 (5)0.01852 (5)0.01593 (14)
F10.1350 (2)0.6864 (2)0.05341 (14)0.0504 (6)
O10.18617 (19)0.87540 (15)0.08413 (13)0.0192 (4)
C10.3916 (3)0.9301 (2)0.0631 (2)0.0219 (5)
H1B0.36211.00880.05830.033*
H1C0.42530.91860.13050.033*
H1A0.46830.90530.02510.033*
P20.25316 (7)0.53881 (6)0.24912 (5)0.02095 (16)
F20.3344 (2)0.76050 (17)0.0154 (2)0.0551 (7)
O20.2545 (2)0.65462 (16)0.20071 (14)0.0241 (4)
C20.1173 (3)0.8928 (2)0.09896 (19)0.0216 (5)
H2A0.08080.97060.09500.032*
H2C0.03860.84670.08100.032*
H2B0.16280.88290.16490.032*
P30.23148 (7)0.95789 (6)0.28343 (5)0.02113 (16)
F30.3038 (4)0.5932 (3)0.17037 (17)0.0865 (11)
O30.1153 (2)0.88590 (17)0.28130 (14)0.0239 (4)
C30.3067 (3)0.7111 (2)0.0298 (2)0.0241 (6)
H3B0.22870.66540.00610.036*
H3C0.38410.68840.00810.036*
H3A0.34160.70170.09750.036*
P40.15738 (7)0.75219 (6)0.37572 (5)0.02040 (16)
F40.3406 (2)0.54896 (16)0.03595 (14)0.0372 (4)
O40.0456 (2)0.71361 (15)0.29524 (14)0.0219 (4)
C40.4003 (3)0.4476 (3)0.2000 (2)0.0311 (7)
H4C0.48930.47760.20290.047*
H4A0.39310.44050.13300.047*
H4B0.39880.37470.23740.047*
F50.1333 (3)0.51630 (18)0.0786 (2)0.0734 (9)
O50.00828 (19)0.71780 (16)0.09965 (14)0.0210 (4)
C50.0986 (3)0.4756 (3)0.2401 (3)0.0339 (7)
H5A0.01340.52170.26590.051*
H5C0.10160.40230.27690.051*
H5B0.09590.46810.17240.051*
O60.1970 (2)0.84408 (17)0.12865 (17)0.0327 (5)
C60.2642 (4)0.5320 (3)0.3743 (2)0.0373 (8)
H6A0.18570.58050.40530.056*
H6B0.35480.55610.38220.056*
H6C0.25810.45580.40400.056*
C70.4043 (3)0.8860 (3)0.2605 (2)0.0337 (7)
H7B0.41050.81840.30520.050*
H7C0.47520.93330.26950.050*
H7A0.42240.86680.19430.050*
C80.2270 (3)1.0803 (2)0.2011 (2)0.0285 (6)
H8B0.13261.12160.21150.043*
H8A0.24731.06030.13510.043*
H8C0.29871.12620.21130.043*
C90.2105 (4)1.0049 (3)0.3994 (2)0.0371 (8)
H9B0.11561.04450.41380.056*
H9C0.28261.05470.40030.056*
H9A0.22180.94130.44790.056*
C100.2257 (3)0.8943 (3)0.3576 (2)0.0297 (6)
H10B0.14750.94070.34880.045*
H10C0.29440.91330.41380.045*
H10A0.27280.90670.30030.045*
C110.0891 (3)0.7320 (3)0.4869 (2)0.0317 (7)
H11A0.00690.77380.48120.048*
H11C0.06010.65320.50250.048*
H11B0.16290.75790.53790.048*
C120.3045 (3)0.6728 (3)0.3907 (2)0.0308 (7)
H12C0.27110.59400.40110.046*
H12A0.35030.68690.33290.046*
H12B0.37300.69380.44640.046*
C130.1330 (3)0.7628 (2)0.0938 (2)0.0221 (5)
C140.2120 (3)0.7015 (2)0.0332 (2)0.0238 (6)
C150.2495 (4)0.5889 (3)0.0808 (2)0.0369 (8)
O7A0.4474 (9)0.8498 (7)0.7251 (5)0.0477 (17)0.629 (5)
O8A0.5882 (6)0.7691 (6)0.6074 (5)0.0323 (13)0.629 (5)
C16A0.4755 (7)0.8008 (5)0.6533 (5)0.021 (2)0.629 (5)
C17A0.3420 (5)0.7754 (4)0.6121 (4)0.0329 (9)0.629 (5)
F6A0.2231 (3)0.8483 (2)0.6315 (2)0.0347 (8)0.629 (5)
F7A0.3679 (4)0.7818 (4)0.5132 (2)0.0379 (9)0.629 (5)
C18A0.2969 (6)0.6623 (4)0.6453 (4)0.0372 (10)0.629 (5)
F8A0.2645 (6)0.6562 (5)0.7412 (3)0.0703 (16)0.629 (5)
F9A0.1885 (4)0.6422 (4)0.6027 (4)0.0480 (12)0.629 (5)
F10A0.3998 (4)0.5841 (3)0.6197 (4)0.0678 (16)0.629 (5)
O7B0.4232 (16)0.8398 (13)0.7137 (9)0.052 (4)*0.371 (5)
O8B0.5843 (13)0.8011 (11)0.5898 (11)0.071 (6)0.371 (5)
C16B0.4611 (9)0.7981 (10)0.6411 (8)0.035 (6)*0.371 (5)
C17B0.3690 (6)0.7217 (6)0.6021 (4)0.041 (2)*0.371 (5)
F7B0.3527 (9)0.7481 (6)0.5070 (4)0.053 (3)*0.371 (5)
F6B0.4318 (6)0.6141 (5)0.6041 (5)0.0376 (18)*0.371 (5)
C18B0.2217 (7)0.7160 (6)0.6562 (4)0.046 (2)*0.371 (5)
F8B0.1567 (7)0.8193 (4)0.6525 (4)0.0486 (17)*0.371 (5)
F9B0.1530 (7)0.6463 (5)0.6187 (4)0.0319 (19)*0.371 (5)
F10B0.2208 (7)0.6733 (6)0.7469 (4)0.0378 (18)*0.371 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01510 (16)0.01617 (17)0.01697 (17)0.00428 (12)0.00109 (11)0.00082 (12)
P10.0158 (3)0.0150 (3)0.0169 (3)0.0026 (2)0.0013 (2)0.0017 (2)
F10.0599 (14)0.0691 (15)0.0299 (10)0.0364 (12)0.0006 (9)0.0139 (10)
O10.0221 (9)0.0172 (9)0.0179 (9)0.0055 (7)0.0004 (7)0.0017 (7)
C10.0181 (12)0.0232 (13)0.0236 (13)0.0048 (10)0.0008 (10)0.0002 (11)
P20.0181 (3)0.0204 (3)0.0220 (3)0.0000 (3)0.0013 (2)0.0024 (3)
F20.0481 (12)0.0329 (11)0.0966 (19)0.0074 (9)0.0504 (13)0.0130 (11)
O20.0189 (9)0.0232 (10)0.0273 (10)0.0015 (8)0.0017 (8)0.0053 (8)
C20.0213 (12)0.0226 (13)0.0213 (13)0.0041 (11)0.0044 (10)0.0008 (10)
P30.0221 (3)0.0230 (4)0.0199 (3)0.0078 (3)0.0044 (3)0.0015 (3)
F30.148 (3)0.096 (2)0.0307 (12)0.097 (2)0.0034 (15)0.0048 (13)
O30.0256 (10)0.0268 (10)0.0204 (9)0.0106 (8)0.0011 (8)0.0057 (8)
C30.0280 (14)0.0170 (13)0.0253 (14)0.0011 (11)0.0004 (11)0.0047 (10)
P40.0184 (3)0.0224 (3)0.0199 (3)0.0047 (3)0.0007 (2)0.0025 (3)
F40.0430 (11)0.0317 (10)0.0440 (11)0.0200 (9)0.0147 (9)0.0053 (8)
O40.0207 (9)0.0191 (9)0.0235 (10)0.0036 (7)0.0035 (7)0.0007 (7)
C40.0251 (14)0.0303 (16)0.0333 (16)0.0069 (12)0.0011 (12)0.0002 (13)
F50.0782 (18)0.0247 (11)0.134 (3)0.0036 (11)0.0712 (19)0.0002 (13)
O50.0186 (9)0.0223 (10)0.0232 (9)0.0063 (8)0.0033 (7)0.0020 (7)
C50.0250 (14)0.0236 (15)0.054 (2)0.0052 (12)0.0060 (14)0.0057 (14)
O60.0338 (11)0.0214 (10)0.0461 (13)0.0031 (9)0.0157 (10)0.0088 (9)
C60.0400 (18)0.045 (2)0.0225 (15)0.0030 (15)0.0028 (13)0.0042 (13)
C70.0243 (14)0.0352 (17)0.0403 (18)0.0036 (13)0.0085 (13)0.0055 (14)
C80.0299 (15)0.0247 (15)0.0313 (15)0.0071 (12)0.0065 (12)0.0019 (12)
C90.050 (2)0.0398 (18)0.0264 (16)0.0216 (16)0.0047 (14)0.0079 (13)
C100.0279 (14)0.0259 (15)0.0324 (16)0.0015 (12)0.0018 (12)0.0050 (12)
C110.0315 (15)0.0391 (18)0.0253 (15)0.0034 (13)0.0051 (12)0.0055 (13)
C120.0236 (14)0.0383 (17)0.0307 (16)0.0140 (13)0.0073 (11)0.0090 (13)
C130.0235 (13)0.0191 (13)0.0255 (14)0.0069 (11)0.0078 (10)0.0009 (10)
C140.0246 (13)0.0229 (14)0.0261 (14)0.0043 (11)0.0096 (11)0.0013 (11)
C150.054 (2)0.0300 (17)0.0333 (17)0.0229 (16)0.0176 (15)0.0027 (13)
O7A0.059 (4)0.062 (4)0.029 (3)0.007 (3)0.003 (2)0.032 (2)
O8A0.030 (2)0.030 (4)0.036 (3)0.0178 (18)0.0070 (18)0.001 (2)
C16A0.023 (3)0.028 (4)0.015 (3)0.0121 (19)0.003 (2)0.0083 (18)
C17A0.038 (2)0.027 (2)0.0363 (18)0.0004 (15)0.007 (2)0.0156 (17)
F6A0.0312 (16)0.0262 (15)0.0452 (17)0.0042 (12)0.0056 (13)0.0053 (13)
F7A0.045 (2)0.049 (2)0.0245 (14)0.0102 (17)0.0080 (12)0.0096 (13)
C18A0.036 (3)0.0291 (18)0.050 (2)0.0039 (18)0.016 (2)0.0034 (19)
F8A0.058 (3)0.108 (4)0.0394 (17)0.005 (3)0.0178 (19)0.025 (2)
F9A0.0239 (19)0.071 (3)0.055 (2)0.023 (2)0.0081 (18)0.007 (2)
F10A0.046 (2)0.0196 (18)0.151 (5)0.0063 (18)0.048 (3)0.025 (2)
O8B0.092 (9)0.038 (8)0.069 (9)0.038 (6)0.058 (7)0.016 (6)
Geometric parameters (Å, º) top
Cu1—O11.9535 (18)O6—C131.220 (4)
Cu1—O41.9582 (18)C6—H6A0.9800
Cu1—O31.965 (2)C6—H6B0.9800
Cu1—O51.9863 (19)C6—H6C0.9800
Cu1—O22.1876 (19)C7—H7B0.9800
P1—O11.5176 (19)C7—H7C0.9800
P1—C11.780 (3)C7—H7A0.9800
P1—C31.786 (3)C8—H8B0.9800
P1—C21.789 (3)C8—H8A0.9800
F1—C141.346 (4)C8—H8C0.9800
C1—H1B0.9800C9—H9B0.9800
C1—H1C0.9800C9—H9C0.9800
C1—H1A0.9800C9—H9A0.9800
P2—O21.498 (2)C10—H10B0.9800
P2—C51.786 (3)C10—H10C0.9800
P2—C61.787 (3)C10—H10A0.9800
P2—C41.792 (3)C11—H11A0.9800
F2—C141.345 (3)C11—H11C0.9800
C2—H2A0.9800C11—H11B0.9800
C2—H2C0.9800C12—H12C0.9800
C2—H2B0.9800C12—H12A0.9800
P3—O31.511 (2)C12—H12B0.9800
P3—C71.779 (3)C13—C141.549 (4)
P3—C81.782 (3)C14—C151.516 (4)
P3—C91.784 (3)O7A—C16A1.222 (8)
F3—C151.296 (4)O8A—C16A1.213 (9)
C3—H3B0.9800C16A—C17A1.572 (8)
C3—H3C0.9800C17A—F6A1.373 (6)
C3—H3A0.9800C17A—F7A1.378 (6)
P4—O41.5116 (19)C17A—C18A1.499 (6)
P4—C121.782 (3)C18A—F10A1.328 (6)
P4—C111.783 (3)C18A—F9A1.348 (5)
P4—C101.787 (3)C18A—F8A1.339 (7)
F4—C151.334 (4)O7B—C16B1.191 (14)
C4—H4C0.9800O8B—C16B1.285 (14)
C4—H4A0.9800C16B—C17B1.569 (8)
C4—H4B0.9800C17B—F6B1.379 (6)
F5—C151.337 (5)C17B—F7B1.378 (6)
O5—C131.265 (3)C17B—C18B1.498 (6)
C5—H5A0.9800C18B—F10B1.325 (7)
C5—H5C0.9800C18B—F9B1.349 (5)
C5—H5B0.9800C18B—F8B1.339 (7)
O1—Cu1—O4172.44 (8)P3—C7—H7A109.5
O1—Cu1—O390.48 (8)H7B—C7—H7A109.5
O4—Cu1—O388.42 (8)H7C—C7—H7A109.5
O1—Cu1—O591.12 (8)P3—C8—H8B109.5
O4—Cu1—O587.71 (8)P3—C8—H8A109.5
O3—Cu1—O5162.51 (8)H8B—C8—H8A109.5
O1—Cu1—O294.54 (7)P3—C8—H8C109.5
O4—Cu1—O292.99 (7)H8B—C8—H8C109.5
O3—Cu1—O2102.55 (8)H8A—C8—H8C109.5
O5—Cu1—O294.69 (8)P3—C9—H9B109.5
O1—P1—C1109.87 (12)P3—C9—H9C109.5
O1—P1—C3113.30 (12)H9B—C9—H9C109.5
C1—P1—C3106.69 (13)P3—C9—H9A109.5
O1—P1—C2112.92 (12)H9B—C9—H9A109.5
C1—P1—C2106.63 (13)H9C—C9—H9A109.5
C3—P1—C2107.03 (14)P4—C10—H10B109.5
P1—O1—Cu1131.81 (11)P4—C10—H10C109.5
P1—C1—H1B109.5H10B—C10—H10C109.5
P1—C1—H1C109.5P4—C10—H10A109.5
H1B—C1—H1C109.5H10B—C10—H10A109.5
P1—C1—H1A109.5H10C—C10—H10A109.5
H1B—C1—H1A109.5P4—C11—H11A109.5
H1C—C1—H1A109.5P4—C11—H11C109.5
O2—P2—C5113.83 (14)H11A—C11—H11C109.5
O2—P2—C6111.92 (15)P4—C11—H11B109.5
C5—P2—C6106.86 (17)H11A—C11—H11B109.5
O2—P2—C4112.71 (13)H11C—C11—H11B109.5
C5—P2—C4105.21 (16)P4—C12—H12C109.5
C6—P2—C4105.69 (16)P4—C12—H12A109.5
P2—O2—Cu1130.30 (11)H12C—C12—H12A109.5
P1—C2—H2A109.5P4—C12—H12B109.5
P1—C2—H2C109.5H12C—C12—H12B109.5
H2A—C2—H2C109.5H12A—C12—H12B109.5
P1—C2—H2B109.5O6—C13—O5129.8 (3)
H2A—C2—H2B109.5O6—C13—C14117.6 (2)
H2C—C2—H2B109.5O5—C13—C14112.6 (2)
O3—P3—C7112.50 (14)F2—C14—F1105.9 (3)
O3—P3—C8114.19 (13)F2—C14—C15106.8 (3)
C7—P3—C8107.45 (15)F1—C14—C15107.2 (3)
O3—P3—C9109.04 (14)F2—C14—C13111.1 (2)
C7—P3—C9108.03 (18)F1—C14—C13111.7 (2)
C8—P3—C9105.23 (16)C15—C14—C13113.7 (2)
P3—O3—Cu1133.98 (12)F3—C15—F4109.1 (3)
P1—C3—H3B109.5F3—C15—F5107.2 (3)
P1—C3—H3C109.5F4—C15—F5107.2 (3)
H3B—C3—H3C109.5F3—C15—C14111.1 (3)
P1—C3—H3A109.5F4—C15—C14111.5 (3)
H3B—C3—H3A109.5F5—C15—C14110.6 (3)
H3C—C3—H3A109.5O8A—C16A—O7A131.6 (7)
O4—P4—C12109.79 (13)O8A—C16A—C17A114.0 (6)
O4—P4—C11110.73 (13)O7A—C16A—C17A114.5 (6)
C12—P4—C11107.01 (16)F6A—C17A—F7A104.2 (4)
O4—P4—C10114.59 (13)F6A—C17A—C18A106.1 (4)
C12—P4—C10107.08 (16)F7A—C17A—C18A105.5 (4)
C11—P4—C10107.30 (16)F6A—C17A—C16A114.6 (4)
P4—O4—Cu1134.85 (12)F7A—C17A—C16A111.0 (4)
P2—C4—H4C109.5C18A—C17A—C16A114.4 (4)
P2—C4—H4A109.5F10A—C18A—F9A103.9 (4)
H4C—C4—H4A109.5F10A—C18A—F8A110.5 (5)
P2—C4—H4B109.5F9A—C18A—F8A112.9 (5)
H4C—C4—H4B109.5F10A—C18A—C17A111.3 (5)
H4A—C4—H4B109.5F9A—C18A—C17A111.9 (4)
C13—O5—Cu1111.38 (18)F8A—C18A—C17A106.5 (5)
P2—C5—H5A109.5O7B—C16B—O8B125.4 (8)
P2—C5—H5C109.5O7B—C16B—C17B123.0 (9)
H5A—C5—H5C109.5O8B—C16B—C17B111.4 (9)
P2—C5—H5B109.5F6B—C17B—F7B102.7 (4)
H5A—C5—H5B109.5F6B—C17B—C18B106.1 (5)
H5C—C5—H5B109.5F7B—C17B—C18B105.6 (5)
P2—C6—H6A109.5F6B—C17B—C16B111.5 (5)
P2—C6—H6B109.5F7B—C17B—C16B115.0 (5)
H6A—C6—H6B109.5C18B—C17B—C16B114.9 (4)
P2—C6—H6C109.5F10B—C18B—F9B103.9 (5)
H6A—C6—H6C109.5F10B—C18B—F8B110.0 (5)
H6B—C6—H6C109.5F9B—C18B—F8B112.8 (5)
P3—C7—H7B109.5F10B—C18B—C17B112.6 (5)
P3—C7—H7C109.5F9B—C18B—C17B110.3 (4)
H7B—C7—H7C109.5F8B—C18B—C17B107.3 (5)
C1—P1—O1—Cu1154.13 (15)F1—C14—C15—F3169.7 (3)
C3—P1—O1—Cu134.9 (2)C13—C14—C15—F345.8 (4)
C2—P1—O1—Cu186.98 (17)F2—C14—C15—F444.8 (4)
O3—Cu1—O1—P1166.61 (16)F1—C14—C15—F468.4 (4)
O5—Cu1—O1—P130.81 (16)C13—C14—C15—F4167.7 (3)
O2—Cu1—O1—P163.98 (16)F2—C14—C15—F5164.0 (3)
C5—P2—O2—Cu137.4 (2)F1—C14—C15—F550.8 (3)
C6—P2—O2—Cu183.9 (2)C13—C14—C15—F573.1 (3)
C4—P2—O2—Cu1157.08 (16)O8A—C16A—C17A—F6A151.9 (6)
O1—Cu1—O2—P2163.26 (16)O7A—C16A—C17A—F6A27.5 (8)
O4—Cu1—O2—P216.18 (17)O8A—C16A—C17A—F7A34.2 (7)
O3—Cu1—O2—P2105.23 (16)O7A—C16A—C17A—F7A145.2 (7)
O5—Cu1—O2—P271.76 (17)O8A—C16A—C17A—C18A85.1 (7)
C7—P3—O3—Cu149.3 (2)O7A—C16A—C17A—C18A95.4 (7)
C8—P3—O3—Cu173.5 (2)F6A—C17A—C18A—F10A172.6 (4)
C9—P3—O3—Cu1169.11 (19)F7A—C17A—C18A—F10A62.4 (5)
O1—Cu1—O3—P328.23 (18)C16A—C17A—C18A—F10A60.0 (6)
O4—Cu1—O3—P3159.25 (18)F6A—C17A—C18A—F9A56.9 (6)
O5—Cu1—O3—P3123.5 (2)F7A—C17A—C18A—F9A53.3 (6)
O2—Cu1—O3—P366.53 (18)C16A—C17A—C18A—F9A175.7 (5)
C12—P4—O4—Cu1140.10 (18)F6A—C17A—C18A—F8A66.8 (5)
C11—P4—O4—Cu1102.0 (2)F7A—C17A—C18A—F8A177.1 (4)
C10—P4—O4—Cu119.6 (2)C16A—C17A—C18A—F8A60.5 (6)
O3—Cu1—O4—P441.48 (18)O7B—C16B—C17B—F6B113.4 (14)
O5—Cu1—O4—P4121.46 (18)O8B—C16B—C17B—F6B61.0 (11)
O2—Cu1—O4—P4143.97 (17)O7B—C16B—C17B—F7B130.3 (14)
O1—Cu1—O5—C1399.79 (18)O8B—C16B—C17B—F7B55.4 (12)
O4—Cu1—O5—C1372.74 (18)O7B—C16B—C17B—C18B7.4 (16)
O3—Cu1—O5—C134.6 (4)O8B—C16B—C17B—C18B178.3 (10)
O2—Cu1—O5—C13165.56 (18)F6B—C17B—C18B—F10B60.9 (6)
Cu1—O5—C13—O66.3 (4)F7B—C17B—C18B—F10B169.4 (6)
Cu1—O5—C13—C14173.07 (17)C16B—C17B—C18B—F10B62.8 (8)
O6—C13—C14—F210.4 (4)F6B—C17B—C18B—F9B54.7 (6)
O5—C13—C14—F2170.1 (2)F7B—C17B—C18B—F9B53.8 (7)
O6—C13—C14—F1128.4 (3)C16B—C17B—C18B—F9B178.4 (6)
O5—C13—C14—F152.1 (3)F6B—C17B—C18B—F8B177.9 (5)
O6—C13—C14—C15110.1 (3)F7B—C17B—C18B—F8B69.4 (6)
O5—C13—C14—C1569.4 (3)C16B—C17B—C18B—F8B58.4 (7)
F2—C14—C15—F377.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O50.982.573.265 (3)128
C5—H5A···O40.982.423.204 (4)136
C10—H10B···O30.982.583.266 (4)127
C1—H1A···F2i0.982.523.392 (3)149
C1—H1B···O6ii0.982.473.265 (3)138
C4—H4A···F4iii0.982.513.482 (3)170
C4—H4C···F3i0.982.533.478 (5)163
C9—H9A···F7A0.982.443.322 (6)150
C11—H11B···O8Aiv0.982.423.289 (7)147
C12—H12B···O8Aiv0.982.523.388 (8)147
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C3F5O2)(C3H9OP)4](C3F5O2)
Mr757.89
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5955 (8), 12.2627 (11), 14.1848 (12)
α, β, γ (°)82.720 (2), 80.501 (1), 82.899 (2)
V3)1623.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.48 × 0.17 × 0.03
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.655, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
10254, 7148, 6207
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.07
No. of reflections7148
No. of parameters416
No. of restraints33
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.64

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.9535 (18)Cu1—O51.9863 (19)
Cu1—O41.9582 (18)Cu1—O22.1876 (19)
Cu1—O31.965 (2)
O1—Cu1—O4172.44 (8)O3—Cu1—O5162.51 (8)
O1—Cu1—O390.48 (8)O1—Cu1—O294.54 (7)
O4—Cu1—O388.42 (8)O4—Cu1—O292.99 (7)
O1—Cu1—O591.12 (8)O3—Cu1—O2102.55 (8)
O4—Cu1—O587.71 (8)O5—Cu1—O294.69 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O50.982.573.265 (3)128
C5—H5A···O40.982.423.204 (4)136
C10—H10B···O30.982.583.266 (4)127
C1—H1A···F2i0.982.523.392 (3)149
C1—H1B···O6ii0.982.473.265 (3)138
C4—H4A···F4iii0.982.513.482 (3)170
C4—H4C···F3i0.982.533.478 (5)163
C9—H9A···F7A0.982.443.322 (6)150
C11—H11B···O8Aiv0.982.423.289 (7)147
C12—H12B···O8Aiv0.982.523.388 (8)147
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds