Download citation
Download citation
link to html
A series of temperature-dependent single-crystal and powder diffraction experiments has been carried out using synchrotron radiation in order to characterize the monogermanides of Mn, Fe and their solid solutions. The MnGe single crystal is found to be enantiopure and we report the absolute structure determination. The thermal expansion, parametrized with the Debye model, is discussed from the temperature-dependent powder diffraction measurements for Mn1−xFexGe (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9). Whereas the unit-cell dimension and the Debye temperature follow a linear trend as a function of composition, the thermal expansion coefficient deviates from linear dependence with increasing Mn content. No structural phase transformations have been observed for any composition in the temperature range 80–500 K for both single-crystal and powder diffraction, indicating that the phase transition previously observed with neutron powder diffraction most probably has a magnetic origin.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520614006611/hw5031sup1.cif
Contains datablocks 250K, 90K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614006611/hw5031250Ksup2.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614006611/hw503190Ksup3.hkl
Contains datablock shelx

CCDC references: 993598; 993599

Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Computing details top

For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
(250K) top
Crystal data top
Ge4Mn4Dx = 7.668 Mg m3
Mr = 510.12Synchrotron radiation, λ = 0.68239 Å
Cubic, P213Cell parameters from 316 reflections
Hall symbol: P 2ac 2ab 3θ = 7.1–28.6°
a = 4.7983 (11) ŵ = 37.66 mm1
V = 110.47 (4) Å3T = 250 K
Z = 1Block, metallic dark grey
F(000) = 2280.02 × 0.02 × 0.01 mm
Data collection top
Pilatus@SNBL
diffractometer
78 independent reflections
Radiation source: ESRF bending magnet76 reflections with I > 2σ(I)
Silicon monochromatorRint = 0.031
ϕ scanθmax = 24.9°, θmin = 5.8°
Absorption correction: multi-scan
SADABS v.2.06 (Sheldrick, 2003)
h = 55
Tmin = 0.472, Tmax = 0.685k = 55
522 measured reflectionsl = 55
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.018P)2 + 0.6307P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max < 0.001
S = 1.19Δρmax = 0.34 e Å3
78 reflectionsΔρmin = 0.68 e Å3
7 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
0 restraintsAbsolute structure parameter: 0.07 (11)
Crystal data top
Ge4Mn4Z = 1
Mr = 510.12Synchrotron radiation, λ = 0.68239 Å
Cubic, P213µ = 37.66 mm1
a = 4.7983 (11) ÅT = 250 K
V = 110.47 (4) Å30.02 × 0.02 × 0.01 mm
Data collection top
Pilatus@SNBL
diffractometer
78 independent reflections
Absorption correction: multi-scan
SADABS v.2.06 (Sheldrick, 2003)
76 reflections with I > 2σ(I)
Tmin = 0.472, Tmax = 0.685Rint = 0.031
522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.050Δρmax = 0.34 e Å3
S = 1.19Δρmin = 0.68 e Å3
78 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
7 parametersAbsolute structure parameter: 0.07 (11)
Special details top

Experimental. Comment on transmission values: The program SADABS (v2.06) outputs the ratio of minimum to maximum apparent transmission (0.689334). We have set T(max) to the expected value, i.e. exp(-r_min*mu) and we calculate T(min) from the minimum to maximum apparent transmission given by SADABS.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge010.15652 (16)0.15652 (16)0.15652 (16)0.0090 (4)
Mn020.8627 (2)0.8627 (2)0.8627 (2)0.0089 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge010.0090 (4)0.0090 (4)0.0090 (4)0.0003 (3)0.0003 (3)0.0003 (3)
Mn020.0089 (5)0.0089 (5)0.0089 (5)0.0010 (5)0.0010 (5)0.0010 (5)
Geometric parameters (Å, º) top
Ge01—Mn02i2.442 (2)Mn02—Ge01xi2.5119 (12)
Ge01—Mn02ii2.5119 (12)Mn02—Ge01xii2.6821 (15)
Ge01—Mn02iii2.5119 (12)Mn02—Ge01xiii2.6821 (15)
Ge01—Mn02iv2.5119 (12)Mn02—Ge01xiv2.6821 (15)
Ge01—Mn02v2.6821 (15)Mn02—Mn02xv2.9431 (7)
Ge01—Mn02vi2.6821 (15)Mn02—Mn02xvi2.9431 (7)
Ge01—Mn02vii2.6821 (15)Mn02—Mn02xvii2.9431 (7)
Mn02—Ge01viii2.442 (2)Mn02—Mn02xviii2.9431 (7)
Mn02—Ge01ix2.5119 (12)Mn02—Mn02xix2.9431 (7)
Mn02—Ge01x2.5119 (12)
Mn02i—Ge01—Mn02ii137.43 (2)Ge01x—Mn02—Mn02xv155.72 (5)
Mn02i—Ge01—Mn02iii137.43 (2)Ge01xi—Mn02—Mn02xv54.138 (17)
Mn02ii—Ge01—Mn02iii71.72 (3)Ge01xii—Mn02—Mn02xv104.62 (7)
Mn02i—Ge01—Mn02iv137.43 (2)Ge01xiii—Mn02—Mn02xv52.80 (3)
Mn02ii—Ge01—Mn02iv71.72 (3)Ge01xiv—Mn02—Mn02xv51.20 (5)
Mn02iii—Ge01—Mn02iv71.72 (3)Ge01viii—Mn02—Mn02xvi115.10 (5)
Mn02i—Ge01—Mn02v69.93 (3)Ge01ix—Mn02—Mn02xvi155.72 (5)
Mn02ii—Ge01—Mn02v68.94 (2)Ge01x—Mn02—Mn02xvi54.138 (17)
Mn02iii—Ge01—Mn02v114.26 (6)Ge01xi—Mn02—Mn02xvi91.88 (2)
Mn02iv—Ge01—Mn02v134.96 (5)Ge01xii—Mn02—Mn02xvi51.20 (5)
Mn02i—Ge01—Mn02vi69.93 (3)Ge01xiii—Mn02—Mn02xvi104.62 (7)
Mn02ii—Ge01—Mn02vi114.26 (6)Ge01xiv—Mn02—Mn02xvi52.80 (3)
Mn02iii—Ge01—Mn02vi134.96 (5)Mn02xv—Mn02—Mn02xvi103.30 (6)
Mn02iv—Ge01—Mn02vi68.94 (2)Ge01viii—Mn02—Mn02xvii115.10 (5)
Mn02v—Ge01—Mn02vi108.87 (3)Ge01ix—Mn02—Mn02xvii54.138 (17)
Mn02i—Ge01—Mn02vii69.93 (3)Ge01x—Mn02—Mn02xvii91.88 (2)
Mn02ii—Ge01—Mn02vii134.96 (5)Ge01xi—Mn02—Mn02xvii155.72 (5)
Mn02iii—Ge01—Mn02vii68.94 (2)Ge01xii—Mn02—Mn02xvii52.80 (3)
Mn02iv—Ge01—Mn02vii114.26 (6)Ge01xiii—Mn02—Mn02xvii51.20 (6)
Mn02v—Ge01—Mn02vii108.87 (3)Ge01xiv—Mn02—Mn02xvii104.62 (7)
Mn02vi—Ge01—Mn02vii108.87 (3)Mn02xv—Mn02—Mn02xvii103.30 (6)
Ge01viii—Mn02—Ge01ix73.64 (4)Mn02xvi—Mn02—Mn02xvii103.30 (6)
Ge01viii—Mn02—Ge01x73.64 (4)Ge01viii—Mn02—Mn02xviii58.87 (5)
Ge01ix—Mn02—Ge01x112.39 (3)Ge01ix—Mn02—Mn02xviii132.45 (9)
Ge01viii—Mn02—Ge01xi73.64 (4)Ge01x—Mn02—Mn02xviii54.137 (17)
Ge01ix—Mn02—Ge01xi112.39 (3)Ge01xi—Mn02—Mn02xviii58.26 (4)
Ge01x—Mn02—Ge01xi112.39 (3)Ge01xii—Mn02—Mn02xviii107.96 (5)
Ge01viii—Mn02—Ge01xii140.27 (2)Ge01xiii—Mn02—Mn02xviii155.47 (5)
Ge01ix—Mn02—Ge01xii106.93 (5)Ge01xiv—Mn02—Mn02xviii88.55 (2)
Ge01x—Mn02—Ge01xii69.65 (2)Mn02xv—Mn02—Mn02xviii109.210 (9)
Ge01xi—Mn02—Ge01xii134.96 (5)Mn02xvi—Mn02—Mn02xviii60.0
Ge01viii—Mn02—Ge01xiii140.27 (2)Mn02xvii—Mn02—Mn02xviii146.000 (15)
Ge01ix—Mn02—Ge01xiii69.65 (2)Ge01viii—Mn02—Mn02xix58.87 (5)
Ge01x—Mn02—Ge01xiii134.96 (5)Ge01ix—Mn02—Mn02xix54.137 (17)
Ge01xi—Mn02—Ge01xiii106.93 (5)Ge01x—Mn02—Mn02xix58.26 (4)
Ge01xii—Mn02—Ge01xiii67.22 (4)Ge01xi—Mn02—Mn02xix132.45 (9)
Ge01viii—Mn02—Ge01xiv140.27 (2)Ge01xii—Mn02—Mn02xix88.55 (2)
Ge01ix—Mn02—Ge01xiv134.96 (5)Ge01xiii—Mn02—Mn02xix107.96 (5)
Ge01x—Mn02—Ge01xiv106.93 (5)Ge01xiv—Mn02—Mn02xix155.47 (5)
Ge01xi—Mn02—Ge01xiv69.65 (2)Mn02xv—Mn02—Mn02xix146.000 (15)
Ge01xii—Mn02—Ge01xiv67.22 (4)Mn02xvi—Mn02—Mn02xix109.210 (9)
Ge01xiii—Mn02—Ge01xiv67.22 (4)Mn02xvii—Mn02—Mn02xix60.0
Ge01viii—Mn02—Mn02xv115.10 (5)Mn02xviii—Mn02—Mn02xix95.68 (7)
Ge01ix—Mn02—Mn02xv91.88 (2)
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+3/2, z+1; (iv) x+3/2, y+1, z1/2; (v) x+1/2, y+1, z1/2; (vi) x1/2, y+1/2, z+1; (vii) x+1, y1/2, z+1/2; (viii) x+1, y+1, z+1; (ix) x+1, y+1/2, z+3/2; (x) x+1/2, y+3/2, z+1; (xi) x+3/2, y+1, z+1/2; (xii) x+1/2, y+1, z+1/2; (xiii) x+1/2, y+1/2, z+1; (xiv) x+1, y+1/2, z+1/2; (xv) x+2, y1/2, z+3/2; (xvi) x+3/2, y+2, z1/2; (xvii) x1/2, y+3/2, z+2; (xviii) x+2, y+1/2, z+3/2; (xix) x+3/2, y+2, z+1/2.
(90K) top
Crystal data top
Ge4Mn4Dx = 7.709 Mg m3
Mr = 510.12Synchrotron radiation, λ = 0.68239 Å
Cubic, P213Cell parameters from 316 reflections
Hall symbol: P 2ac 2ab 3θ = 7.1–28.6°
a = 4.7896 (12) ŵ = 37.86 mm1
V = 109.87 (5) Å3T = 90 K
Z = 1Block, metallic dark grey
F(000) = 2280.02 × 0.02 × 0.01 mm
Data collection top
Pilatus@SNBL
diffractometer
78 independent reflections
Radiation source: ESRF bending magnet78 reflections with I > 2σ(I)
Silicon monochromatorRint = 0.039
ϕ scanθmax = 24.9°, θmin = 5.8°
Absorption correction: multi-scan
SADABS v.2.06 (Sheldrick, 2003)
h = 55
Tmin = 0.472, Tmax = 0.685k = 55
505 measured reflectionsl = 55
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.0611P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 1.27Δρmax = 0.54 e Å3
78 reflectionsΔρmin = 0.62 e Å3
7 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
0 restraintsAbsolute structure parameter: 0.01 (11)
Crystal data top
Ge4Mn4Z = 1
Mr = 510.12Synchrotron radiation, λ = 0.68239 Å
Cubic, P213µ = 37.86 mm1
a = 4.7896 (12) ÅT = 90 K
V = 109.87 (5) Å30.02 × 0.02 × 0.01 mm
Data collection top
Pilatus@SNBL
diffractometer
78 independent reflections
Absorption correction: multi-scan
SADABS v.2.06 (Sheldrick, 2003)
78 reflections with I > 2σ(I)
Tmin = 0.472, Tmax = 0.685Rint = 0.039
505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.054Δρmax = 0.54 e Å3
S = 1.27Δρmin = 0.62 e Å3
78 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
7 parametersAbsolute structure parameter: 0.01 (11)
Special details top

Experimental. Comment on transmission values: The program SADABS (v2.06) outputs the ratio of minimum to maximum apparent transmission (0.689334). We have set T(max) to the expected value, i.e. exp(-r_min*mu) and we calculate T(min) from the minimum to maximum apparent transmission given by SADABS.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge010.15643 (16)0.15643 (16)0.15643 (16)0.0055 (5)
Mn020.8624 (2)0.8624 (2)0.8624 (2)0.0059 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge010.0055 (5)0.0055 (5)0.0055 (5)0.0006 (3)0.0006 (3)0.0006 (3)
Mn020.0059 (5)0.0059 (5)0.0059 (5)0.0001 (5)0.0001 (5)0.0001 (5)
Geometric parameters (Å, º) top
Ge01—Mn02i2.439 (2)Mn02—Ge01xi2.5085 (12)
Ge01—Mn02ii2.5085 (12)Mn02—Ge01xii2.6753 (15)
Ge01—Mn02iii2.5085 (12)Mn02—Ge01xiii2.6753 (15)
Ge01—Mn02iv2.5085 (12)Mn02—Ge01xiv2.6753 (15)
Ge01—Mn02v2.6753 (15)Mn02—Mn02xv2.9380 (8)
Ge01—Mn02vi2.6753 (15)Mn02—Mn02xvi2.9380 (8)
Ge01—Mn02vii2.6753 (15)Mn02—Mn02xvii2.9380 (7)
Mn02—Ge01viii2.439 (2)Mn02—Mn02xviii2.9380 (8)
Mn02—Ge01ix2.5085 (12)Mn02—Mn02xix2.9380 (8)
Mn02—Ge01x2.5085 (12)
Mn02i—Ge01—Mn02ii137.45 (2)Ge01x—Mn02—Mn02xv54.154 (17)
Mn02i—Ge01—Mn02iii137.45 (2)Ge01xi—Mn02—Mn02xv58.20 (4)
Mn02ii—Ge01—Mn02iii71.69 (3)Ge01xii—Mn02—Mn02xv108.00 (5)
Mn02i—Ge01—Mn02iv137.45 (2)Ge01xiii—Mn02—Mn02xv155.54 (5)
Mn02ii—Ge01—Mn02iv71.69 (3)Ge01xiv—Mn02—Mn02xv88.58 (2)
Mn02iii—Ge01—Mn02iv71.69 (3)Ge01viii—Mn02—Mn02xvi58.80 (5)
Mn02i—Ge01—Mn02v69.95 (3)Ge01ix—Mn02—Mn02xvi58.20 (4)
Mn02ii—Ge01—Mn02v68.96 (2)Ge01x—Mn02—Mn02xvi132.33 (8)
Mn02iii—Ge01—Mn02v114.18 (5)Ge01xi—Mn02—Mn02xvi54.154 (17)
Mn02iv—Ge01—Mn02v135.00 (5)Ge01xii—Mn02—Mn02xvi155.54 (5)
Mn02i—Ge01—Mn02vi69.95 (3)Ge01xiii—Mn02—Mn02xvi88.58 (2)
Mn02ii—Ge01—Mn02vi114.18 (5)Ge01xiv—Mn02—Mn02xvi108.00 (5)
Mn02iii—Ge01—Mn02vi135.00 (5)Mn02xv—Mn02—Mn02xvi95.60 (7)
Mn02iv—Ge01—Mn02vi68.96 (2)Ge01viii—Mn02—Mn02xvii58.80 (5)
Mn02v—Ge01—Mn02vi108.88 (3)Ge01ix—Mn02—Mn02xvii54.154 (17)
Mn02i—Ge01—Mn02vii69.95 (3)Ge01x—Mn02—Mn02xvii58.20 (4)
Mn02ii—Ge01—Mn02vii135.00 (5)Ge01xi—Mn02—Mn02xvii132.33 (8)
Mn02iii—Ge01—Mn02vii68.96 (2)Ge01xii—Mn02—Mn02xvii88.58 (2)
Mn02iv—Ge01—Mn02vii114.18 (5)Ge01xiii—Mn02—Mn02xvii108.00 (5)
Mn02v—Ge01—Mn02vii108.88 (3)Ge01xiv—Mn02—Mn02xvii155.54 (5)
Mn02vi—Ge01—Mn02vii108.88 (3)Mn02xv—Mn02—Mn02xvii95.60 (7)
Ge01viii—Mn02—Ge01ix73.59 (4)Mn02xvi—Mn02—Mn02xvii95.60 (7)
Ge01viii—Mn02—Ge01x73.59 (4)Ge01viii—Mn02—Mn02xviii115.04 (5)
Ge01ix—Mn02—Ge01x112.35 (3)Ge01ix—Mn02—Mn02xviii155.80 (5)
Ge01viii—Mn02—Ge01xi73.59 (4)Ge01x—Mn02—Mn02xviii54.154 (17)
Ge01ix—Mn02—Ge01xi112.35 (3)Ge01xi—Mn02—Mn02xviii91.85 (2)
Ge01x—Mn02—Ge01xi112.35 (3)Ge01xii—Mn02—Mn02xviii51.25 (6)
Ge01viii—Mn02—Ge01xii140.24 (2)Ge01xiii—Mn02—Mn02xviii104.72 (7)
Ge01ix—Mn02—Ge01xii106.98 (5)Ge01xiv—Mn02—Mn02xviii52.84 (3)
Ge01x—Mn02—Ge01xii69.66 (2)Mn02xv—Mn02—Mn02xviii60.0
Ge01xi—Mn02—Ge01xii135.00 (5)Mn02xvi—Mn02—Mn02xviii145.980 (15)
Ge01viii—Mn02—Ge01xiii140.24 (2)Mn02xvii—Mn02—Mn02xviii109.199 (9)
Ge01ix—Mn02—Ge01xiii69.66 (2)Ge01viii—Mn02—Mn02xix115.04 (5)
Ge01x—Mn02—Ge01xiii135.00 (5)Ge01ix—Mn02—Mn02xix54.154 (17)
Ge01xi—Mn02—Ge01xiii106.98 (5)Ge01x—Mn02—Mn02xix91.85 (2)
Ge01xii—Mn02—Ge01xiii67.27 (4)Ge01xi—Mn02—Mn02xix155.80 (5)
Ge01viii—Mn02—Ge01xiv140.24 (2)Ge01xii—Mn02—Mn02xix52.84 (3)
Ge01ix—Mn02—Ge01xiv135.00 (5)Ge01xiii—Mn02—Mn02xix51.25 (6)
Ge01x—Mn02—Ge01xiv106.98 (5)Ge01xiv—Mn02—Mn02xix104.72 (7)
Ge01xi—Mn02—Ge01xiv69.66 (2)Mn02xv—Mn02—Mn02xix145.980 (15)
Ge01xii—Mn02—Ge01xiv67.27 (4)Mn02xvi—Mn02—Mn02xix109.199 (9)
Ge01xiii—Mn02—Ge01xiv67.27 (4)Mn02xvii—Mn02—Mn02xix60.0
Ge01viii—Mn02—Mn02xv58.80 (5)Mn02xviii—Mn02—Mn02xix103.37 (6)
Ge01ix—Mn02—Mn02xv132.33 (8)
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+3/2, z+1; (iv) x+3/2, y+1, z1/2; (v) x+1/2, y+1, z1/2; (vi) x1/2, y+1/2, z+1; (vii) x+1, y1/2, z+1/2; (viii) x+1, y+1, z+1; (ix) x+1, y+1/2, z+3/2; (x) x+1/2, y+3/2, z+1; (xi) x+3/2, y+1, z+1/2; (xii) x+1/2, y+1, z+1/2; (xiii) x+1/2, y+1/2, z+1; (xiv) x+1, y+1/2, z+1/2; (xv) x+2, y+1/2, z+3/2; (xvi) x+1/2, y+3/2, z+2; (xvii) x+3/2, y+2, z+1/2; (xviii) x+3/2, y+2, z1/2; (xix) x1/2, y+3/2, z+2.

Experimental details

(250K)(90K)
Crystal data
Chemical formulaGe4Mn4Ge4Mn4
Mr510.12510.12
Crystal system, space groupCubic, P213Cubic, P213
Temperature (K)25090
a (Å)4.7983 (11) 4.7896 (12)
V3)110.47 (4)109.87 (5)
Z11
Radiation typeSynchrotron, λ = 0.68239 ÅSynchrotron, λ = 0.68239 Å
µ (mm1)37.6637.86
Crystal size (mm)0.02 × 0.02 × 0.010.02 × 0.02 × 0.01
Data collection
DiffractometerPilatus@SNBL
diffractometer
Pilatus@SNBL
diffractometer
Absorption correctionMulti-scan
SADABS v.2.06 (Sheldrick, 2003)
Multi-scan
SADABS v.2.06 (Sheldrick, 2003)
Tmin, Tmax0.472, 0.6850.472, 0.685
No. of measured, independent and
observed [I > 2σ(I)] reflections
522, 78, 76 505, 78, 78
Rint0.0310.039
(sin θ/λ)max1)0.6170.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.19 0.024, 0.054, 1.27
No. of reflections7878
No. of parameters77
Δρmax, Δρmin (e Å3)0.34, 0.680.54, 0.62
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.07 (11)0.01 (11)

Computer programs: SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds