Download citation
Download citation
link to html
The M2O–Al2O3–WO3 (M = alkaline metals) system has attracted the attention of the scientific community because some of its members showed potential applications as single crystalline media for tunable solid-state lasers. These materials behave as promising laser host materials due to their high and continuous transparency in the wide range of the near-IR region. A systematic investigation of these phases is nonetheless hampered because it is impossible to produce large crystals and only in a few cases a pure synthetic product can be achieved. Despite substantial advances in X-ray powder diffraction methods, structure investigation on nanoscale is still challenging, especially when the sample is polycrystalline and the structures are affected by pseudo-symmetry. Electron diffraction has the advantage of collecting data from single nanoscopic crystals, but it is frequently limited by incompleteness and dynamical effects. Automated diffraction tomography (ADT) recently emerged as an alternative approach able to collect more complete three-dimensional electron diffraction data and at the same time to significantly reduce dynamical scattering. ADT data have been shown to be suitable for ab initio structure solution of phases with large cell parameters, and for detecting pseudo-symmetry that was undetected in X-ray powder data. In this work we present the structure investigation of two hitherto undetermined compounds, K5Al(W3O11)2 and NaAl(WO4)2, by a combination of electron diffraction tomography and precession electron diffraction. We also stress how electron diffraction tomography can be used to obtain direct information about symmetry and pseudo-symmetry for nanocrystalline phases, even when available only in polyphasic mixtures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520615007994/hw5040sup1.cif
Contains datablocks K5Al_W3O11_ADT, Na2W2O7_ADT, NaAl_WO4_2_ADT, K5Al_W3O11_XRPD

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615007994/hw5040K5Al_W3O11_ADTsup2.hkl
Contains datablock K5Al_W3O11_2_ADT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615007994/hw5040K5Al_W3O11_XRPDsup3.hkl
Contains datablock K5Al_W3O11_2_XRPD

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615007994/hw5040Na2W2O7_ADTsup4.hkl
Contains datablock Na2W2O7_ADT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615007994/hw5040NaAl_WO4_2_ADTsup5.hkl
Contains datablock NaAl_WO4_2_ADT

CCDC references: 1061033; 1061034; 1061035; 1061036

Computing details top

Data collection: ADT module for K5Al_W3O11_ADT, Na2W2O7_ADT, NaAl_WO4_2_ADT. Cell refinement: ADT3D for K5Al_W3O11_ADT, Na2W2O7_ADT, NaAl_WO4_2_ADT. Data reduction: own developed routines for K5Al_W3O11_ADT, Na2W2O7_ADT, NaAl_WO4_2_ADT. Program(s) used to solve structure: Delta recycling for K5Al_W3O11_ADT, Na2W2O7_ADT, NaAl_WO4_2_ADT. Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for K5Al_W3O11_ADT, Na2W2O7_ADT, NaAl_WO4_2_ADT.

(K5Al_W3O11_ADT) top
Crystal data top
AlK5O22Ta6Z = 4
Mr = 1660.17F(000) = 678
Monoclinic, C2Dx = 5.260 Mg m3
a = 13.6172 (4) ŵ = 0.01 mm1
b = 7.8284 (2) ÅT = 293 K
c = 19.9190 (7) ÅNanocrystal
β = 99.166 (2)°0.00010 × 0.00007 × 0.00003 mm
V = 2096.28 (11) Å3
Data collection top
FEI Tecnai F30 ST
diffractometer
Rint = 0.145
electron precession and ADT scansθmax = 0.7°, θmin = 0.1°
6748 measured reflectionsh = 1717
3567 independent reflectionsk = 99
2562 reflections with I > 2σ(I)l = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.210 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.476(Δ/σ)max = 0.019
S = 1.89Δρmax = 0.68 e Å3
3567 reflectionsΔρmin = 0.48 e Å3
137 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
442 restraintsAbsolute structure parameter: 10 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.2240 (5)0.0393 (9)0.0005 (4)0.0411 (17)*
W20.1518 (5)0.3480 (9)0.1460 (4)0.0463 (18)*
W30.3577 (5)0.1525 (10)0.1362 (4)0.054 (2)*
W40.2931 (5)0.1895 (9)0.3606 (4)0.0429 (18)*
W50.0817 (5)0.0029 (8)0.3575 (4)0.0427 (17)*
W60.2185 (5)0.3478 (9)0.4905 (4)0.0434 (17)*
Al10.00000.261 (3)0.00000.022 (6)*
Al20.50000.373 (4)0.50000.033 (7)*
K10.3100 (15)0.291 (3)0.3371 (12)0.062 (5)*
K20.0471 (15)0.532 (3)0.3049 (12)0.069 (6)*
K30.50000.170 (5)0.50000.089 (10)*
K40.097 (2)0.123 (5)0.192 (2)0.123 (11)*
K50.50000.214 (4)0.00000.067 (8)*
K60.1591 (16)0.139 (3)0.1799 (12)0.068 (6)*
O10.193 (2)0.035 (4)0.3124 (19)0.055 (9)*
O20.188 (8)0.096 (16)0.427 (5)0.23 (5)*
O30.2165 (19)0.172 (4)0.0876 (14)0.045 (7)*
O40.517 (4)0.489 (8)0.432 (2)0.111 (19)*
O50.059 (3)0.381 (5)0.0675 (19)0.068 (11)*
O60.0915 (18)0.123 (4)0.0198 (19)0.042 (7)*
O70.172 (2)0.226 (4)0.4058 (16)0.046 (8)*
O80.400 (2)0.241 (5)0.491 (3)0.068 (11)*
O90.134 (2)0.546 (4)0.189 (2)0.053 (8)*
O100.287 (2)0.288 (4)0.1918 (17)0.047 (8)*
O110.301 (3)0.364 (5)0.298 (2)0.063 (10)*
O120.266 (3)0.034 (6)0.0869 (19)0.076 (12)*
O130.468 (2)0.295 (5)0.136 (2)0.057 (9)*
O140.205 (5)0.187 (5)0.021 (4)0.109 (19)*
O150.006 (3)0.139 (6)0.302 (3)0.082 (13)*
O160.329 (2)0.316 (4)0.4403 (16)0.053 (9)*
O170.088 (4)0.173 (7)0.188 (3)0.101 (17)*
O180.175 (4)0.559 (5)0.453 (3)0.086 (14)*
O190.405 (2)0.064 (5)0.376 (2)0.060 (10)*
O200.384 (3)0.027 (5)0.194 (2)0.063 (10)*
O210.356 (2)0.036 (5)0.0542 (16)0.056 (9)*
O220.553 (4)0.727 (5)0.337 (4)0.103 (18)*
Geometric parameters (Å, º) top
W1—O141.85 (4)W5—O11.90 (3)
W1—O61.90 (2)W5—O21.99 (3)
W1—O211.95 (3)W5—O72.26 (3)
W1—O121.90 (3)W6—O8iii1.85 (3)
W1—O32.05 (2)W6—O181.87 (3)
W1—O14i2.41 (6)W6—O2iii1.96 (3)
W1—W33.152 (11)W6—O161.95 (3)
W2—O91.81 (3)W6—O71.95 (3)
W2—O51.87 (3)Al1—O51.73 (3)
W2—O171.89 (4)Al1—O5iv1.73 (3)
W2—O101.98 (3)Al1—O61.74 (3)
W2—O32.09 (2)Al1—O6iv1.74 (3)
W2—O12i2.28 (4)Al2—O4v1.68 (4)
W3—O201.81 (3)Al2—O41.68 (4)
W3—O131.87 (3)Al2—O8v1.70 (3)
W3—O211.87 (3)Al2—O81.70 (3)
W3—O101.90 (3)K2—O22ii2.47 (4)
W3—O32.02 (2)K4—O172.56 (6)
W4—O191.80 (3)K6—O9vi2.50 (4)
W4—O161.87 (3)O2—W6vii1.96 (3)
W4—O111.86 (3)O4—W5viii1.84 (3)
W4—O11.95 (3)O8—W6vii1.85 (3)
W4—O72.03 (3)O9—K6ix2.50 (4)
W4—W63.178 (11)O12—W2x2.28 (4)
W5—O151.84 (3)O14—W1x2.41 (6)
W5—O4ii1.84 (3)O22—W5viii1.87 (4)
W5—O22ii1.87 (4)O22—K2viii2.47 (4)
O14—W1—O6102 (2)O1—W4—W6110.7 (10)
O14—W1—O2190 (2)O7—W4—W636.2 (8)
O6—W1—O21151.7 (14)O15—W5—O4ii96 (3)
O14—W1—O12105 (3)O15—W5—O22ii110 (3)
O6—W1—O12103.7 (18)O4ii—W5—O22ii96 (3)
O21—W1—O1297.1 (17)O15—W5—O198 (2)
O14—W1—O3105 (3)O4ii—W5—O1154 (2)
O6—W1—O379.9 (13)O22ii—W5—O1100 (2)
O21—W1—O372.4 (12)O15—W5—O2167 (4)
O12—W1—O3148.1 (18)O4ii—W5—O281 (5)
O14—W1—O14i164.5 (10)O22ii—W5—O283 (4)
O6—W1—O14i93.0 (17)O1—W5—O281 (4)
O21—W1—O14i75.5 (19)O15—W5—O793.6 (19)
O12—W1—O14i71 (2)O4ii—W5—O786 (2)
O3—W1—O14i77.0 (19)O22ii—W5—O7156 (2)
O14—W1—W399 (2)O1—W5—O771.2 (12)
O6—W1—W3118.5 (11)O2—W5—O774 (4)
O21—W1—W333.5 (9)O8iii—W6—O18100 (2)
O12—W1—W3125.0 (14)O8iii—W6—O2iii113 (4)
O3—W1—W338.8 (7)O18—W6—O2iii105 (4)
O14i—W1—W373.0 (17)O8iii—W6—O16145.6 (18)
O9—W2—O599.2 (17)O18—W6—O1698 (2)
O9—W2—O17108 (3)O2iii—W6—O1690 (4)
O5—W2—O17100 (2)O8iii—W6—O779.4 (18)
O9—W2—O1099.7 (14)O18—W6—O793 (2)
O5—W2—O10151.2 (18)O2iii—W6—O7156 (4)
O17—W2—O1095 (2)O16—W6—O770.6 (12)
O9—W2—O3158.8 (15)O8iii—W6—W4114.9 (15)
O5—W2—O385.0 (16)O18—W6—W498 (2)
O17—W2—O392 (2)O2iii—W6—W4121 (4)
O10—W2—O369.8 (11)O16—W6—W432.9 (9)
O9—W2—O12i79.2 (17)O7—W6—W437.8 (8)
O5—W2—O12i78.7 (19)O5—Al1—O5iv114 (3)
O17—W2—O12i173 (2)O5—Al1—O6104.7 (18)
O10—W2—O12i83.7 (16)O5iv—Al1—O6115 (2)
O3—W2—O12i81.3 (15)O5—Al1—O6iv115 (2)
O20—W3—O13112.6 (18)O5iv—Al1—O6iv104.7 (18)
O20—W3—O2199 (2)O6—Al1—O6iv103 (2)
O13—W3—O21100.7 (18)O4v—Al2—O4115 (4)
O20—W3—O1097.5 (19)O4v—Al2—O8v117 (3)
O13—W3—O1098.6 (17)O4—Al2—O8v102 (3)
O21—W3—O10147.7 (13)O4v—Al2—O8102 (3)
O20—W3—O3116.2 (16)O4—Al2—O8117 (3)
O13—W3—O3131.1 (16)O8v—Al2—O8105 (3)
O21—W3—O374.8 (12)W5—O1—W4113.4 (18)
O10—W3—O373.0 (11)W6vii—O2—W5167 (8)
O20—W3—W1111.1 (14)W3—O3—W1101.5 (11)
O13—W3—W1121.1 (14)W3—O3—W2103.7 (11)
O21—W3—W135.1 (9)W1—O3—W2153.1 (14)
O10—W3—W1112.7 (9)Al2—O4—W5viii145 (4)
O3—W3—W139.7 (7)Al1—O5—W2138 (2)
O19—W4—O1692.9 (18)Al1—O6—W1149 (2)
O19—W4—O11112 (2)W6—O7—W4106.0 (13)
O16—W4—O1198.2 (18)W6—O7—W5145.6 (17)
O19—W4—O1104.4 (17)W4—O7—W597.2 (11)
O16—W4—O1144.3 (14)Al2—O8—W6vii157 (3)
O11—W4—O1103.6 (17)W2—O9—K6ix141 (2)
O19—W4—O7137.2 (19)W3—O10—W2112.6 (16)
O16—W4—O770.6 (12)W1—O12—W2x137 (2)
O11—W4—O7109.4 (16)W1—O14—W1x137 (4)
O1—W4—O775.7 (13)W4—O16—W6112.7 (15)
O19—W4—W6116.8 (15)W2—O17—K4130 (3)
O16—W4—W634.4 (9)W3—O21—W1111.3 (16)
O11—W4—W6108.6 (14)W5viii—O22—K2viii169 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x+1/2, y1/2, z+1; (iv) x, y, z; (v) x+1, y, z+1; (vi) x, y1, z; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z; (ix) x, y+1, z; (x) x+1/2, y1/2, z.
(Na2W2O7_ADT) top
Crystal data top
Na2O7Ta2V = 1262.9 (2) Å3
Mr = 519.87Z = 8
Orthorombic, CmceF(000) = 388
a = 7.2220 (8) ÅDx = 5.468 Mg m3
b = 11.8947 (9) ŵ = 0.00 mm1
c = 14.7016 (13) ÅT = 293 K
α = 90°Nanocrystal
β = 90°0.00024 × 0.00014 × 0.00010 mm
γ = 90°
Data collection top
FEI Tecnai F30 ST
diffractometer
Rint = 0.298
electron precession and ADT scansθmax = 0.6°, θmin = 0.1°
2867 measured reflectionsh = 88
454 independent reflectionsk = 1112
440 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.250Secondary atom site location: difference Fourier map
wR(F2) = 0.537 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 3.33(Δ/σ)max = 0.001
454 reflectionsΔρmax = 0.83 e Å3
28 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.25000.4145 (6)0.25000.027 (3)*
W20.00000.2534 (5)0.0851 (4)0.023 (3)*
Na10.259 (4)0.00000.00000.047 (9)*
Na20.00000.178 (3)0.340 (2)0.042 (8)*
O10.202 (3)0.264 (2)0.1522 (17)0.035 (6)*
O20.303 (3)0.0131 (18)0.1648 (13)0.022 (5)*
O30.00000.390 (4)0.281 (3)0.046 (9)*
O40.00000.124 (2)0.034 (2)0.029 (7)*
O50.00000.358 (2)0.0019 (19)0.026 (7)*
Geometric parameters (Å, º) top
W1—O2i1.76 (2)Na1—O5ix2.42 (3)
W1—O2ii1.76 (2)Na2—O5x2.41 (4)
W1—O31.884 (12)Na2—O1iv2.39 (3)
W1—O3iii1.884 (12)Na2—O1xi2.39 (3)
W1—O12.32 (2)Na2—O2xi2.42 (3)
W1—O1iv2.32 (2)Na2—O2iv2.42 (3)
W2—O41.72 (3)Na2—O32.67 (5)
W2—O51.74 (3)O1—Na2iii2.39 (3)
W2—O11.77 (2)O2—W1xii1.76 (2)
W2—O1v1.77 (2)O2—Na2iii2.42 (3)
Na1—O4vi2.43 (3)O3—W1xi1.884 (12)
Na1—O42.43 (3)O4—Na1vi2.43 (3)
Na1—O2vii2.45 (2)O5—Na2xiii2.41 (4)
Na1—O22.45 (2)O5—Na1viii2.42 (3)
Na1—O5viii2.42 (3)O5—Na1xiv2.42 (3)
O2i—W1—O2ii96.3 (13)O5viii—Na1—O5ix88.3 (13)
O2i—W1—O398.4 (14)O5x—Na2—O1iv91.7 (11)
O2ii—W1—O393.7 (13)O5x—Na2—O1xi91.7 (11)
O2i—W1—O3iii93.7 (14)O1iv—Na2—O1xi128.7 (19)
O2ii—W1—O3iii98.4 (14)O5x—Na2—O2xi83.6 (12)
O3—W1—O3iii162 (2)O1iv—Na2—O2xi151.5 (14)
O2i—W1—O1171.0 (9)O1xi—Na2—O2xi79.7 (8)
O2ii—W1—O192.3 (9)O5x—Na2—O2iv83.6 (12)
O3—W1—O183.3 (15)O1iv—Na2—O2iv79.7 (8)
O3iii—W1—O182.7 (14)O1xi—Na2—O2iv151.5 (14)
O2i—W1—O1iv92.3 (9)O2xi—Na2—O2iv71.9 (13)
O2ii—W1—O1iv171.0 (9)O5x—Na2—O3119.4 (17)
O3—W1—O1iv82.7 (14)O1iv—Na2—O367.0 (10)
O3iii—W1—O1iv83.3 (15)O1xi—Na2—O367.0 (10)
O1—W1—O1iv79.1 (12)O2xi—Na2—O3138.9 (10)
O4—W2—O5109.4 (14)O2iv—Na2—O3138.9 (10)
O4—W2—O1108.0 (10)W2—O1—W1121.5 (12)
O5—W2—O1109.9 (10)W2—O1—Na2iii137.8 (15)
O4—W2—O1v108.0 (10)W1—O1—Na2iii99.7 (11)
O5—W2—O1v109.9 (10)W1xii—O2—Na1129.3 (11)
O1—W2—O1v111.5 (17)W1xii—O2—Na2iii133.7 (13)
O4vi—Na1—O479.3 (13)Na1—O2—Na2iii95.6 (11)
O4vi—Na1—O2vii82.0 (9)W1xi—O3—W1147 (2)
O4—Na1—O2vii110.0 (11)W1xi—O3—Na2103.1 (12)
O4vi—Na1—O2110.0 (11)W1—O3—Na2103.1 (12)
O4—Na1—O282.0 (9)W2—O4—Na1vi129.3 (7)
O2vii—Na1—O2165.0 (16)W2—O4—Na1129.3 (7)
O4vi—Na1—O5viii166.2 (10)Na1vi—O4—Na1100.7 (13)
O4—Na1—O5viii97.7 (8)W2—O5—Na2xiii124.4 (16)
O2vii—Na1—O5viii86.5 (10)W2—O5—Na1viii120.3 (10)
O2—Na1—O5viii82.7 (9)Na2xiii—O5—Na1viii96.4 (9)
O4vi—Na1—O5ix97.7 (8)W2—O5—Na1xiv120.3 (10)
O4—Na1—O5ix166.2 (10)Na2xiii—O5—Na1xiv96.4 (9)
O2vii—Na1—O5ix82.7 (9)Na1viii—O5—Na1xiv91.7 (13)
O2—Na1—O5ix86.5 (10)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y, z+1/2; (v) x, y, z; (vi) x, y, z; (vii) x, y, z; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y1/2, z; (x) x, y+1/2, z+1/2; (xi) x1/2, y, z+1/2; (xii) x, y1/2, z+1/2; (xiii) x, y+1/2, z1/2; (xiv) x1/2, y+1/2, z.
(NaAl_WO4_2_ADT) top
Crystal data top
Al0.50Na0.50O4TaZ = 8
Mr = 269.93F(000) = 206
Monoclinic, C2/cDx = 5.323 Mg m3
a = 9.6264 (13) ŵ = 0.00 mm1
b = 5.3844 (9) ÅT = 293 K
c = 12.9956 (2) ÅNanocrystal
β = 90.176 (11)°0.00010 × 0.00007 × 0.00003 mm
V = 673.59 (15) Å3
Data collection top
FEI Tecnai F30 ST
diffractometer
Rint = 0.241
electron precession and ADT scansθmax = 0.7°, θmin = 0.1°
1526 measured reflectionsh = 1111
563 independent reflectionsk = 66
468 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.266Secondary atom site location: difference Fourier map
wR(F2) = 0.604 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 3.34(Δ/σ)max < 0.001
563 reflectionsΔρmax = 0.80 e Å3
24 parametersΔρmin = 0.53 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.8334 (4)0.4715 (9)0.6241 (3)0.049 (2)*
Al11.00000.00000.50000.059 (6)*
O10.827 (3)0.558 (5)0.7593 (18)0.066 (6)*
O20.655 (2)0.428 (6)0.579 (2)0.071 (6)*
O30.920 (2)0.171 (4)0.6123 (19)0.054 (5)*
O40.9176 (18)0.714 (4)0.5603 (16)0.048 (4)*
Na11.00000.096 (10)0.75000.092 (10)*
Geometric parameters (Å, º) top
W1—O21.83 (2)Al1—O4vi1.900 (18)
W1—O41.750 (18)O1—Na1i2.50 (5)
W1—O31.83 (2)O2—Al1vii1.85 (2)
W1—O11.82 (2)O3—Na12.42 (4)
W1—Na1i3.27 (4)O4—Al1i1.900 (18)
Al1—O31.89 (2)Na1—O1vi2.50 (5)
Al1—O3ii1.89 (2)Na1—O1viii2.50 (5)
Al1—O2iii1.85 (2)Na1—O3ix2.42 (4)
Al1—O2iv1.85 (2)Na1—W1vi3.27 (4)
Al1—O4v1.900 (18)Na1—W1viii3.27 (4)
O2—W1—O4112.4 (12)O2iv—Al1—O4vi93.6 (11)
O2—W1—O3106.8 (13)O4v—Al1—O4vi180.0000 (10)
O4—W1—O3114.2 (9)W1—O1—Na1i96.8 (11)
O2—W1—O1107.7 (12)W1—O2—Al1vii154.9 (19)
O4—W1—O1106.5 (12)W1—O3—Al1133.1 (13)
O3—W1—O1109.1 (11)W1—O3—Na1127.4 (15)
O2—W1—Na1i135.3 (11)Al1—O3—Na198.7 (10)
O4—W1—Na1i58.4 (9)W1—O4—Al1i174.3 (13)
O3—W1—Na1i116.8 (10)O1vi—Na1—O1viii84 (2)
O1—W1—Na1i49.6 (9)O1vi—Na1—O3ix128.1 (8)
O3—Al1—O3ii180.0 (9)O1viii—Na1—O3ix105.4 (8)
O3—Al1—O2iii90.1 (12)O1vi—Na1—O3105.4 (8)
O3ii—Al1—O2iii89.9 (12)O1viii—Na1—O3128.1 (8)
O3—Al1—O2iv89.9 (12)O3ix—Na1—O3107 (2)
O3ii—Al1—O2iv90.1 (12)O1vi—Na1—W1vi33.6 (7)
O2iii—Al1—O2iv180.000 (5)O1viii—Na1—W1vi76.8 (14)
O3—Al1—O4v95.5 (9)O3ix—Na1—W1vi161.7 (10)
O3ii—Al1—O4v84.5 (9)O3—Na1—W1vi84.2 (7)
O2iii—Al1—O4v93.6 (11)O1vi—Na1—W1viii76.8 (14)
O2iv—Al1—O4v86.4 (11)O1viii—Na1—W1viii33.6 (7)
O3—Al1—O4vi84.5 (9)O3ix—Na1—W1viii84.2 (7)
O3ii—Al1—O4vi95.5 (9)O3—Na1—W1viii161.7 (10)
O2iii—Al1—O4vi86.4 (11)W1vi—Na1—W1viii88.9 (13)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1; (iii) x+1/2, y1/2, z; (iv) x+3/2, y+1/2, z+1; (v) x+2, y+1, z+1; (vi) x, y1, z; (vii) x1/2, y+1/2, z; (viii) x+2, y1, z+3/2; (ix) x+2, y, z+3/2.
(K5Al_W3O11_XRPD) top
Crystal data top
C2α = 90°
a = 13.61724 Åβ = 99.166°
b = 7.82839 Åγ = 90°
c = 19.91903 ÅV = 2096.28 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
W10.2230.049740.00113
W20.151370.346150.14572
W30.359330.151240.13765
W40.295720.187320.36031
W50.082670.001740.35675
W60.216680.34330.4895
Al100.257080
Al20.50.361730.5
K10.310550.30550.33464
K20.049050.556530.3103
K30.50.151840.5
K40.093440.134840.1818
K50.50.235890
K60.151690.115180.16477
O10.213580.003560.32072
O20.179540.088730.43574
O30.214970.185830.08467
O40.508630.489290.42844
O50.059950.39190.06363
O60.090240.12580.02277
O70.175480.192610.40948
O80.394380.230460.47999
O90.136710.542210.19444
O100.286790.296620.19389
O110.286930.359220.29187
O120.261720.038860.09106
O130.483450.271260.13927
O140.203240.178380.02369
O150.006090.131960.29189
O160.321070.341410.43477
O170.088150.153460.17837
O180.148770.534120.44482
O190.423240.088390.37634
O200.377660.040580.19882
O210.356050.045260.05035
O220.047880.235580.33872
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds