Download citation
Download citation
link to html
In the title compound, [Zn(C20H17N4O3)2(H2O)2], the ZnII atom, lying on a twofold rotation axis, is six-coordinated in a distorted octa­hedral geometry by two phenolate O atoms and two carbonyl O atoms from two 2,6-bis­[(pyridin-2-ylmeth­yl)­carbamo­yl]phenolate ligands and by two water mol­ecules. A three-dimensional network is built up from an extensive array of hydrogen bonds and π–π inter­actions between the pyridyl rings, with a centroid–centroid distance of 3.666 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808016693/hy2136sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808016693/hy2136Isup2.hkl
Contains datablock I

CCDC reference: 696661

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.060
  • wR factor = 0.131
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.61 Ratio PLAT414_ALERT_2_C Short Intra D-H..H-X H1 .. H3 .. 1.93 Ang. PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 400 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Zinc complexes of common amide-containing ligands have been widely explored and have received much attention in biomimetic research (Ingle et al., 2007). For example, the zinc complex with 6-(pivaloylamido-2-pyridylmethyl)amine ligand has been synthesized to serve as models for amide hydrolysis activity (Szajna-Fuller et al., 2007). Recently, zinc and copper complexes with a family of pyridylmethylamide ligands have been synthesized and showed that these ligands coordinate to metal ions with different coordination modes (Chaudhuri et al., 2007). It should be mentioned that zinc complexes containing aqua ligands have been used as model studies for zinc-hydrolase enzyme because of the functional unit at the active site of zinc-hydrolase enzyme is a zinc-bound water molecule, which is deprotonated at near neutral pH to generate a strongly nucleophilic Zn—OH group (Lipscomb & Sträter, 1996). Moreover, the aqua ligand bound to zinc ion is further stabilized via the formation of a hydrogen bond with a carboxylate or phenolic group from amino acid residues (Kimura, 1994). This hydrogen bond has been postulated to play a role in the activation of the coordinated aqua ligand in the catalytic pathway.

In an ongoing effort to study the interaction of zinc ion with aqua ligand, we report here the synthesis and characterization of the title compound, a new zinc complex with 2,6-bis[(pyridin-2-ylmethyl)carbamoyl]phenolate and aqua ligands. The electrospray mass spectrometry (ESI-MS) of the title compound confirmed the presence of the molecular species in solution. The compound has fragmentation patterns with peaks at m/z = 823.17 and 787.19; the former corresponds to the [M+2H2O+H+] ion and the latter is consistent with the loss of two coordinated water molecules [M–2H2O+H+]. The evidence for the presence of water in the complex is also given by IR absorption at 3568 cm-1. The elemental analysis agrees well with the proposed structure.

In the title compound, the ZnII atom is situated on a twofold rotation axis in a distorted octahedral coordination geometry, which is defined by two phenolate O atoms, two carbonyl O atoms and two cis water molecules (Fig. 1). The O1—Zn1—O1i and O4—Zn1—O2i [symmetry code: (i) -x, y, 1/2 - z] angles deviate from linearity (Table 1). These results are in accordance with the distorted octahedral geometry. It is noteworthy that each ligand behaves in a bidentate coordination fashion involving one phenolate O atom and one carbonyl O atom, while the two amide N atoms and pyridyl N atoms are free of coordination with the Zn atom. The two phenyl rings of coordinated molecules are tilted to one another with a dihedral angle of 72.3 (3)°. Remarkably, the intramolecular N3—H3A···O1 hydrogen bond forms a pseudo-six-membered ring (Fig. 1).

The water molecule is involved in an extensive intermolecular hydrogen-bonding network, as shown in Fig. 2. Atom O4 of aqua ligand acts as a hydrogen-bond donor to the uncoordinated carbonyl O3 atom and uncoordinated pyridyl N2 atom of adjacent complex molecules, respectively (Table 2). Additionally, the molecules are held together by intermolecular hydrogen bond between the uncoordinated amide N1 atom and uncoordinated pyridyl N4 atom. Not only the intermolecular hydrogen bonds, but also there are intermolecular ππ interactions in the crystal structure, which occur between the pyridyl rings containing atoms N2 and N4 of adjacent molecules, with a centroid–centroid distance of 3.666 (3) Å.

Related literature top

For related literature, see: Chaudhuri et al. (2007); Goldsmith et al. (2002); Gumbley & Stewart (1984); Ingle et al. (2007); Kimura (1994); Lipscomb & Sträter (1996); Szajna-Fuller et al. (2007).

Experimental top

Intermediate products (I), (II) (Gumbley & Stewart, 1984) and (III) (Goldsmith et al., 2002) have been synthesized in accordance with the published procedures. The methods to synthesize compounds (IV) and (V) are shown in Fig. 3.

A methanol solution (5 ml) of Zn(ClO4)2.6H2O (2.22 g, 5.96 mmol) was added dropwise to a stirred solution of compound (V) (1.00 g, 2.98 mmol) in methanol (10 ml) at room temperature and the solution was stirred for 3 h. Water (10 ml) was added to the solution to precipitate a white solid. The precipitate was filtered off and washed with water to obtain the white powder of the title compound (yield 28%, 0.66 g). m.p. 170–173 °C. Recrystallization of this powder in methanol yielded colourless block crystals of the title compound, suitable for X-ray diffraction study. Analysis, calculated for C40H38N8O8Zn: C 58.29, H 4.65, N 13.60%; found: C 58.20, H 4.67, N 13.61%. 1H-NMR (400 MHz, DMSO-d6): δ 10.95 (bs, 2H, –NH), 8.50 (d, J = 4.0 Hz, 2H, ArH), 7.95 (s, 2H, ArH), 7.74 (t, J = 7.6 Hz, 2H, ArH), 7.33 (t, J = 8.0 Hz, 2H, ArH), 7.26 (t, J = 5.6 Hz, 2H, ArH), 6.60 (bs,1H, ArH), 4.60 (s, 2H, –CH2–), 4.59 (s, 2H,–CH2–). 13C-NMR (100 MHz, DMSO-d6): δ 168.97, 159.20, 149.25, 137.39, 133.99, 122.61, 121.66, 111.55, 44.73. ESI-MS: m/z 787.19 [M–2H2O+H+], 823.17 [M+2H2O+H+].

Refinement top

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic CH), 0.97 (CH2) Å and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N). H atoms attached to the water molecule were found in difference Fourier map and refined isotropically with atomic coordinates fixed.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted except those involved in hydrogen bonds. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, y, 0.5 - z.]
[Figure 2] Fig. 2. The three-dimensional hydrogen bonding network in the title compound. H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The synthesis of compounds (IV) and (V).
Diaqua{2,6-bis[N-(2-pyridylmethyl)carbamoyl]phenolato- κ2O1,O2}zinc(II) top
Crystal data top
[Zn(C20H17N4O3)2(H2O)2]F(000) = 1712
Mr = 824.18Dx = 1.503 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4398 reflections
a = 16.357 (4) Åθ = 1.9–28.0°
b = 14.723 (4) ŵ = 0.74 mm1
c = 15.135 (4) ÅT = 293 K
β = 91.938 (7)°Prism, colourless
V = 3642.9 (16) Å30.35 × 0.3 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.757, Tmax = 0.854k = 1919
21455 measured reflectionsl = 1919
4398 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0553P)2 + 3.7977P]
where P = (Fo2 + 2Fc2)/3
4398 reflections(Δ/σ)max < 0.001
260 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Zn(C20H17N4O3)2(H2O)2]V = 3642.9 (16) Å3
Mr = 824.18Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.357 (4) ŵ = 0.74 mm1
b = 14.723 (4) ÅT = 293 K
c = 15.135 (4) Å0.35 × 0.3 × 0.2 mm
β = 91.938 (7)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4398 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3575 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.854Rint = 0.061
21455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.11Δρmax = 0.52 e Å3
4398 reflectionsΔρmin = 0.42 e Å3
260 parameters
Special details top

Experimental. Compound (IV): To a solution of (III) (2.38 g, 10.2 mmol) in dry CH2Cl2 (5 ml) was added to a well stirred mixture of 2-(aminomethyl)-pyridine (2.60 ml, 25.5 mmol) and NEt3 (5.33 ml, 38.3 mmol) in dried CH2Cl2 (5 ml) under nitrogen atmosphere and the reaction was then left stirring overnight. Next, the solvent was removed under vacuum and the residue was purified by column chromatography on Al2O3 with 50% EtOAc:CH2Cl2 as eluent. The resulting pale yellow solid was recrystallized in diethyl ether to give a pure white solid (IV) (yield 68%, 2.68 g). m.p. 120–125 °C. 1H-NMR (400 MHz, CDCl3): δ 8.70 (s, 2H, –NH), 8.61 (d, J = 4.4 Hz, 2H, ArH), 8.20 (d, J = 8.0 Hz, 2H, ArH), 7.71 (m, 2H, PyH), 7.38 (m, 3H, ArH), 7.25 (m, 2H, ArH), 4.85 (s, 2H, –CH2–), 4.83 (s, 2H, –CH2–), 3.88 (s, 3H, –CH3). 13C-NMR (100 MHz, DMSO-d6): δ 164.90, 156.69, 156.53, 149.18, 136.81, 134.82, 127.60, 125.11, 122.45, 122.24, 63.83, 45.16.

Compound (V): Anhydrous LiI (3.89 g, 28.9 mmol) was added to a well stirred solution of (IV) (0.78 g, 2.89 mmol) in anhydrous pyridine (20 ml) at room temperature. The reaction was allowed to proceed for 7 d with constant stirring. Then pyridine was removed in vacuum and the residue was dissloved in 1 M HCl (20 ml) and extracted with ethyl acetate (3 x 20 ml). The combined organic phase was dried over anhydrous Na2SO4, filtered and brought to dryness by rotary evaporation. The crude product was recrystallized in a solution of methanol and diethyl ether, giving (V) as a white solid (yield 92% ,0.95 g). m.p 100–103 °C. Analysis, calculated for C20H18N4O3: C 66.29, H 5.01, N 15.46%; found: C 66.31, H 4.99, N 15.45%. 1H-NMR (400 MHz, CDCl3): δ 8.77(s, 2H, –NH), 8.61 (d, J = 4.8 Hz, 2H, ArH), 8.11 (d, J = 7.6 Hz, 2H, ArH), 7.71 (m, 2H, ArH), 7.39 (d, J = 7.6 Hz, 2H, ArH), 7.26 (m, 2H, ArH), 7.03 (t, J = 8.0 Hz, 1H, ArH), 4.82 (s, 2H, –CH2–), 4.81 (s, 2H, –CH2–). 13C-NMR (100 MHz, CDCl3): δ 167.66, 160.59, 156.26, 149.06, 137.01, 133.28, 122.52, 122.08, 118.61, 117.94, 44.73. ESI: m/z 348.1458 [M+H+].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02286 (15)0.19100 (17)0.05522 (17)0.0236 (5)
C20.09384 (16)0.24793 (18)0.06360 (17)0.0269 (6)
C30.14191 (17)0.26133 (19)0.0097 (2)0.0343 (6)
H30.18850.29720.00360.041*
C40.12260 (19)0.2232 (2)0.0905 (2)0.0403 (7)
H40.1560.23290.13820.048*
C50.05325 (18)0.1705 (2)0.10030 (19)0.0368 (7)
H50.03950.14570.15530.044*
C60.00339 (16)0.15366 (17)0.02945 (17)0.0264 (6)
C70.06868 (17)0.09354 (18)0.04851 (19)0.0312 (6)
C80.17697 (17)0.0002 (2)0.0089 (2)0.0389 (7)
H8A0.1830.03140.06450.047*
H8B0.16190.04450.03470.047*
C90.25903 (17)0.04027 (19)0.01925 (18)0.0299 (6)
C100.27189 (18)0.1306 (2)0.0387 (2)0.0377 (7)
H100.22880.17180.03480.045*
C110.3496 (2)0.1594 (2)0.0642 (2)0.0461 (8)
H110.35980.22030.07640.055*
C120.4113 (2)0.0968 (3)0.0711 (2)0.0539 (9)
H120.46380.11390.08970.065*
C130.3936 (2)0.0081 (3)0.0498 (3)0.0578 (10)
H130.43580.03430.05390.069*
C140.11584 (15)0.29456 (18)0.14819 (19)0.0291 (6)
C150.1960 (2)0.4212 (2)0.2162 (2)0.0428 (8)
H15A0.25480.41310.22190.051*
H15B0.17230.39910.27010.051*
C160.17668 (18)0.5211 (2)0.20506 (19)0.0352 (6)
N20.23880 (15)0.57968 (17)0.21397 (17)0.0372 (6)
C200.2219 (2)0.6684 (2)0.2034 (2)0.0478 (8)
H200.26470.70970.21040.057*
C190.1456 (3)0.7013 (3)0.1829 (2)0.0544 (9)
H190.1370.76330.17530.065*
C180.0825 (2)0.6416 (3)0.1738 (3)0.0615 (10)
H180.02980.66190.15990.074*
N10.16417 (16)0.36823 (17)0.14154 (17)0.0383 (6)
H10.17710.38510.08940.046*
C170.0979 (2)0.5508 (3)0.1857 (3)0.0553 (9)
H170.05530.50910.18060.066*
N30.11105 (14)0.06472 (16)0.01965 (16)0.0339 (5)
H3A0.09870.08520.07160.041*
N40.31909 (16)0.02078 (19)0.02365 (19)0.0458 (7)
O10.02465 (11)0.17550 (13)0.12131 (12)0.0297 (4)
O20.09257 (12)0.26946 (14)0.22198 (13)0.0363 (5)
O30.08908 (14)0.07239 (16)0.12543 (15)0.0473 (6)
O40.08829 (13)0.06216 (15)0.24782 (15)0.0431 (5)
Zn100.17016 (3)0.250.02664 (14)
H240.08470.02110.20860.052 (11)*
H230.14150.0670.24760.078 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0218 (12)0.0203 (12)0.0284 (13)0.0028 (10)0.0027 (10)0.0033 (10)
C20.0270 (13)0.0237 (13)0.0299 (14)0.0008 (11)0.0002 (11)0.0035 (11)
C30.0272 (14)0.0312 (15)0.0447 (17)0.0039 (12)0.0047 (12)0.0051 (13)
C40.0400 (17)0.0441 (18)0.0376 (17)0.0014 (14)0.0120 (13)0.0059 (14)
C50.0395 (16)0.0410 (17)0.0299 (15)0.0054 (14)0.0015 (12)0.0021 (13)
C60.0261 (13)0.0243 (14)0.0286 (13)0.0041 (10)0.0012 (10)0.0015 (10)
C70.0315 (14)0.0255 (14)0.0362 (16)0.0068 (11)0.0054 (12)0.0068 (12)
C80.0300 (15)0.0307 (16)0.055 (2)0.0043 (12)0.0110 (13)0.0031 (14)
C90.0305 (14)0.0292 (14)0.0296 (14)0.0046 (11)0.0042 (11)0.0031 (11)
C100.0344 (16)0.0315 (15)0.0472 (18)0.0007 (13)0.0008 (13)0.0027 (13)
C110.0454 (19)0.0428 (19)0.050 (2)0.0122 (15)0.0002 (15)0.0050 (15)
C120.0333 (17)0.068 (2)0.060 (2)0.0082 (17)0.0099 (15)0.0120 (19)
C130.0321 (17)0.062 (2)0.078 (3)0.0144 (17)0.0142 (17)0.019 (2)
C140.0208 (13)0.0247 (13)0.0412 (16)0.0002 (10)0.0071 (11)0.0041 (12)
C150.0442 (18)0.0369 (17)0.0462 (19)0.0125 (14)0.0135 (14)0.0017 (14)
C160.0353 (16)0.0353 (16)0.0346 (16)0.0068 (13)0.0049 (12)0.0002 (12)
N20.0360 (13)0.0322 (13)0.0427 (14)0.0078 (11)0.0071 (11)0.0002 (11)
C200.059 (2)0.0314 (16)0.052 (2)0.0095 (16)0.0073 (16)0.0007 (15)
C190.078 (3)0.0413 (19)0.043 (2)0.0131 (19)0.0050 (18)0.0011 (15)
C180.046 (2)0.067 (3)0.071 (3)0.0168 (19)0.0048 (18)0.002 (2)
N10.0448 (15)0.0336 (13)0.0361 (14)0.0177 (11)0.0047 (11)0.0052 (11)
C170.0342 (18)0.060 (2)0.071 (3)0.0095 (16)0.0053 (17)0.0001 (19)
N30.0292 (12)0.0327 (13)0.0393 (14)0.0066 (10)0.0069 (10)0.0016 (10)
N40.0349 (14)0.0403 (15)0.0615 (18)0.0121 (12)0.0109 (12)0.0156 (13)
O10.0258 (9)0.0377 (11)0.0256 (9)0.0075 (8)0.0001 (7)0.0014 (8)
O20.0420 (12)0.0356 (11)0.0309 (11)0.0135 (9)0.0033 (9)0.0007 (9)
O30.0514 (13)0.0489 (14)0.0410 (13)0.0034 (11)0.0087 (10)0.0180 (11)
O40.0323 (12)0.0397 (12)0.0567 (14)0.0075 (9)0.0049 (10)0.0215 (11)
Zn10.0272 (2)0.0271 (2)0.0254 (2)00.00199 (16)0
Geometric parameters (Å, º) top
C1—O11.307 (3)C13—H130.93
C1—C61.421 (4)C14—O21.248 (3)
C1—C21.434 (4)C14—N11.348 (3)
C2—C31.395 (4)C15—N11.455 (4)
C2—C141.486 (4)C15—C161.514 (4)
C3—C41.373 (4)C15—H15A0.97
C3—H30.93C15—H15B0.97
C4—C51.378 (4)C16—N21.336 (4)
C4—H40.93C16—C171.383 (4)
C5—C61.391 (4)N2—C201.344 (4)
C5—H50.93C20—C191.365 (5)
C6—C71.495 (4)C20—H200.93
C7—O31.240 (3)C19—C181.361 (6)
C7—N31.332 (4)C19—H190.93
C8—N31.442 (4)C18—C171.371 (5)
C8—C91.514 (4)C18—H180.93
C8—H8A0.97N1—H10.86
C8—H8B0.97C17—H170.93
C9—N41.332 (4)N3—H3A0.86
C9—C101.377 (4)O1—Zn11.9772 (18)
C10—C111.382 (4)O2—Zn12.1572 (19)
C10—H100.93O4—Zn12.149 (2)
C11—C121.368 (5)O4—H240.85
C11—H110.93O4—H230.87
C12—C131.374 (5)Zn1—O1i1.9772 (18)
C12—H120.93Zn1—O4i2.149 (2)
C13—N41.338 (4)Zn1—O2i2.1572 (19)
O1—C1—C6120.1 (2)C16—C15—H15A109.3
O1—C1—C2122.3 (2)N1—C15—H15B109.3
C6—C1—C2117.5 (2)C16—C15—H15B109.3
C3—C2—C1119.3 (2)H15A—C15—H15B108
C3—C2—C14119.5 (2)N2—C16—C17121.2 (3)
C1—C2—C14121.2 (2)N2—C16—C15117.5 (3)
C4—C3—C2122.1 (3)C17—C16—C15121.3 (3)
C4—C3—H3118.9C16—N2—C20117.6 (3)
C2—C3—H3118.9N2—C20—C19123.7 (3)
C3—C4—C5119.3 (3)N2—C20—H20118.2
C3—C4—H4120.4C19—C20—H20118.2
C5—C4—H4120.4C18—C19—C20118.6 (3)
C4—C5—C6121.3 (3)C18—C19—H19120.7
C4—C5—H5119.3C20—C19—H19120.7
C6—C5—H5119.3C19—C18—C17118.8 (4)
C5—C6—C1120.4 (2)C19—C18—H18120.6
C5—C6—C7115.9 (2)C17—C18—H18120.6
C1—C6—C7123.7 (2)C14—N1—C15124.6 (3)
O3—C7—N3121.1 (3)C14—N1—H1117.7
O3—C7—C6121.0 (3)C15—N1—H1117.7
N3—C7—C6117.8 (2)C18—C17—C16120.1 (3)
N3—C8—C9115.3 (2)C18—C17—H17119.9
N3—C8—H8A108.4C16—C17—H17119.9
C9—C8—H8A108.4C7—N3—C8122.0 (3)
N3—C8—H8B108.4C7—N3—H3A119
C9—C8—H8B108.4C8—N3—H3A119
H8A—C8—H8B107.5C9—N4—C13117.6 (3)
N4—C9—C10122.3 (3)C1—O1—Zn1130.85 (16)
N4—C9—C8113.4 (2)C14—O2—Zn1127.87 (18)
C10—C9—C8124.3 (3)Zn1—O4—H24121
C9—C10—C11119.2 (3)Zn1—O4—H23128
C9—C10—H10120.4H24—O4—H2396
C11—C10—H10120.4O1—Zn1—O1i175.44 (11)
C12—C11—C10118.9 (3)O1—Zn1—O4i85.97 (8)
C12—C11—H11120.5O1i—Zn1—O4i97.42 (8)
C10—C11—H11120.5O1—Zn1—O497.42 (8)
C11—C12—C13118.3 (3)O1i—Zn1—O485.97 (8)
C11—C12—H12120.8O4i—Zn1—O484.55 (12)
C13—C12—H12120.8O1—Zn1—O284.29 (7)
N4—C13—C12123.6 (3)O1i—Zn1—O292.61 (8)
N4—C13—H13118.2O4i—Zn1—O2168.82 (8)
C12—C13—H13118.2O4—Zn1—O291.26 (8)
O2—C14—N1120.2 (3)O1—Zn1—O2i92.61 (8)
O2—C14—C2124.2 (2)O1i—Zn1—O2i84.29 (7)
N1—C14—C2115.7 (2)O4i—Zn1—O2i91.26 (8)
N1—C15—C16111.5 (3)O4—Zn1—O2i168.82 (8)
N1—C15—H15A109.3O2—Zn1—O2i94.67 (12)
O1—C1—C2—C3179.9 (2)C17—C16—N2—C200.0 (5)
C6—C1—C2—C32.4 (4)C15—C16—N2—C20179.5 (3)
O1—C1—C2—C141.7 (4)C16—N2—C20—C191.0 (5)
C6—C1—C2—C14176.1 (2)N2—C20—C19—C181.0 (6)
C1—C2—C3—C41.4 (4)C20—C19—C18—C170.0 (6)
C14—C2—C3—C4177.1 (3)O2—C14—N1—C152.9 (4)
C2—C3—C4—C50.5 (5)C2—C14—N1—C15177.0 (3)
C3—C4—C5—C61.3 (5)C16—C15—N1—C14127.1 (3)
C4—C5—C6—C10.2 (4)C19—C18—C17—C161.0 (6)
C4—C5—C6—C7178.5 (3)N2—C16—C17—C181.0 (5)
O1—C1—C6—C5179.4 (2)C15—C16—C17—C18178.5 (3)
C2—C1—C6—C51.6 (4)O3—C7—N3—C86.7 (4)
O1—C1—C6—C71.9 (4)C6—C7—N3—C8174.4 (2)
C2—C1—C6—C7179.8 (2)C9—C8—N3—C783.3 (4)
C5—C6—C7—O310.8 (4)C10—C9—N4—C131.4 (5)
C1—C6—C7—O3170.5 (3)C8—C9—N4—C13178.6 (3)
C5—C6—C7—N3170.3 (2)C12—C13—N4—C90.8 (6)
C1—C6—C7—N38.4 (4)C6—C1—O1—Zn1151.87 (19)
N3—C8—C9—N4176.5 (3)C2—C1—O1—Zn130.4 (4)
N3—C8—C9—C103.5 (5)N1—C14—O2—Zn1168.55 (19)
N4—C9—C10—C110.3 (5)C2—C14—O2—Zn111.5 (4)
C8—C9—C10—C11179.7 (3)C1—O1—Zn1—O4i143.2 (2)
C9—C10—C11—C121.4 (5)C1—O1—Zn1—O459.2 (2)
C10—C11—C12—C131.9 (5)C1—O1—Zn1—O231.3 (2)
C11—C12—C13—N40.8 (6)C1—O1—Zn1—O2i125.8 (2)
C3—C2—C14—O2159.3 (3)C14—O2—Zn1—O19.8 (2)
C1—C2—C14—O222.2 (4)C14—O2—Zn1—O1i173.6 (2)
C3—C2—C14—N120.6 (4)C14—O2—Zn1—O4i19.8 (6)
C1—C2—C14—N1157.9 (2)C14—O2—Zn1—O487.6 (2)
N1—C15—C16—N2127.8 (3)C14—O2—Zn1—O2i101.9 (2)
N1—C15—C16—C1751.7 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.861.932.623 (3)136
N1—H1···N4ii0.862.203.007 (4)155
O4—H24···O3iii0.851.872.712 (3)174
O4—H23···N2iv0.872.032.879 (3)163
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x, y, z; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C20H17N4O3)2(H2O)2]
Mr824.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.357 (4), 14.723 (4), 15.135 (4)
β (°) 91.938 (7)
V3)3642.9 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.35 × 0.3 × 0.2
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.757, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
21455, 4398, 3575
Rint0.061
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.130, 1.11
No. of reflections4398
No. of parameters260
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.42

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
O1—Zn11.9772 (18)O4—Zn12.149 (2)
O2—Zn12.1572 (19)
O1—Zn1—O1i175.44 (11)O4—Zn1—O291.26 (8)
O1—Zn1—O4i85.97 (8)O1—Zn1—O2i92.61 (8)
O1—Zn1—O497.42 (8)O4—Zn1—O2i168.82 (8)
O4i—Zn1—O484.55 (12)O2—Zn1—O2i94.67 (12)
O1—Zn1—O284.29 (7)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.861.932.623 (3)136
N1—H1···N4ii0.862.203.007 (4)155
O4—H24···O3iii0.851.872.712 (3)174
O4—H23···N2iv0.872.032.879 (3)163
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x, y, z; (iv) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds