




Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809049769/hy2252sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536809049769/hy2252Isup2.hkl |
CCDC reference: 758749
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean
(C-C) = 0.006 Å
- R factor = 0.048
- wR factor = 0.132
- Data-to-parameter ratio = 13.9
checkCIF/PLATON results
No syntax errors found
Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for S
Alert level C PLAT213_ALERT_2_C Atom O2 has ADP max/min Ratio ..... 3.10 prola PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cu PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.05 PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3D ... ? PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.596 32 PLAT480_ALERT_4_C Long H...A H-Bond Reported H3D .. O1W .. 2.69 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 H2 O
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 2
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
Diaquabis(4-aminobenzenesulfonato)copper(II) dihydrate was synthesized according to the literature (Gunderman et al., 1996). 1,3-Diaminopropane (0.35 g, 4.72 mmol) in 10 ml water was dropped slowly into the stirred diaquabis(4-aminobenzenesulfonato)copper(II) dihydrate (1.12 g, 2.33 mmol) solution in 20 ml water. The mixed solution was kept stirring at room temperature for 30 min. After filtration, the filtrate was left to evaporate in air. After a few days, blue crystals of the title compound suitable for X-ray study were obtained (yield 0.70 g, 51%).
H atoms bonded to C atoms or N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and N—H = 0.90 and 0.86 Å and with Uiso(H) = 1.2Ueq(C,N). Water H atoms were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and with Uiso(H) =1.5Ueq(O).
Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
[Cu(C3H10N2)2(C6H6NO3S)2]·2H2O | F(000) = 622 |
Mr = 592.19 | Dx = 1.541 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2312 reflections |
a = 9.5171 (1) Å | θ = 2.2–25.1° |
b = 10.3875 (4) Å | µ = 1.07 mm−1 |
c = 13.1646 (5) Å | T = 293 K |
β = 101.256 (2)° | Prism, blue |
V = 1276.40 (7) Å3 | 0.48 × 0.20 × 0.18 mm |
Z = 2 |
Siemens SMART 1000 CCD diffractometer | 2230 independent reflections |
Radiation source: fine-focus sealed tube | 1889 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→11 |
Tmin = 0.627, Tmax = 0.830 | k = −7→12 |
3629 measured reflections | l = −15→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.132 | w = 1/[σ2(Fo2) + (0.0669P)2 + 1.3129P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2230 reflections | Δρmax = 0.48 e Å−3 |
161 parameters | Δρmin = −0.41 e Å−3 |
3 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.054 (4) |
[Cu(C3H10N2)2(C6H6NO3S)2]·2H2O | V = 1276.40 (7) Å3 |
Mr = 592.19 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.5171 (1) Å | µ = 1.07 mm−1 |
b = 10.3875 (4) Å | T = 293 K |
c = 13.1646 (5) Å | 0.48 × 0.20 × 0.18 mm |
β = 101.256 (2)° |
Siemens SMART 1000 CCD diffractometer | 2230 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1889 reflections with I > 2σ(I) |
Tmin = 0.627, Tmax = 0.830 | Rint = 0.024 |
3629 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 3 restraints |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.48 e Å−3 |
2230 reflections | Δρmin = −0.41 e Å−3 |
161 parameters |
x | y | z | Uiso*/Ueq | ||
Cu | 0.5000 | 0.0000 | 0.5000 | 0.0387 (3) | |
N1 | 0.3723 (3) | −0.1305 (3) | 0.5539 (2) | 0.0470 (7) | |
H1A | 0.3788 | −0.2043 | 0.5193 | 0.056* | |
H1B | 0.4125 | −0.1457 | 0.6205 | 0.056* | |
N2 | 0.3801 (3) | 0.1490 (3) | 0.5351 (2) | 0.0457 (7) | |
H2A | 0.4171 | 0.1731 | 0.6005 | 0.055* | |
H2B | 0.3929 | 0.2153 | 0.4938 | 0.055* | |
C1 | 0.2183 (4) | −0.1079 (4) | 0.5506 (3) | 0.0565 (10) | |
H1C | 0.1820 | −0.1742 | 0.5905 | 0.068* | |
H1D | 0.1669 | −0.1143 | 0.4796 | 0.068* | |
C2 | 0.1902 (4) | 0.0226 (4) | 0.5934 (3) | 0.0537 (10) | |
H2C | 0.0902 | 0.0277 | 0.5990 | 0.064* | |
H2D | 0.2476 | 0.0314 | 0.6625 | 0.064* | |
C3 | 0.2240 (4) | 0.1327 (4) | 0.5273 (3) | 0.0519 (9) | |
H3A | 0.1794 | 0.1169 | 0.4557 | 0.062* | |
H3B | 0.1840 | 0.2116 | 0.5491 | 0.062* | |
O1W | 0.5872 (4) | −0.1325 (5) | 0.1104 (5) | 0.147 (2) | |
H1WA | 0.5115 | −0.0876 | 0.0934 | 0.221* | |
H1WB | 0.5700 | −0.1840 | 0.1563 | 0.221* | |
S | 0.31964 (10) | 0.04586 (13) | 0.21957 (7) | 0.0585 (4) | |
O1 | 0.3474 (3) | −0.0243 (3) | 0.3153 (3) | 0.0735 (10) | |
O2 | 0.3401 (4) | −0.0303 (6) | 0.1333 (3) | 0.156 (3) | |
O3 | 0.4010 (3) | 0.1646 (4) | 0.2294 (3) | 0.0936 (13) | |
C11 | 0.1360 (4) | 0.0876 (4) | 0.1932 (2) | 0.0435 (8) | |
C12 | 0.0384 (4) | 0.0061 (4) | 0.1338 (3) | 0.0488 (9) | |
H12A | 0.0702 | −0.0675 | 0.1050 | 0.059* | |
C13 | −0.1068 (4) | 0.0337 (4) | 0.1168 (3) | 0.0527 (10) | |
H13A | −0.1717 | −0.0220 | 0.0770 | 0.063* | |
C14 | −0.1565 (4) | 0.1431 (4) | 0.1584 (3) | 0.0483 (9) | |
C15 | −0.0568 (4) | 0.2261 (4) | 0.2159 (3) | 0.0523 (9) | |
H15A | −0.0880 | 0.3016 | 0.2424 | 0.063* | |
C16 | 0.0875 (4) | 0.1982 (4) | 0.2342 (3) | 0.0493 (9) | |
H16A | 0.1525 | 0.2538 | 0.2741 | 0.059* | |
N3 | −0.3017 (3) | 0.1723 (4) | 0.1411 (3) | 0.0680 (10) | |
H3D | −0.3627 | 0.1219 | 0.1039 | 0.082* | |
H3C | −0.3305 | 0.2407 | 0.1676 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0294 (4) | 0.0433 (4) | 0.0434 (4) | 0.0037 (2) | 0.0068 (2) | 0.0027 (2) |
N1 | 0.0377 (16) | 0.0488 (17) | 0.0541 (18) | 0.0005 (13) | 0.0079 (13) | 0.0047 (14) |
N2 | 0.0406 (16) | 0.0493 (17) | 0.0478 (17) | 0.0061 (13) | 0.0103 (13) | −0.0016 (14) |
C1 | 0.0385 (19) | 0.064 (2) | 0.069 (3) | −0.0065 (18) | 0.0147 (18) | −0.005 (2) |
C2 | 0.039 (2) | 0.076 (3) | 0.049 (2) | 0.0008 (18) | 0.0162 (17) | −0.0048 (19) |
C3 | 0.0358 (19) | 0.068 (3) | 0.051 (2) | 0.0141 (17) | 0.0058 (16) | −0.0058 (19) |
O1W | 0.061 (2) | 0.130 (4) | 0.254 (6) | −0.018 (2) | 0.038 (3) | −0.109 (4) |
S | 0.0392 (5) | 0.0932 (8) | 0.0388 (5) | 0.0172 (5) | −0.0031 (4) | 0.0027 (5) |
O1 | 0.0558 (18) | 0.081 (2) | 0.070 (2) | 0.0005 (15) | −0.0221 (15) | 0.0234 (16) |
O2 | 0.067 (3) | 0.294 (7) | 0.091 (3) | 0.084 (3) | −0.025 (2) | −0.090 (4) |
O3 | 0.0430 (16) | 0.125 (3) | 0.109 (3) | −0.0080 (18) | 0.0046 (17) | 0.051 (2) |
C11 | 0.0385 (18) | 0.057 (2) | 0.0331 (17) | 0.0085 (16) | 0.0022 (13) | 0.0113 (15) |
C12 | 0.049 (2) | 0.051 (2) | 0.042 (2) | 0.0118 (16) | 0.0005 (16) | 0.0030 (16) |
C13 | 0.044 (2) | 0.053 (2) | 0.056 (2) | −0.0013 (17) | −0.0026 (17) | 0.0072 (18) |
C14 | 0.0387 (19) | 0.058 (2) | 0.048 (2) | 0.0050 (17) | 0.0075 (15) | 0.0182 (17) |
C15 | 0.054 (2) | 0.052 (2) | 0.052 (2) | 0.0129 (18) | 0.0123 (17) | 0.0032 (18) |
C16 | 0.050 (2) | 0.055 (2) | 0.0408 (19) | 0.0000 (17) | 0.0035 (15) | 0.0011 (16) |
N3 | 0.0404 (18) | 0.075 (2) | 0.087 (3) | 0.0107 (17) | 0.0085 (17) | 0.012 (2) |
Cu—N1 | 2.038 (3) | O1W—H1WB | 0.85 |
Cu—N2 | 2.029 (3) | S—O2 | 1.428 (4) |
Cu—O1 | 2.589 (3) | S—O1 | 1.435 (3) |
N1—C1 | 1.476 (4) | S—O3 | 1.448 (4) |
N1—H1A | 0.9000 | S—C11 | 1.768 (3) |
N1—H1B | 0.9000 | C11—C12 | 1.381 (5) |
N2—C3 | 1.479 (4) | C11—C16 | 1.386 (5) |
N2—H2A | 0.9000 | C12—C13 | 1.386 (6) |
N2—H2B | 0.9000 | C12—H12A | 0.9300 |
C1—C2 | 1.512 (5) | C13—C14 | 1.384 (6) |
C1—H1C | 0.9700 | C13—H13A | 0.9300 |
C1—H1D | 0.9700 | C14—N3 | 1.389 (5) |
C2—C3 | 1.509 (6) | C14—C15 | 1.391 (6) |
C2—H2C | 0.9700 | C15—C16 | 1.378 (5) |
C2—H2D | 0.9700 | C15—H15A | 0.9300 |
C3—H3A | 0.9700 | C16—H16A | 0.9300 |
C3—H3B | 0.9700 | N3—H3D | 0.8600 |
O1W—H1WA | 0.85 | N3—H3C | 0.8600 |
N2—Cu—N2i | 180.0 | C1—C2—H2D | 109.0 |
N2—Cu—N1 | 91.61 (13) | H2C—C2—H2D | 107.8 |
N2i—Cu—N1 | 88.40 (13) | N2—C3—C2 | 111.8 (3) |
N2—Cu—N1i | 88.40 (13) | N2—C3—H3A | 109.3 |
N2i—Cu—N1i | 91.60 (13) | C2—C3—H3A | 109.3 |
N1—Cu—N1i | 180.0 | N2—C3—H3B | 109.3 |
N2—Cu—O1i | 87.08 (11) | C2—C3—H3B | 109.3 |
N2i—Cu—O1i | 92.92 (11) | H3A—C3—H3B | 107.9 |
N1—Cu—O1i | 90.08 (11) | H1WA—O1W—H1WB | 105.1 |
N1i—Cu—O1i | 89.92 (11) | O2—S—O1 | 112.8 (3) |
N2—Cu—O1 | 92.92 (11) | O2—S—O3 | 112.9 (3) |
N2i—Cu—O1 | 87.08 (12) | O1—S—O3 | 110.5 (2) |
N1—Cu—O1 | 89.92 (11) | O2—S—C11 | 105.22 (19) |
N1i—Cu—O1 | 90.08 (11) | O1—S—C11 | 107.59 (18) |
O1i—Cu—O1 | 180.0 | O3—S—C11 | 107.44 (19) |
C1—N1—Cu | 122.7 (2) | S—O1—Cu | 138.47 (19) |
C1—N1—H1A | 106.7 | C12—C11—C16 | 119.4 (3) |
Cu—N1—H1A | 106.7 | C12—C11—S | 119.4 (3) |
C1—N1—H1B | 106.7 | C16—C11—S | 121.2 (3) |
Cu—N1—H1B | 106.7 | C11—C12—C13 | 120.2 (4) |
H1A—N1—H1B | 106.6 | C11—C12—H12A | 119.9 |
C3—N2—Cu | 119.9 (2) | C13—C12—H12A | 119.9 |
C3—N2—H2A | 107.3 | C14—C13—C12 | 120.8 (4) |
Cu—N2—H2A | 107.3 | C14—C13—H13A | 119.6 |
C3—N2—H2B | 107.3 | C12—C13—H13A | 119.6 |
Cu—N2—H2B | 107.3 | C13—C14—N3 | 121.3 (4) |
H2A—N2—H2B | 106.9 | C13—C14—C15 | 118.3 (3) |
N1—C1—C2 | 112.3 (3) | N3—C14—C15 | 120.3 (4) |
N1—C1—H1C | 109.1 | C16—C15—C14 | 121.0 (4) |
C2—C1—H1C | 109.1 | C16—C15—H15A | 119.5 |
N1—C1—H1D | 109.1 | C14—C15—H15A | 119.5 |
C2—C1—H1D | 109.1 | C15—C16—C11 | 120.1 (4) |
H1C—C1—H1D | 107.9 | C15—C16—H16A | 119.9 |
C3—C2—C1 | 113.1 (3) | C11—C16—H16A | 119.9 |
C3—C2—H2C | 109.0 | C14—N3—H3D | 120.0 |
C1—C2—H2C | 109.0 | C14—N3—H3C | 120.0 |
C3—C2—H2D | 109.0 | H3D—N3—H3C | 120.0 |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2 | 0.85 | 1.90 | 2.651 (5) | 146 |
O1W—H1WB···O3ii | 0.85 | 2.16 | 2.969 (8) | 160 |
N1—H1A···N3iii | 0.90 | 2.46 | 3.250 (5) | 147 |
N1—H1B···O3i | 0.90 | 2.39 | 3.243 (4) | 158 |
N2—H2A···O3iv | 0.90 | 2.42 | 3.183 (4) | 143 |
N2—H2B···O1Wv | 0.90 | 2.13 | 3.025 (5) | 177 |
N3—H3D···O1Wvi | 0.86 | 2.69 | 3.337 (6) | 133 |
N3—H3C···O1vii | 0.86 | 2.46 | 3.248 (5) | 153 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) x, −y+1/2, z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x−1, y, z; (vii) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C3H10N2)2(C6H6NO3S)2]·2H2O |
Mr | 592.19 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.5171 (1), 10.3875 (4), 13.1646 (5) |
β (°) | 101.256 (2) |
V (Å3) | 1276.40 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.07 |
Crystal size (mm) | 0.48 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Siemens SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.627, 0.830 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3629, 2230, 1889 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.132, 1.09 |
No. of reflections | 2230 |
No. of parameters | 161 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.41 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2 | 0.85 | 1.90 | 2.651 (5) | 146 |
O1W—H1WB···O3i | 0.85 | 2.16 | 2.969 (8) | 160 |
N1—H1A···N3ii | 0.90 | 2.46 | 3.250 (5) | 147 |
N1—H1B···O3iii | 0.90 | 2.39 | 3.243 (4) | 158 |
N2—H2A···O3iv | 0.90 | 2.42 | 3.183 (4) | 143 |
N2—H2B···O1Wv | 0.90 | 2.13 | 3.025 (5) | 177 |
N3—H3D···O1Wvi | 0.86 | 2.69 | 3.337 (6) | 133 |
N3—H3C···O1vii | 0.86 | 2.46 | 3.248 (5) | 153 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x+1, −y, −z+1; (iv) x, −y+1/2, z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x−1, y, z; (vii) −x, y+1/2, −z+1/2. |
Crystal engineering based on metal and organic building blocks has been rapidly developed in recent years owing to their novel and diverse topologies and potential applications in catalysis and host–guest chemistry (Evans & Lin, 2002). Covalent bonds and hydrogen bonds have been demonstrated to be two important interactions in constructing metal-containing supramolecular frameworks, and they have brought forth a great variety of novel frameworks with fascinating structural motifs (Li et al., 2003, 2004). 1,3-Diaminopropane (tn) ligand behaves as a strong chelatator in its metal complexes due to the formation of a stable six-membered ring. At the same time, it is a good H-bond donor due to the existence of amino groups (Sundberg et al., 2001). The crystal egineering of tn and carboxylate ligands has been studied in detail (Sundberg et al., 2001), but supramolecular chemistry of tn and 4-aminobenzenesulfonate (4-ABS) ligand is still not explored to that extent (Wang et al., 2002). 4-ABS can act as a bridging or a terminal ligand in its metal complexes. On the other hand, studies on the coordination and supramolecular chemistry of 4-ABS have showed that it is a good H-bond acceptor and can form strong H-bonds due to its three O atoms and one N atom (Kim & Lee, 2002; Wang et al., 2002). In view of their excellent coordination capability and good H-bond donor or acceptor nature, we employed tn and 4-ABS as mixed organic building blocks to construct supramolecular networks in an expectation that these ligands may generate hydrogen bonding and/or covalent interactions with transition metal ions in the assembly process. Herein, we report the synthesis and structure of the title compound.
As shown in Fig. 1, the CuII atom lies on an inversion center and is octahedrally coordinated by four N atoms from two tn ligands and two O atoms from two 4-ABS ligands in a trans arrangement. The coordination polyhedron of the CuII ion can be described as axially elongated octahedral, with the O atoms at the axial positions. The tn ligand shows chelating coordination behavior and displays a chair conformation in the equatorial direction. This kind of coordination mode was also found in the similar complexes (Sundberg et al., 2001; Sundberg & Sillanpää, 1993; Sundberg & Uggla, 1997). The axial Cu—O distance is 2.589 (3) Å, indicating a weak coordination. The equatorial Cu—N1 and Cu—N2 bond lengths are 2.038 (3) and 2.029 (3) Å, respectively, which are much shorter than the axial Cu—O distance and very similar to those in the previously reported trans-bis(4-methylbenzenesulfonato)bis(1,3-diaminopropane)copper(II) (Sundberg & Sillanpää, 1993). The tn molecule forms a six-membered chelate ring with asymmetric Cu—N1—C1 and Cu—N2—C3 angles of 122.7 (2) and 119.9 (2)°. A plausible explanation for the deviations described above may be attributed to the asymmetric hydrogen bonding with respect to the chelate ring. The complex molecules are linked into a two-dimensional layer through hydrogen bonds between the uncoordinated water, the sulfonate group and the amino groups of the tn ligand. The layers are further connected into a three-dimensional network through hydrogen bonds between the amino groups and the sulfonate groups of neighboring 4-ABS ligands (Fig. 2).