Download citation
Download citation
link to html
In the title compound, [Ni(C5H5N)2(H2O)4](NO3)2, the NiII ion is coordinated by two N-bonded pyridine ligands and four water mol­ecules in an octa­hedral coordination mode. The asymmetric unit consists of one NiII ion located on an inversion center, as well as one pyridine ligand, one nitrate anion and two water mol­ecules in general positions. In the crystal structure, the discrete complex cations and nitrate anions are connected by O—H...O and C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810021653/hy2315sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810021653/hy2315Isup2.hkl
Contains datablock I

CCDC reference: 786433

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.049
  • wR factor = 0.129
  • Data-to-parameter ratio = 21.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Ni1 -- O4 .. 11.39 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Ni1 -- O5 .. 10.40 su PLAT420_ALERT_2_B D-H Without Acceptor O5 - >H3O5 ... ?
Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Ni1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 9 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 5 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of N2 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 12
Alert level G PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 6
0 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, we have shown that thermal decomposition reactions are an elegant route for the discovery and preparation of new ligand-deficient coordination polymers with defined magnetic properties (Wriedt & Näther, 2009a,b; Wriedt et al., 2009a,b). In our ongoing investigation on the synthesis, structures and properties of such compounds based on paramagnetic transition metal pseudo-halides and N-donor ligands, we have reacted nickel(II) dinitrate hexahydrate, sodium dicyanamide and pyridine. In this reaction single crystals of the title compound were grown.

The title compound (Fig. 1) represents a discrete complex cation, in which the NiII atom, lying on an inversion center, is coordinated by two pyridine ligands and four water molecules in an octahedral coordination mode. The nitrate anions are not coordinated to the metal atoms (Fig. 2). The NiN2O4 octahedron is slightly distorted with Ni—Npyridine distances of 2.140 (2) Å and Ni—Owater distances of 2.113 (2) and 2.128 (2) Å (Table 1). The angles arround the metal atoms range between 85.71 (10) to 94.29 (10) and 180°. A similar coordination is found in a related structure (Halut-Desportes, 1981). The opposite pyridyl rings are coplanar due to symmetry. The shortest intermolecular Ni···Ni distance amounts to 7.3245 (4) Å.

Related literature top

For general background to thermal decomposition reactions as an elegant route for the discovery and preparation of new ligand-deficient coordination polymers with defined magnetic properties, see: Wriedt & Näther (2009a,b); Wriedt et al. (2009a,b). For a related structure, see: Halut-Desportes (1981).

Experimental top

Ni(NO3)2.6H2O (72.7 mg, 0.25 mmol), sodium dicyanamide (44.5 mg, 0.5 mmol) and pyridine (0.5 ml) obtained from Alfa Aesar were reacted in a closed test-tube at 120°C for 3 d. On cooling light green block-shaped single crystals of the title compound were grown in a mixture with unknown phases.

Refinement top

All H atoms were located in a difference Fourier map. H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The water H atoms were disordered over three positions for each water molecule and were refined as riding, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O), using a split model with SOF = 0.6667 for each H atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Disordering of the H atoms is shown with full and open bonds. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. Packing arrangement of the title compound with view along the a axis.
Tetraaquabis(pyridine-κN)nickel(II) dinitrate top
Crystal data top
[Ni(C5H5N)2(H2O)4](NO3)2F(000) = 428
Mr = 412.99Dx = 1.523 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12828 reflections
a = 7.3245 (4) Åθ = 2.6–29.2°
b = 11.3179 (6) ŵ = 1.13 mm1
c = 10.9347 (5) ÅT = 293 K
β = 96.436 (4)°Block, light green
V = 900.75 (8) Å30.28 × 0.16 × 0.07 mm
Z = 2
Data collection top
Stoe IPDS-2
diffractometer
2427 independent reflections
Radiation source: fine-focus sealed tube2087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 29.2°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
h = 109
Tmin = 0.801, Tmax = 0.927k = 1515
12828 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.6589P]
where P = (Fo2 + 2Fc2)/3
2427 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C5H5N)2(H2O)4](NO3)2V = 900.75 (8) Å3
Mr = 412.99Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.3245 (4) ŵ = 1.13 mm1
b = 11.3179 (6) ÅT = 293 K
c = 10.9347 (5) Å0.28 × 0.16 × 0.07 mm
β = 96.436 (4)°
Data collection top
Stoe IPDS-2
diffractometer
2427 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
2087 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.927Rint = 0.040
12828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.15Δρmax = 0.32 e Å3
2427 reflectionsΔρmin = 0.47 e Å3
115 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.03618 (15)
N10.6201 (3)0.32862 (19)0.4879 (2)0.0421 (5)
C10.5276 (4)0.2407 (3)0.4281 (3)0.0526 (7)
H10.40950.25550.39080.063*
C20.5994 (6)0.1285 (3)0.4191 (4)0.0678 (9)
H20.53050.06930.37700.081*
C30.7731 (6)0.1062 (3)0.4729 (4)0.0735 (10)
H30.82500.03170.46760.088*
C40.8695 (4)0.1951 (3)0.5348 (4)0.0629 (8)
H40.98810.18190.57220.076*
C50.7896 (4)0.3040 (3)0.5412 (3)0.0486 (6)
H50.85600.36360.58440.058*
N21.0498 (3)0.6620 (2)0.7423 (2)0.0501 (5)
O11.0070 (3)0.5655 (2)0.6942 (2)0.0635 (6)
O21.1995 (4)0.6760 (3)0.8009 (3)0.0956 (10)
O30.9347 (5)0.7424 (3)0.7281 (3)0.0905 (9)
O40.7425 (3)0.5820 (2)0.4544 (2)0.0624 (6)
H1O40.72240.64350.41540.094*0.667
H2O40.80880.54310.41410.094*0.667
H3O40.81040.59930.51660.094*0.667
O50.5815 (4)0.5041 (2)0.6930 (2)0.0670 (6)
H1O50.58300.43800.72390.101*0.667
H2O50.68490.52950.71470.101*0.667
H3O50.51480.54570.73040.101*0.667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0330 (2)0.0335 (2)0.0415 (2)0.00085 (16)0.00174 (15)0.00095 (18)
N10.0411 (10)0.0356 (10)0.0498 (11)0.0028 (8)0.0065 (9)0.0007 (9)
C10.0526 (15)0.0430 (14)0.0613 (17)0.0008 (12)0.0017 (13)0.0071 (12)
C20.083 (2)0.0423 (16)0.079 (2)0.0013 (15)0.0110 (18)0.0126 (15)
C30.080 (2)0.0451 (17)0.099 (3)0.0188 (16)0.025 (2)0.0026 (18)
C40.0477 (16)0.0579 (18)0.085 (2)0.0131 (14)0.0137 (15)0.0159 (17)
C50.0403 (13)0.0465 (14)0.0595 (16)0.0008 (11)0.0069 (11)0.0062 (12)
N20.0541 (13)0.0526 (14)0.0443 (11)0.0080 (11)0.0088 (10)0.0055 (10)
O10.0690 (14)0.0510 (13)0.0687 (14)0.0078 (10)0.0002 (11)0.0095 (11)
O20.0725 (18)0.123 (3)0.0858 (19)0.0316 (17)0.0137 (15)0.0169 (18)
O30.104 (2)0.0689 (17)0.102 (2)0.0254 (16)0.0278 (18)0.0123 (15)
O40.0518 (12)0.0568 (13)0.0788 (15)0.0035 (10)0.0088 (10)0.0059 (11)
O50.0763 (16)0.0655 (15)0.0575 (13)0.0031 (11)0.0000 (11)0.0016 (11)
Geometric parameters (Å, º) top
Ni1—O42.113 (2)C4—H40.9300
Ni1—O52.128 (2)C5—H50.9300
Ni1—N12.140 (2)N2—O21.216 (4)
N1—C11.333 (4)N2—O11.238 (3)
N1—C51.340 (3)N2—O31.238 (4)
C1—C21.381 (4)O4—H1O40.8200
C1—H10.9300O4—H2O40.8200
C2—C31.365 (5)O4—H3O40.8200
C2—H20.9300O5—H1O50.8200
C3—C41.364 (5)O5—H2O50.8200
C3—H30.9300O5—H3O50.8200
C4—C51.369 (4)
O4—Ni1—O4i180.00 (11)C4—C3—C2118.9 (3)
O4—Ni1—O5i85.71 (10)C4—C3—H3120.6
O4i—Ni1—O5i94.29 (10)C2—C3—H3120.6
O4—Ni1—O594.29 (10)C3—C4—C5119.3 (3)
O4i—Ni1—O585.71 (10)C3—C4—H4120.4
O5i—Ni1—O5180.000 (1)C5—C4—H4120.4
O4—Ni1—N191.23 (9)N1—C5—C4123.1 (3)
O4i—Ni1—N188.77 (9)N1—C5—H5118.5
O5i—Ni1—N189.46 (9)C4—C5—H5118.5
O5—Ni1—N190.54 (9)O2—N2—O1120.5 (3)
O4—Ni1—N1i88.77 (9)O2—N2—O3122.1 (3)
O4i—Ni1—N1i91.23 (9)O1—N2—O3117.3 (3)
O5i—Ni1—N1i90.54 (9)Ni1—O4—H1O4112.9
O5—Ni1—N1i89.46 (9)Ni1—O4—H2O4117.0
N1—Ni1—N1i180.000 (1)H1O4—O4—H2O4105.0
C1—N1—C5116.9 (2)Ni1—O4—H3O4110.9
C1—N1—Ni1121.15 (19)H1O4—O4—H3O4106.6
C5—N1—Ni1121.94 (19)H2O4—O4—H3O4103.5
N1—C1—C2123.0 (3)Ni1—O5—H1O5112.2
N1—C1—H1118.5Ni1—O5—H2O5116.2
C2—C1—H1118.5H1O5—O5—H2O5103.3
C3—C2—C1118.9 (3)Ni1—O5—H3O5113.0
C3—C2—H2120.6H1O5—O5—H3O5107.4
C1—C2—H2120.6H2O5—O5—H3O5103.7
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2ii0.822.393.209 (4)174
O4—H2O4···O1iii0.822.263.077 (4)179
O4—H3O4···O10.822.323.087 (3)157
O5—H1O5···O3iv0.822.283.091 (4)169
O5—H2O5···O10.822.433.191 (4)155
C2—H2···O1v0.932.503.310 (4)145
C4—H4···O2vi0.932.543.461 (4)170
Symmetry codes: (ii) x1/2, y+3/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+3/2, y1/2, z+3/2; (v) x1/2, y+1/2, z1/2; (vi) x+5/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C5H5N)2(H2O)4](NO3)2
Mr412.99
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.3245 (4), 11.3179 (6), 10.9347 (5)
β (°) 96.436 (4)
V3)900.75 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.28 × 0.16 × 0.07
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.801, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
12828, 2427, 2087
Rint0.040
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 1.15
No. of reflections2427
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.47

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O42.113 (2)Ni1—N12.140 (2)
Ni1—O52.128 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.822.393.209 (4)174
O4—H2O4···O1ii0.822.263.077 (4)179
O4—H3O4···O10.822.323.087 (3)157
O5—H1O5···O3iii0.822.283.091 (4)169
O5—H2O5···O10.822.433.191 (4)155
C2—H2···O1iv0.932.503.310 (4)145
C4—H4···O2v0.932.543.461 (4)170
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z1/2; (v) x+5/2, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds