Download citation
Download citation
link to html
In the title coordination polymer, [Cu3(C5H7N2O7P2)2(H2O)2]n, one CuII atom is five-coordinated by five O atoms from three 1-hy­droxy-2-(imidazol-3-ium-1-yl)ethane-1,1-diyldiphospho­nate (L) ligands in a distorted square-pyramidal geometry. The other CuII atom, lying on an inversion center, is six-coordinated in a distorted octa­hedral geometry by four O atoms from two L ligands and two O atoms from two water mol­ecules. The five-coordinated CuII atoms are linked by phospho­nate O atoms of the L ligands, forming a polymeric chain. These chains are further linked by the six-coordinated Cu atoms into a layer parallel to (\overline{1}01). N—H...O and O—H...O hydrogen bonds connect the layers into a three-dimensional supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810046398/hy2377sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810046398/hy2377Isup2.hkl
Contains datablock I

CCDC reference: 802993

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.027
  • wR factor = 0.073
  • Data-to-parameter ratio = 11.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT411_ALERT_2_C Short Inter H...H Contact H2 .. H2 .. 2.04 Ang. PLAT414_ALERT_2_C Short Intra D-H..H-X H2 .. H7 .. 1.96 Ang. PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 16 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 20
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2 PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT793_ALERT_4_G The Model has Chirality at P1 (Verify) .... S PLAT793_ALERT_4_G The Model has Chirality at P2 (Verify) .... S PLAT793_ALERT_4_G The Model has Chirality at C5 (Verify) .... S PLAT794_ALERT_5_G Note: Tentative Bond Valency for Cu1 ....... 1.99 PLAT794_ALERT_5_G Note: Tentative Bond Valency for Cu2 ....... 2.08
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 9 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

During the last two decades great research efforts have been devoted to the synthesis and design of metal phosphonates due to their potential applications in electrooptics, ion exchange, catalysis, and stent in intestinal or biliary (Katz et al., 1994). Herein, we present a new copper(II)–phosphonate complex.

The structure analysis reveals that the title compound has a two-dimensional polymeric structure. As shown in Fig. 1, there exist two kinds of crystallographically unique CuII ions. Atom Cu1 is five-coordinated by four phosphonate O atoms and one hydroxy O atom from three 2-(imidazol-3-ium-1-yl)-1-hydroxy-1,1-ethylidenediphosphonate (L) ligands. Atom Cu2 is six-coordinated by four O atoms from two L ligands and two O atoms from two water molecules. The Cu1 atoms are linked by the phosphonate O atoms, resulting in a one-dimensional polymeric chain. These chains are further linked by the Cu2 atoms into a layer (Fig. 2). N—H···O and O—H···O hydrogen bonds involving the coordinated water molecules and L ligands (Table 1) lead to the formation of a three-dimensional supramolecular network.

Related literature top

For general background to the applications of metal phosphonates, see: Katz et al. (1994).

Experimental top

The synthesis was performed under hydrothermal conditions. A mixture of CuCl2.2H2O (0.034 g, 0.2 mmol), L ligand (0.070 g, 0.2 mmol) and H2O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 423 K in 2 h and maintained at 423 K for 72 h. After the mixture was cooled to 298 K, green crystals of the title compound were obtained (yield: 56%).

Refinement top

H atoms bound to C, N and hydroxy O were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97, N—H = 0.86 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxy)Ueq(C,N,O). H atoms of water molecules were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).

Structure description top

During the last two decades great research efforts have been devoted to the synthesis and design of metal phosphonates due to their potential applications in electrooptics, ion exchange, catalysis, and stent in intestinal or biliary (Katz et al., 1994). Herein, we present a new copper(II)–phosphonate complex.

The structure analysis reveals that the title compound has a two-dimensional polymeric structure. As shown in Fig. 1, there exist two kinds of crystallographically unique CuII ions. Atom Cu1 is five-coordinated by four phosphonate O atoms and one hydroxy O atom from three 2-(imidazol-3-ium-1-yl)-1-hydroxy-1,1-ethylidenediphosphonate (L) ligands. Atom Cu2 is six-coordinated by four O atoms from two L ligands and two O atoms from two water molecules. The Cu1 atoms are linked by the phosphonate O atoms, resulting in a one-dimensional polymeric chain. These chains are further linked by the Cu2 atoms into a layer (Fig. 2). N—H···O and O—H···O hydrogen bonds involving the coordinated water molecules and L ligands (Table 1) lead to the formation of a three-dimensional supramolecular network.

For general background to the applications of metal phosphonates, see: Katz et al. (1994).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y - 1, -z; (ii) x - 1, y - 1, z - 1; (iii) -x, -y - 2, -z; (iv) x + 1, y + 1, z + 1; (v) -x + 1, -y, -z + 1; (vi) x, y + 1, z; (vii) -x - 1, -y - 2, -z - 1.]
[Figure 2] Fig. 2. Two-dimensional layer structure in the title compound.
Poly[diaquabis[µ-1-hydroxy-2-(imidazol-3-ium-1-yl)ethane-1,1- diyldiphosphonato]tricopper(II)] top
Crystal data top
[Cu3(C5H7N2O7P2)2(H2O)2]Z = 1
Mr = 764.81F(000) = 381
Triclinic, P1Dx = 2.510 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4167 (9) ÅCell parameters from 1973 reflections
b = 8.1502 (10) Åθ = 1.9–28.3°
c = 9.5228 (12) ŵ = 3.54 mm1
α = 104.747 (2)°T = 293 K
β = 107.658 (2)°Block, blue
γ = 101.484 (2)°0.30 × 0.28 × 0.21 mm
V = 506.03 (11) Å3
Data collection top
Bruker APEX CCD
diffractometer
1973 independent reflections
Radiation source: fine-focus sealed tube1729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
φ and ω scansθmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.58, Tmax = 0.75k = 106
2771 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.039P)2 + 0.8352P]
where P = (Fo2 + 2Fc2)/3
1973 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.55 e Å3
2 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cu3(C5H7N2O7P2)2(H2O)2]γ = 101.484 (2)°
Mr = 764.81V = 506.03 (11) Å3
Triclinic, P1Z = 1
a = 7.4167 (9) ÅMo Kα radiation
b = 8.1502 (10) ŵ = 3.54 mm1
c = 9.5228 (12) ÅT = 293 K
α = 104.747 (2)°0.30 × 0.28 × 0.21 mm
β = 107.658 (2)°
Data collection top
Bruker APEX CCD
diffractometer
1973 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1729 reflections with I > 2σ(I)
Tmin = 0.58, Tmax = 0.75Rint = 0.012
2771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0272 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.55 e Å3
1973 reflectionsΔρmin = 0.68 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2068 (5)0.5648 (4)0.4517 (4)0.0140 (7)
H10.10470.61190.54970.017*
C20.3998 (5)0.5281 (5)0.2131 (4)0.0173 (7)
H20.45240.54750.11900.021*
C30.4782 (5)0.3932 (5)0.2542 (4)0.0186 (7)
H30.59350.29950.19280.022*
C40.0950 (5)0.7988 (4)0.3483 (4)0.0122 (7)
H4A0.16730.88560.34600.015*
H4B0.01470.84350.44870.015*
C50.0110 (5)0.7833 (4)0.2191 (4)0.0090 (6)
N10.2266 (4)0.6324 (4)0.3368 (3)0.0110 (6)
N20.3567 (4)0.4195 (4)0.4031 (3)0.0159 (6)
H2A0.37500.35180.45680.019*
O10.2890 (3)1.0888 (3)0.3981 (2)0.0104 (5)
O20.2018 (3)0.9799 (3)0.1041 (2)0.0098 (5)
O30.0217 (3)1.1193 (3)0.2195 (2)0.0099 (5)
O40.2060 (3)0.3636 (3)0.0771 (2)0.0100 (5)
O50.0648 (3)0.5288 (3)0.2312 (2)0.0105 (5)
O60.3438 (3)0.2484 (3)0.3787 (3)0.0115 (5)
O70.1644 (3)0.7118 (3)0.0644 (2)0.0105 (5)
H70.23150.61210.05110.016*
P10.12407 (12)1.01022 (10)0.23716 (9)0.00780 (18)
P20.16460 (12)0.34839 (10)0.22756 (9)0.00806 (18)
Cu10.07744 (6)0.75596 (5)0.06756 (4)0.00871 (12)
Cu20.50000.00000.50000.01057 (15)
O1W0.3909 (4)0.0271 (4)0.7275 (3)0.0282 (6)
H1A0.302 (6)0.054 (7)0.768 (5)0.042*
H1B0.491 (5)0.001 (6)0.815 (4)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0184 (18)0.0150 (17)0.0093 (15)0.0056 (14)0.0050 (13)0.0048 (13)
C20.0147 (17)0.0198 (18)0.0129 (16)0.0011 (14)0.0017 (14)0.0058 (14)
C30.0171 (18)0.0175 (18)0.0163 (17)0.0001 (14)0.0032 (14)0.0056 (14)
C40.0152 (17)0.0084 (15)0.0117 (16)0.0021 (13)0.0061 (13)0.0011 (13)
C50.0099 (15)0.0080 (15)0.0064 (14)0.0002 (12)0.0010 (12)0.0026 (12)
N10.0119 (13)0.0090 (13)0.0128 (13)0.0032 (11)0.0050 (11)0.0040 (11)
N20.0209 (16)0.0133 (15)0.0156 (14)0.0029 (12)0.0077 (12)0.0089 (12)
O10.0133 (12)0.0068 (11)0.0075 (11)0.0025 (9)0.0004 (9)0.0009 (9)
O20.0126 (11)0.0060 (11)0.0093 (10)0.0004 (9)0.0045 (9)0.0019 (9)
O30.0137 (11)0.0072 (11)0.0089 (11)0.0032 (9)0.0036 (9)0.0032 (9)
O40.0134 (11)0.0080 (11)0.0091 (11)0.0042 (9)0.0044 (9)0.0029 (9)
O50.0149 (12)0.0075 (11)0.0072 (11)0.0021 (9)0.0028 (9)0.0020 (9)
O60.0127 (11)0.0082 (11)0.0086 (11)0.0016 (9)0.0003 (9)0.0013 (9)
O70.0107 (11)0.0075 (11)0.0077 (11)0.0004 (9)0.0008 (9)0.0008 (9)
P10.0101 (4)0.0055 (4)0.0064 (4)0.0017 (3)0.0022 (3)0.0014 (3)
P20.0104 (4)0.0049 (4)0.0062 (4)0.0012 (3)0.0014 (3)0.0006 (3)
Cu10.0123 (2)0.0056 (2)0.0063 (2)0.00188 (15)0.00214 (15)0.00108 (15)
Cu20.0109 (3)0.0053 (3)0.0098 (3)0.0012 (2)0.0012 (2)0.0005 (2)
O1W0.0233 (15)0.0366 (17)0.0267 (15)0.0095 (13)0.0093 (12)0.0132 (13)
Geometric parameters (Å, º) top
C1—N21.318 (4)O2—Cu11.936 (2)
C1—N11.329 (4)O3—P11.529 (2)
C1—H10.9300O3—Cu1iii1.962 (2)
C2—C31.343 (5)O4—P21.534 (2)
C2—N11.377 (4)O4—Cu1i2.003 (2)
C2—H20.9300O5—P21.523 (2)
C3—N21.364 (4)O5—Cu11.930 (2)
C3—H30.9300O6—P21.521 (2)
C4—N11.462 (4)O6—Cu21.959 (2)
C4—C51.528 (4)O7—H70.8200
C4—H4A0.9700P2—C5i1.842 (3)
C4—H4B0.9700Cu1—O3iii1.962 (2)
C5—O71.444 (4)Cu1—O4i2.003 (2)
C5—P2i1.842 (3)Cu2—O1i1.950 (2)
C5—P11.857 (3)Cu2—O1iv1.950 (2)
N2—H2A0.8600Cu2—O6v1.959 (2)
O1—P11.519 (2)O1W—H1A0.88 (5)
O1—Cu2ii1.950 (2)O1W—H1B0.87 (2)
O2—P11.530 (2)
N2—C1—N1108.3 (3)P2—O4—Cu1i119.28 (13)
N2—C1—H1125.8P2—O5—Cu1131.88 (14)
N1—C1—H1125.8P2—O6—Cu2136.89 (14)
C3—C2—N1107.0 (3)C5—O7—H7109.5
C3—C2—H2126.5O1—P1—O3111.33 (12)
N1—C2—H2126.5O1—P1—O2112.88 (13)
C2—C3—N2107.0 (3)O3—P1—O2112.51 (12)
C2—C3—H3126.5O1—P1—C5106.82 (13)
N2—C3—H3126.5O3—P1—C5108.50 (14)
N1—C4—C5114.6 (3)O2—P1—C5104.30 (13)
N1—C4—H4A108.6O6—P2—O5109.75 (13)
C5—C4—H4A108.6O6—P2—O4114.99 (13)
N1—C4—H4B108.6O5—P2—O4112.22 (12)
C5—C4—H4B108.6O6—P2—C5i107.03 (13)
H4A—C4—H4B107.6O5—P2—C5i108.36 (14)
O7—C5—C4112.5 (3)O4—P2—C5i104.02 (13)
O7—C5—P2i108.6 (2)O5—Cu1—O2174.89 (9)
C4—C5—P2i114.1 (2)O5—Cu1—O3iii91.03 (9)
O7—C5—P1105.3 (2)O2—Cu1—O3iii91.03 (9)
C4—C5—P1108.5 (2)O5—Cu1—O4i90.70 (9)
P2i—C5—P1107.27 (16)O2—Cu1—O4i88.63 (9)
C1—N1—C2108.3 (3)O3iii—Cu1—O4i163.80 (9)
C1—N1—C4124.8 (3)O1i—Cu2—O1iv180.00 (13)
C2—N1—C4126.7 (3)O1i—Cu2—O692.58 (9)
C1—N2—C3109.3 (3)O1iv—Cu2—O687.42 (9)
C1—N2—H2A125.3O1i—Cu2—O6v87.42 (9)
C3—N2—H2A125.3O1iv—Cu2—O6v92.58 (9)
P1—O1—Cu2ii131.22 (13)O6—Cu2—O6v180.00 (19)
P1—O2—Cu1118.08 (13)H1A—O1W—H1B93 (4)
P1—O3—Cu1iii125.96 (13)
N1—C2—C3—N22.0 (4)P2i—C5—P1—O163.64 (18)
N1—C4—C5—O756.4 (4)O7—C5—P1—O360.7 (2)
N1—C4—C5—P2i67.9 (3)C4—C5—P1—O360.0 (2)
N1—C4—C5—P1172.6 (2)P2i—C5—P1—O3176.24 (13)
N2—C1—N1—C22.1 (4)O7—C5—P1—O259.4 (2)
N2—C1—N1—C4176.7 (3)C4—C5—P1—O2179.9 (2)
C3—C2—N1—C12.5 (4)P2i—C5—P1—O256.12 (17)
C3—C2—N1—C4177.0 (3)Cu2—O6—P2—O5156.45 (19)
C5—C4—N1—C1127.4 (3)Cu2—O6—P2—O475.9 (2)
C5—C4—N1—C258.9 (4)Cu2—O6—P2—C5i39.1 (2)
N1—C1—N2—C30.9 (4)Cu1—O5—P2—O6147.75 (17)
C2—C3—N2—C10.7 (4)Cu1—O5—P2—O418.6 (2)
Cu2ii—O1—P1—O3172.39 (16)Cu1—O5—P2—C5i95.7 (2)
Cu2ii—O1—P1—O260.0 (2)Cu1i—O4—P2—O6115.31 (15)
Cu2ii—O1—P1—C554.1 (2)Cu1i—O4—P2—O5118.31 (14)
Cu1iii—O3—P1—O1118.20 (16)Cu1i—O4—P2—C5i1.40 (18)
Cu1iii—O3—P1—O29.7 (2)P2—O5—Cu1—O3iii156.80 (19)
Cu1iii—O3—P1—C5124.53 (16)P2—O5—Cu1—O4i39.31 (19)
Cu1—O2—P1—O1134.92 (14)P1—O2—Cu1—O3iii124.84 (14)
Cu1—O2—P1—O398.05 (15)P1—O2—Cu1—O4i71.36 (15)
Cu1—O2—P1—C519.34 (18)P2—O6—Cu2—O1i19.3 (2)
O7—C5—P1—O1179.20 (18)P2—O6—Cu2—O1iv160.7 (2)
C4—C5—P1—O160.1 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z1; (iii) x, y2, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6vi0.861.942.771 (4)163
O7—H7···O40.822.162.724 (3)126
O1W—H1A···O3vii0.88 (5)2.09 (3)2.921 (4)157 (5)
O1W—H1B···O2iv0.87 (2)2.13 (4)2.851 (4)140 (4)
Symmetry codes: (iv) x+1, y+1, z+1; (vi) x, y, z1; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu3(C5H7N2O7P2)2(H2O)2]
Mr764.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4167 (9), 8.1502 (10), 9.5228 (12)
α, β, γ (°)104.747 (2), 107.658 (2), 101.484 (2)
V3)506.03 (11)
Z1
Radiation typeMo Kα
µ (mm1)3.54
Crystal size (mm)0.30 × 0.28 × 0.21
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.58, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
2771, 1973, 1729
Rint0.012
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.05
No. of reflections1973
No. of parameters175
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.68

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6i0.861.942.771 (4)163
O7—H7···O40.822.162.724 (3)126
O1W—H1A···O3ii0.88 (5)2.09 (3)2.921 (4)157 (5)
O1W—H1B···O2iii0.87 (2)2.13 (4)2.851 (4)140 (4)
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds