Download citation
Download citation
link to html
In the title compound, [Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2O, the ZnII atom, lying on an inversion center, is coordinated by two N atoms from two N,N′-bis­(pyridin-3-yl­methyl­idene)benzene-1,4-diamine ligands and four water mol­ecules in a distorted octa­hedral geometry. The nitrate anion is disordered over two sets of sites, with an occupancy ratio of 0.744 (4):0.256 (4). The uncoordinated water mol­ecule is also disordered with an occupancy factor of 0.744 (4). O—H...O and O—H...N hydrogen bonds link the complex cations, nitrate anions and uncoordinated water mol­ecules into a supra­molecular layer parallel to (102).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811046915/hy2483sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811046915/hy2483Isup2.hkl
Contains datablock I

CCDC reference: 858171

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in solvent or counterion
  • R factor = 0.046
  • wR factor = 0.141
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT934_ALERT_3_B Number of (Iobs-Icalc)/SigmaW .gt. 10 Outliers . 3
Alert level C PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. ? PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 7 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 7 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 41 PLAT918_ALERT_3_C Reflection(s) # with I(obs) much smaller I(calc) 3 PLAT939_ALERT_3_C Large Value of Not (SHELXL) Weight Optimized S . 80.39
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.03000 Deg. PLAT244_ALERT_4_G Low 'Solvent' Ueq as Compared to Neighbors of N5 PLAT244_ALERT_4_G Low 'Solvent' Ueq as Compared to Neighbors of N5' PLAT302_ALERT_4_G Note: Anion/Solvent Disorder ................... 100 Perc. PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2 N O3 PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 3 N O3 PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 4 H2 O PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms .... !
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 7 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 8 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Bipyridine-type ligands have been extensively investigated in recent years, owing to their simple structures, readily availabilities and predictable formation of network structures. Moreover, when introduced in double Schiff-base, a great deal of metal–organic frameworks with unusual network patterns and novel properties can be achieved due to the specific geometry including the different relative orientation of N-donors and the zigzag conformation of the space moiety between the two terminal coordination groups. For background to the design and syntheses of zinc complexes with Schiff-base and their potential applications as fluorescent probes, see: Su et al. (1999); Ye et al. (2005).

In the title compound (Fig. 1), the ZnII ion lies on an inversion center and is coordinated in a distorted octahedral geometry by two N atoms from two N,N'-bis(3-pyridylmethylene)-p-phenylenediamine (L) ligands in the axial positions and four O atoms of four coordinated water molecules in the equatorial positions. The Zn—O distances are 2.0705 (17) and 2.1691 (19) Å and the Zn—N distance is 2.1462 (19) Å. As shown in Fig. 2, the complex cations, nitrate anions and uncoordinated water molecules are connected by O—H···O hydrogen bonds (Table 1), forming a layer structure.

Related literature top

For background to the design and synthesis of zinc complexes with Schiff-base ligands and their potential applications as fluorescent probes, see: Su et al. (1999); Ye et al. (2005). For the synthesis of the ligand, see: Ye et al. (2004).

Experimental top

The ligand L was prepared according to the previous method (Ye et al., 2004). 1,4-Diaminobenzene (2.14 mg, 10 mmol) was dissolved in methanol (20 ml), followed by addition of 3-pyridinecarboxaldehyde (4.24 mg, 40 mmol). The mixture was stirred at room temperature for 2 h and then filtered. The resulting yellow crystalline solid was washed with methanol several times and dried in air. A solution of Zn(NO3)2 (35.9 mg, 0.2 mmol) in acetonitrile (10 ml) was slowly layered onto a solution of L (117 mg, 0.625 mmol) in methylene chloride (12 ml). Diffusion between the two phases over two weeks produced colorless crystals of the title compound.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The water H atoms were located from difference Fourier maps and refined as riding atoms, with Uiso(H) = 1.5Ueq(O). The nitrate anion is disordered over two sets of sites. The occupancy factors were refined to a ratio of 0.744 (4):0.256 (4). The uncoordinated water molecule is also disordered with an occupancy factor of 0.744 (4).

Structure description top

Bipyridine-type ligands have been extensively investigated in recent years, owing to their simple structures, readily availabilities and predictable formation of network structures. Moreover, when introduced in double Schiff-base, a great deal of metal–organic frameworks with unusual network patterns and novel properties can be achieved due to the specific geometry including the different relative orientation of N-donors and the zigzag conformation of the space moiety between the two terminal coordination groups. For background to the design and syntheses of zinc complexes with Schiff-base and their potential applications as fluorescent probes, see: Su et al. (1999); Ye et al. (2005).

In the title compound (Fig. 1), the ZnII ion lies on an inversion center and is coordinated in a distorted octahedral geometry by two N atoms from two N,N'-bis(3-pyridylmethylene)-p-phenylenediamine (L) ligands in the axial positions and four O atoms of four coordinated water molecules in the equatorial positions. The Zn—O distances are 2.0705 (17) and 2.1691 (19) Å and the Zn—N distance is 2.1462 (19) Å. As shown in Fig. 2, the complex cations, nitrate anions and uncoordinated water molecules are connected by O—H···O hydrogen bonds (Table 1), forming a layer structure.

For background to the design and synthesis of zinc complexes with Schiff-base ligands and their potential applications as fluorescent probes, see: Su et al. (1999); Ye et al. (2005). For the synthesis of the ligand, see: Ye et al. (2004).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, -y, 1 - z.]
[Figure 2] Fig. 2. A view of the layer structure in the title compound. Dashed lines denote hydrogen bonds. H atoms and minor disordered nitrate are omitted for clarity.
Tetraaquabis[N,N'-bis(pyridin-3-ylmethylidene)benzene-1,4- diamine]zinc dinitrate 1.49-hydrate top
Crystal data top
[Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2OZ = 1
Mr = 860.95F(000) = 447
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5664 (17) ÅCell parameters from 3864 reflections
b = 9.928 (2) Åθ = 3.0–27.5°
c = 12.496 (3) ŵ = 0.70 mm1
α = 81.47 (3)°T = 295 K
β = 71.55 (3)°Block, colorless
γ = 78.78 (3)°0.48 × 0.28 × 0.18 mm
V = 984.6 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4462 independent reflections
Radiation source: rotation anode3908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1011
Tmin = 0.731, Tmax = 0.885k = 1212
9721 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0912P)2 + 0.1378P]
where P = (Fo2 + 2Fc2)/3
4462 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2Oγ = 78.78 (3)°
Mr = 860.95V = 984.6 (4) Å3
Triclinic, P1Z = 1
a = 8.5664 (17) ÅMo Kα radiation
b = 9.928 (2) ŵ = 0.70 mm1
c = 12.496 (3) ÅT = 295 K
α = 81.47 (3)°0.48 × 0.28 × 0.18 mm
β = 71.55 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4462 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3908 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.885Rint = 0.019
9721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.14Δρmax = 0.70 e Å3
4462 reflectionsΔρmin = 0.45 e Å3
305 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.00000.50000.03476 (14)
O1W0.4583 (2)0.21267 (19)0.52697 (18)0.0542 (5)
H1A0.53800.27980.53180.081*
H1B0.37190.24830.53250.081*
O2W0.27473 (19)0.06743 (19)0.46591 (14)0.0442 (4)
H2A0.17560.05420.50110.066*
H2B0.27540.14950.43310.066*
N10.3790 (2)0.0222 (2)0.67673 (15)0.0366 (4)
N20.0343 (3)0.2800 (2)0.95880 (17)0.0434 (4)
N30.5097 (3)0.7453 (2)1.10197 (19)0.0440 (5)
N40.9932 (2)0.9640 (2)1.36277 (19)0.0471 (5)
C10.4027 (3)0.0800 (2)0.7552 (2)0.0424 (5)
H10.48030.15750.73190.051*
C20.3184 (3)0.0765 (3)0.8683 (2)0.0483 (6)
H20.33950.14970.92020.058*
C30.2017 (3)0.0377 (3)0.9038 (2)0.0446 (5)
H30.14060.04120.97980.054*
C40.1767 (3)0.1469 (2)0.82479 (19)0.0363 (4)
C50.2690 (3)0.1342 (2)0.71269 (19)0.0375 (5)
H50.25390.20740.65930.045*
C60.0548 (3)0.2709 (2)0.8576 (2)0.0408 (5)
H60.04320.34370.80310.049*
C70.1540 (3)0.3988 (2)0.9907 (2)0.0399 (5)
C80.2182 (3)0.4937 (3)0.9165 (2)0.0458 (5)
H80.18240.48220.83950.055*
C90.3352 (3)0.6051 (3)0.9566 (2)0.0458 (5)
H90.37690.66860.90590.055*
C100.3921 (3)0.6249 (2)1.0708 (2)0.0400 (5)
C110.3289 (3)0.5300 (3)1.1453 (2)0.0474 (6)
H110.36520.54181.22220.057*
C120.2112 (3)0.4169 (3)1.1054 (2)0.0477 (6)
H120.17040.35261.15620.057*
C130.6147 (3)0.7459 (3)1.1989 (2)0.0454 (5)
H130.61360.66761.24990.054*
C140.7385 (3)0.8685 (2)1.2324 (2)0.0391 (5)
C150.7352 (3)0.9931 (3)1.1659 (2)0.0443 (5)
H150.64791.00401.10000.053*
C160.8622 (3)1.1002 (3)1.1987 (3)0.0511 (6)
H160.86231.18491.15540.061*
C170.9892 (3)1.0806 (3)1.2962 (2)0.0473 (6)
H171.07681.15281.31640.057*
C180.8701 (3)0.8603 (3)1.3314 (2)0.0458 (5)
H180.87190.77801.37800.055*
O30.1857 (5)0.6809 (2)0.3557 (3)0.0680 (9)0.744 (4)
O40.3062 (5)0.5772 (4)0.4302 (5)0.1089 (17)0.744 (4)
O50.1009 (5)0.4680 (3)0.3743 (3)0.0796 (10)0.744 (4)
N50.1921 (5)0.5781 (4)0.3878 (3)0.0653 (10)0.744 (4)
O3'0.205 (2)0.352 (3)0.587 (3)0.063 (4)0.256 (4)
O4'0.3410 (16)0.4995 (13)0.4725 (14)0.109 (5)0.256 (4)
O5'0.1218 (17)0.5612 (10)0.5901 (10)0.091 (4)0.256 (4)
N5'0.2171 (12)0.4742 (8)0.5525 (8)0.050 (2)0.256 (4)
O3W0.1962 (15)0.3745 (12)0.5856 (14)0.108 (4)0.744 (4)
H3A0.09880.39610.62590.162*0.744 (4)
H3B0.24400.43590.53610.162*0.744 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02806 (19)0.0387 (2)0.0302 (2)0.00313 (13)0.00152 (13)0.00763 (13)
O1W0.0454 (10)0.0420 (9)0.0700 (13)0.0046 (8)0.0107 (9)0.0064 (8)
O2W0.0275 (7)0.0564 (10)0.0400 (9)0.0010 (7)0.0030 (6)0.0030 (7)
N10.0319 (8)0.0402 (9)0.0307 (9)0.0030 (7)0.0031 (7)0.0066 (7)
N20.0399 (10)0.0426 (10)0.0383 (10)0.0044 (8)0.0015 (8)0.0109 (8)
N30.0373 (10)0.0410 (10)0.0473 (11)0.0046 (8)0.0056 (9)0.0138 (9)
N40.0330 (9)0.0576 (12)0.0448 (11)0.0024 (9)0.0009 (8)0.0164 (10)
C10.0356 (11)0.0429 (11)0.0392 (12)0.0066 (9)0.0045 (9)0.0062 (9)
C20.0481 (13)0.0498 (13)0.0366 (12)0.0048 (11)0.0082 (10)0.0020 (10)
C30.0405 (12)0.0538 (13)0.0302 (11)0.0032 (10)0.0025 (9)0.0065 (10)
C40.0303 (10)0.0408 (11)0.0331 (11)0.0005 (9)0.0035 (8)0.0098 (9)
C50.0334 (10)0.0390 (11)0.0339 (11)0.0023 (9)0.0054 (8)0.0055 (9)
C60.0380 (11)0.0404 (11)0.0372 (11)0.0023 (9)0.0042 (9)0.0094 (9)
C70.0342 (10)0.0392 (11)0.0387 (12)0.0015 (9)0.0017 (9)0.0101 (9)
C80.0437 (12)0.0512 (13)0.0331 (11)0.0026 (11)0.0020 (10)0.0090 (10)
C90.0405 (12)0.0474 (12)0.0414 (13)0.0039 (10)0.0069 (10)0.0049 (10)
C100.0314 (10)0.0376 (11)0.0445 (12)0.0002 (9)0.0028 (9)0.0096 (9)
C110.0468 (13)0.0498 (13)0.0378 (12)0.0052 (11)0.0048 (10)0.0144 (10)
C120.0477 (13)0.0480 (13)0.0368 (12)0.0082 (11)0.0054 (10)0.0082 (10)
C130.0371 (11)0.0412 (12)0.0501 (14)0.0006 (10)0.0048 (10)0.0069 (10)
C140.0297 (10)0.0430 (11)0.0412 (12)0.0007 (9)0.0056 (9)0.0126 (9)
C150.0384 (11)0.0486 (13)0.0405 (12)0.0059 (10)0.0020 (10)0.0104 (10)
C160.0504 (14)0.0402 (12)0.0574 (16)0.0018 (11)0.0100 (12)0.0083 (11)
C170.0357 (11)0.0463 (12)0.0556 (15)0.0028 (10)0.0066 (10)0.0192 (11)
C180.0371 (11)0.0501 (13)0.0424 (13)0.0031 (10)0.0032 (10)0.0040 (10)
O30.117 (3)0.0299 (12)0.0700 (19)0.0042 (14)0.0529 (19)0.0107 (11)
O40.087 (3)0.077 (3)0.184 (5)0.014 (2)0.074 (3)0.039 (3)
O50.096 (2)0.0527 (16)0.082 (2)0.0106 (16)0.031 (2)0.0014 (15)
N50.071 (2)0.056 (2)0.065 (2)0.0079 (17)0.0215 (18)0.0064 (16)
O3'0.046 (6)0.033 (5)0.112 (12)0.003 (5)0.012 (6)0.040 (6)
O4'0.085 (8)0.088 (8)0.147 (12)0.017 (6)0.003 (8)0.055 (8)
O5'0.132 (10)0.050 (5)0.087 (8)0.030 (6)0.022 (7)0.002 (5)
N5'0.067 (6)0.022 (4)0.058 (5)0.013 (4)0.022 (5)0.012 (3)
O3W0.118 (6)0.082 (7)0.137 (6)0.035 (4)0.028 (4)0.043 (5)
Geometric parameters (Å, º) top
Zn1—N12.1462 (19)C8—C91.376 (3)
Zn1—O1W2.1691 (19)C8—H80.9300
Zn1—O2W2.0705 (17)C9—C101.385 (4)
O1W—H1A0.8670C9—H90.9300
O1W—H1B0.8608C10—C111.381 (4)
O2W—H2A0.8497C11—C121.391 (3)
O2W—H2B0.8565C11—H110.9300
N1—C11.335 (3)C12—H120.9300
N1—C51.341 (3)C13—C141.466 (3)
N2—C61.259 (3)C13—H130.9300
N2—C71.418 (3)C14—C151.384 (4)
N3—C131.259 (3)C14—C181.389 (3)
N3—C101.420 (3)C15—C161.372 (3)
N4—C171.321 (4)C15—H150.9300
N4—C181.328 (3)C16—C171.371 (4)
C1—C21.371 (3)C16—H160.9300
C1—H10.9300C17—H170.9300
C2—C31.382 (3)C18—H180.9300
C2—H20.9300O3—N51.167 (4)
C3—C41.386 (3)O4—N51.252 (5)
C3—H30.9300O5—N51.237 (5)
C4—C51.384 (3)O3'—N5'1.32 (3)
C4—C61.468 (3)O4'—N5'1.220 (15)
C5—H50.9300O5'—N5'1.243 (14)
C6—H60.9300O3W—H3A0.8756
C7—C81.383 (4)O3W—H3B0.8812
C7—C121.388 (3)
O2W—Zn1—O2Wi180.0C4—C6—H6119.6
O2W—Zn1—N190.18 (7)C8—C7—C12119.0 (2)
O2Wi—Zn1—N189.82 (7)C8—C7—N2124.7 (2)
O2W—Zn1—N1i89.82 (7)C12—C7—N2116.3 (2)
O2Wi—Zn1—N1i90.18 (7)C9—C8—C7120.0 (2)
N1—Zn1—N1i180.0C9—C8—H8120.0
O2W—Zn1—O1Wi88.56 (8)C7—C8—H8120.0
O2Wi—Zn1—O1Wi91.44 (8)C8—C9—C10121.5 (2)
N1—Zn1—O1Wi90.24 (8)C8—C9—H9119.3
N1i—Zn1—O1Wi89.76 (8)C10—C9—H9119.3
O2W—Zn1—O1W91.44 (8)C11—C10—C9118.7 (2)
O2Wi—Zn1—O1W88.56 (8)C11—C10—N3124.8 (2)
N1—Zn1—O1W89.76 (8)C9—C10—N3116.5 (2)
N1i—Zn1—O1W90.24 (8)C10—C11—C12120.1 (2)
O1Wi—Zn1—O1W180.0C10—C11—H11119.9
Zn1—O1W—H1A120.9C12—C11—H11119.9
Zn1—O1W—H1B131.5C7—C12—C11120.7 (2)
H1A—O1W—H1B107.6C7—C12—H12119.7
Zn1—O2W—H2A133.0C11—C12—H12119.7
Zn1—O2W—H2B108.5N3—C13—C14120.9 (2)
H2A—O2W—H2B110.5N3—C13—H13119.6
C1—N1—C5117.18 (19)C14—C13—H13119.6
C1—N1—Zn1120.75 (15)C15—C14—C18117.5 (2)
C5—N1—Zn1121.93 (15)C15—C14—C13122.4 (2)
C6—N2—C7121.0 (2)C18—C14—C13120.0 (2)
C13—N3—C10120.0 (2)C16—C15—C14119.1 (2)
C17—N4—C18117.9 (2)C16—C15—H15120.4
N1—C1—C2123.4 (2)C14—C15—H15120.4
N1—C1—H1118.3C17—C16—C15119.0 (2)
C2—C1—H1118.3C17—C16—H16120.5
C1—C2—C3118.8 (2)C15—C16—H16120.5
C1—C2—H2120.6N4—C17—C16123.2 (2)
C3—C2—H2120.6N4—C17—H17118.4
C2—C3—C4119.2 (2)C16—C17—H17118.4
C2—C3—H3120.4N4—C18—C14123.3 (2)
C4—C3—H3120.4N4—C18—H18118.4
C5—C4—C3117.6 (2)C14—C18—H18118.4
C5—C4—C6120.7 (2)O3—N5—O5123.6 (4)
C3—C4—C6121.6 (2)O3—N5—O4117.9 (4)
N1—C5—C4123.7 (2)O5—N5—O4118.3 (4)
N1—C5—H5118.2O4'—N5'—O5'118.7 (10)
C4—C5—H5118.2O4'—N5'—O3'112.3 (15)
N2—C6—C4120.8 (2)O5'—N5'—O3'129.0 (15)
N2—C6—H6119.6H3A—O3W—H3B107.9
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4ii0.871.872.725 (4)170
O1W—H1A···O4ii0.872.233.035 (13)154
O1W—H1B···O3W0.862.032.859 (13)161
O1W—H1B···O30.861.822.65 (3)161
O2W—H2A···N4iii0.851.922.706 (3)152
O2W—H2B···O3iv0.861.962.761 (3)155
O3W—H3A···O3v0.882.363.073 (12)139
O3W—H3A···O5v0.882.383.112 (13)142
O3W—H3B···O40.881.952.824 (13)169
Symmetry codes: (ii) x+1, y1, z+1; (iii) x1, y+1, z+2; (iv) x, y+1, z; (v) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2O
Mr860.95
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.5664 (17), 9.928 (2), 12.496 (3)
α, β, γ (°)81.47 (3), 71.55 (3), 78.78 (3)
V3)984.6 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.48 × 0.28 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.731, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
9721, 4462, 3908
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.141, 1.14
No. of reflections4462
No. of parameters305
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.45

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4i0.871.872.725 (4)170
O1W—H1A···O4'i0.872.233.035 (13)154
O1W—H1B···O3W0.862.032.859 (13)161
O1W—H1B···O3'0.861.822.65 (3)161
O2W—H2A···N4ii0.851.922.706 (3)152
O2W—H2B···O3iii0.861.962.761 (3)155
O3W—H3A···O3iv0.882.363.073 (12)139
O3W—H3A···O5iv0.882.383.112 (13)142
O3W—H3B···O40.881.952.824 (13)169
Symmetry codes: (i) x+1, y1, z+1; (ii) x1, y+1, z+2; (iii) x, y+1, z; (iv) x, y1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds