Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813011057/hy2623sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536813011057/hy2623Isup2.hkl |
CCDC reference: 954212
Key indicators
- Single-crystal X-ray study
- T = 153 K
- Mean (C-C) = 0.003 Å
- R factor = 0.018
- wR factor = 0.038
- Data-to-parameter ratio = 14.2
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.1 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT975_ALERT_2_C Positive Residual Density at 0.92A from O10 . 0.45 eA-3 PLAT976_ALERT_2_C Negative Residual Density at 0.96A from N1 . -0.42 eA-3
Alert level G PLAT004_ALERT_5_G Info: Polymeric Structure Found with Dimension . 2 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT007_ALERT_5_G Note: Number of Unrefined D-H Atoms ............ 1 PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ ? PLAT045_ALERT_1_G Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00300 Deg. PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Eu1 -- O4 .. 5.6 su PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.11 Ratio PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 312
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check
A mixture of europium nitrate (0.4 mmol, 0.186 g), 5-hydroxynicotinic acid (0.8 mmol, 0.112 g), ammonium oxalate (0.8 mmol, 0.099 g) and 10 ml water was sealed in a 15 ml Teflon-lined autoclave. Colorless crystals suitable for X-ray analysis were obtained by heating the mixture at 443 K for 70 h and then cooled down to room temperature at a rate of 5 K/h (yield: 45%). Analysis, calculated for C9H9EuNO11: C 23.54, H 1.98, N 3.05%; found: C 23.36, H 2.02, N 3.01%.
C-bound H atoms and H atom on hydroxyl were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(C,O). Other H atoms were located from a difference Fourier map and refined isotropically.
Pyridine-carboxylic derivatives are of resent interest in coordination polymers due to their structural diverity and unique physical properties (Black et al., 2009; Cañadillas-Delgado et al., 2010). Some transition and/or rare earth metal complexes with pyridine-2,5/6-dicarboxylic acid (Sun et al., 2010; Wen et al., 2007) or 2/6-hydroxynicotinic acid (Hu et al., 2007; Xu et al., 2008) have been prepared and documented. Recently, a few coordination polymers from 5-hydroxynicotinic acid are reported, in which the multidentate bridging ligand exhibits versatile coordination modes in constructing transition metal (Yang et al., 2011) and rare earth metal (Zhang et al., 2012) organic frameworks. The research interest in europium(III) coordination polymers with the ligands comes from their luminescent properties (Decadt et al., 2012; Gai et al., 2012; Ramya et al., 2012) and applications (Bunzli, 2010). Here, we report the crystal structure of an europium(III) complex of a pyridine-carboxylic derivative.
The title compound is isostructural with its Tb(III) and Sm(III) analogues (Zhang et al., 2012). As shown in Fig. 1, the asymmetric unit contains an EuIII ion, a 3-H-5-hydroxynicotinate ligand, one and half oxalate ligands and two coordinated water molecules. The EuIII ion is bonded to nine O atoms, one from the 3-H-5-hydroxynicotinate ligand, six from three oxalate ligands and two from the water molecules, exhibiting a highly distorted tricapped trigonal geometry. The EuIII ions are linked by the oxalate ligands into a brickwall-like layer parallel to (001) (Fig. 2), with Eu···Eu distances of 6.1886 (3), 6.2845 (3) and 6.4206 (3) Å. In the compound, the three oxalate ligands are centrosymmetric and bridge metal ions in a side-by-side coordination manner. The layers are stabilized by intralayer O—H···O hydrogen bonds and further linked through interlayer O—H···O hydrogen bonds and π–π interactions between the pyridine rings [centroid–centroid distance = 3.5741 (14) Å] into a three-dimensional supramolecular network.
For background to metal complexes of pyridine-carboxylic derivatives, see: Black et al. (2009); Cañadillas-Delgado et al. (2010); Hu et al. (2007); Sun et al. (2010); Wen et al. (2007); Xu et al. (2008). For structures and properties of coordination polymers with 5-hydroxynicotinic acid, see: Bunzli (2010); Decadt et al. (2012); Gai et al. (2012); Ramya et al. (2012); Yang et al. (2011); Zhang et al. (2012).
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
[Eu2(C6H5NO3)2(C2O4)3(H2O)4] | Z = 1 |
Mr = 918.26 | F(000) = 442 |
Triclinic, P1 | Dx = 2.425 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5912 (2) Å | Cell parameters from 3135 reflections |
b = 8.0973 (3) Å | θ = 2.6–29.4° |
c = 10.6706 (3) Å | µ = 5.05 mm−1 |
α = 103.493 (3)° | T = 153 K |
β = 98.589 (3)° | Block, colorless |
γ = 92.240 (3)° | 0.24 × 0.17 × 0.08 mm |
V = 628.78 (3) Å3 |
Bruker APEXII CCD diffractometer | 3135 independent reflections |
Radiation source: fine-focus sealed tube | 2965 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 29.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.377, Tmax = 0.688 | k = −11→10 |
12455 measured reflections | l = −13→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.038 | w = 1/[σ2(Fo2) + (0.0087P)2 + 0.3669P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.002 |
3135 reflections | Δρmax = 0.55 e Å−3 |
221 parameters | Δρmin = −0.54 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0094 (4) |
[Eu2(C6H5NO3)2(C2O4)3(H2O)4] | γ = 92.240 (3)° |
Mr = 918.26 | V = 628.78 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.5912 (2) Å | Mo Kα radiation |
b = 8.0973 (3) Å | µ = 5.05 mm−1 |
c = 10.6706 (3) Å | T = 153 K |
α = 103.493 (3)° | 0.24 × 0.17 × 0.08 mm |
β = 98.589 (3)° |
Bruker APEXII CCD diffractometer | 3135 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2965 reflections with I > 2σ(I) |
Tmin = 0.377, Tmax = 0.688 | Rint = 0.037 |
12455 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 0 restraints |
wR(F2) = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.55 e Å−3 |
3135 reflections | Δρmin = −0.54 e Å−3 |
221 parameters |
Experimental. IR (cm-1, KBr): 3495(s), 3380(s), 3103(m), 3076(w), 3047(w), 2929(w), 2461(m), 2146(m), 1968(w), 1893(w), 1695(s), 1655(s), 1621(s), 1602(s), 1575(s), 1379(s), 1320(s), 1256(m), 1147(w), 1114(w), 1010(w), 935(w), 880(m), 806(s), 784(s), 667(m), 620(w), 565(w), 531(w), 484(m). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7687 (3) | 0.8846 (3) | 0.9610 (2) | 0.0095 (5) | |
C2 | 0.7420 (3) | 0.7295 (3) | 1.0146 (2) | 0.0094 (5) | |
C3 | 0.7733 (3) | 0.5691 (3) | 0.9454 (2) | 0.0116 (5) | |
H3 | 0.8082 | 0.5552 | 0.8639 | 0.014* | |
C4 | 0.7525 (4) | 0.4283 (3) | 0.9978 (2) | 0.0127 (5) | |
C5 | 0.7046 (4) | 0.4541 (3) | 1.1205 (2) | 0.0132 (5) | |
H5 | 0.6934 | 0.3631 | 1.1590 | 0.016* | |
C6 | 0.6887 (3) | 0.7479 (3) | 1.1353 (2) | 0.0110 (5) | |
H6 | 0.6631 | 0.8540 | 1.1818 | 0.013* | |
C7 | 0.5536 (3) | 1.0035 (3) | 0.4431 (2) | 0.0099 (5) | |
C8 | 1.0255 (3) | 0.5479 (3) | 0.4489 (2) | 0.0084 (5) | |
C9 | 0.4854 (3) | 0.4971 (3) | 0.5697 (2) | 0.0101 (5) | |
Eu1 | 0.797021 (16) | 0.810935 (14) | 0.626500 (11) | 0.00700 (5) | |
N1 | 0.6745 (3) | 0.6119 (3) | 1.1836 (2) | 0.0112 (4) | |
O1 | 0.8197 (2) | 0.8624 (2) | 0.85299 (16) | 0.0118 (4) | |
O2 | 0.7395 (3) | 1.0258 (2) | 1.03073 (16) | 0.0141 (4) | |
O3 | 0.7803 (3) | 0.2743 (2) | 0.92694 (18) | 0.0225 (5) | |
H3A | 0.7713 | 0.2035 | 0.9698 | 0.034* | |
O4 | 0.7120 (2) | 0.9644 (2) | 0.45635 (16) | 0.0117 (4) | |
O5 | 0.5274 (2) | 0.9519 (2) | 0.65247 (17) | 0.0138 (4) | |
O6 | 0.9752 (2) | 0.6961 (2) | 0.45804 (16) | 0.0103 (3) | |
O7 | 0.8889 (2) | 0.5283 (2) | 0.63432 (17) | 0.0120 (4) | |
O8 | 0.5549 (2) | 0.6147 (2) | 0.66268 (16) | 0.0117 (4) | |
O9 | 0.6111 (2) | 0.6314 (2) | 0.42511 (16) | 0.0138 (4) | |
O10 | 1.1269 (2) | 0.8348 (2) | 0.70926 (19) | 0.0138 (4) | |
O11 | 0.9123 (3) | 1.1139 (2) | 0.7043 (2) | 0.0161 (4) | |
H1 | 0.645 (4) | 0.622 (4) | 1.257 (3) | 0.025 (9)* | |
H7 | 1.179 (5) | 0.876 (4) | 0.667 (4) | 0.032 (11)* | |
H8 | 1.168 (5) | 0.893 (4) | 0.794 (4) | 0.038 (10)* | |
H9 | 0.937 (5) | 1.181 (5) | 0.654 (4) | 0.050 (12)* | |
H10 | 0.874 (5) | 1.164 (4) | 0.760 (4) | 0.027 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0109 (12) | 0.0101 (11) | 0.0078 (12) | −0.0005 (9) | 0.0008 (9) | 0.0036 (9) |
C2 | 0.0096 (12) | 0.0113 (11) | 0.0076 (12) | −0.0008 (9) | 0.0007 (9) | 0.0037 (9) |
C3 | 0.0162 (13) | 0.0124 (12) | 0.0073 (12) | 0.0010 (10) | 0.0041 (9) | 0.0035 (9) |
C4 | 0.0177 (13) | 0.0096 (12) | 0.0118 (13) | 0.0024 (10) | 0.0037 (10) | 0.0034 (9) |
C5 | 0.0191 (14) | 0.0104 (12) | 0.0127 (13) | 0.0025 (10) | 0.0051 (10) | 0.0060 (9) |
C6 | 0.0151 (13) | 0.0080 (11) | 0.0101 (12) | −0.0007 (10) | 0.0036 (9) | 0.0015 (9) |
C7 | 0.0127 (12) | 0.0076 (11) | 0.0106 (12) | 0.0009 (9) | 0.0053 (9) | 0.0025 (9) |
C8 | 0.0074 (12) | 0.0105 (11) | 0.0078 (11) | 0.0007 (9) | 0.0009 (9) | 0.0030 (9) |
C9 | 0.0080 (12) | 0.0138 (12) | 0.0103 (13) | 0.0028 (10) | 0.0037 (9) | 0.0045 (9) |
Eu1 | 0.00918 (8) | 0.00665 (7) | 0.00609 (7) | 0.00141 (4) | 0.00295 (4) | 0.00217 (4) |
N1 | 0.0159 (11) | 0.0124 (10) | 0.0056 (10) | −0.0002 (9) | 0.0039 (8) | 0.0014 (8) |
O1 | 0.0162 (9) | 0.0119 (8) | 0.0077 (9) | −0.0008 (7) | 0.0031 (7) | 0.0027 (6) |
O2 | 0.0256 (10) | 0.0077 (8) | 0.0102 (9) | 0.0014 (7) | 0.0067 (7) | 0.0019 (7) |
O3 | 0.0487 (14) | 0.0073 (9) | 0.0173 (10) | 0.0068 (9) | 0.0196 (9) | 0.0049 (7) |
O4 | 0.0101 (9) | 0.0144 (9) | 0.0126 (9) | 0.0033 (7) | 0.0047 (7) | 0.0052 (7) |
O5 | 0.0154 (9) | 0.0194 (9) | 0.0107 (9) | 0.0078 (7) | 0.0051 (7) | 0.0088 (7) |
O6 | 0.0128 (9) | 0.0080 (8) | 0.0129 (9) | 0.0032 (7) | 0.0067 (7) | 0.0049 (6) |
O7 | 0.0170 (9) | 0.0095 (8) | 0.0131 (9) | 0.0045 (7) | 0.0096 (7) | 0.0047 (7) |
O8 | 0.0125 (9) | 0.0142 (9) | 0.0082 (9) | −0.0020 (7) | 0.0027 (7) | 0.0020 (7) |
O9 | 0.0173 (10) | 0.0148 (9) | 0.0098 (9) | −0.0066 (7) | 0.0049 (7) | 0.0038 (7) |
O10 | 0.0118 (9) | 0.0165 (9) | 0.0123 (10) | −0.0015 (8) | 0.0031 (7) | 0.0016 (8) |
O11 | 0.0274 (12) | 0.0109 (9) | 0.0122 (10) | 0.0002 (8) | 0.0090 (8) | 0.0035 (8) |
C1—O1 | 1.246 (3) | C9—O9iii | 1.266 (3) |
C1—O2 | 1.258 (3) | C9—C9iii | 1.546 (5) |
C1—C2 | 1.515 (3) | Eu1—O1 | 2.3333 (16) |
C2—C6 | 1.384 (3) | Eu1—O5 | 2.4025 (18) |
C2—C3 | 1.385 (3) | Eu1—O7 | 2.4348 (16) |
C3—C4 | 1.395 (3) | Eu1—O6 | 2.4433 (17) |
C3—H3 | 0.9300 | Eu1—O4 | 2.4539 (17) |
C4—O3 | 1.341 (3) | Eu1—O11 | 2.4776 (18) |
C4—C5 | 1.383 (3) | Eu1—O9 | 2.4899 (17) |
C5—N1 | 1.344 (3) | Eu1—O10 | 2.5118 (19) |
C5—H5 | 0.9300 | Eu1—O8 | 2.5142 (16) |
C6—N1 | 1.328 (3) | N1—H1 | 0.83 (3) |
C6—H6 | 0.9300 | O3—H3A | 0.8200 |
C7—O5i | 1.246 (3) | O5—C7i | 1.246 (3) |
C7—O4 | 1.252 (3) | O7—C8ii | 1.241 (3) |
C7—C7i | 1.569 (5) | O9—C9iii | 1.266 (3) |
C8—O7ii | 1.241 (3) | O10—H7 | 0.76 (4) |
C8—O6 | 1.260 (3) | O10—H8 | 0.92 (4) |
C8—C8ii | 1.562 (5) | O11—H9 | 0.89 (4) |
C9—O8 | 1.238 (3) | O11—H10 | 0.74 (4) |
O1—C1—O2 | 125.5 (2) | O1—Eu1—O8 | 75.12 (6) |
O1—C1—C2 | 117.7 (2) | O5—Eu1—O8 | 68.60 (6) |
O2—C1—C2 | 116.8 (2) | O7—Eu1—O8 | 66.05 (6) |
C6—C2—C3 | 119.3 (2) | O6—Eu1—O8 | 117.53 (5) |
C6—C2—C1 | 119.8 (2) | O4—Eu1—O8 | 115.81 (6) |
C3—C2—C1 | 120.9 (2) | O11—Eu1—O8 | 138.86 (6) |
C2—C3—C4 | 120.1 (2) | O9—Eu1—O8 | 64.36 (5) |
C2—C3—H3 | 119.9 | O10—Eu1—O8 | 129.19 (6) |
C4—C3—H3 | 119.9 | O1—Eu1—C7i | 100.78 (6) |
O3—C4—C5 | 123.0 (2) | O5—Eu1—C7i | 20.20 (6) |
O3—C4—C3 | 118.5 (2) | O7—Eu1—C7i | 140.16 (6) |
C5—C4—C3 | 118.5 (2) | O6—Eu1—C7i | 120.37 (6) |
N1—C5—C4 | 119.3 (2) | O4—Eu1—C7i | 48.67 (6) |
N1—C5—H5 | 120.4 | O11—Eu1—C7i | 78.99 (6) |
C4—C5—H5 | 120.4 | O9—Eu1—C7i | 70.91 (6) |
N1—C6—C2 | 119.0 (2) | O10—Eu1—C7i | 148.31 (6) |
N1—C6—H6 | 120.5 | O8—Eu1—C7i | 77.75 (6) |
C2—C6—H6 | 120.5 | O1—Eu1—C7 | 125.61 (6) |
O5i—C7—O4 | 125.9 (2) | O5—Eu1—C7 | 48.20 (6) |
O5i—C7—C7i | 116.6 (3) | O7—Eu1—C7 | 141.25 (6) |
O4—C7—C7i | 117.5 (3) | O6—Eu1—C7 | 93.32 (6) |
O7ii—C8—O6 | 125.7 (2) | O4—Eu1—C7 | 20.65 (6) |
O7ii—C8—C8ii | 117.4 (3) | O11—Eu1—C7 | 75.30 (6) |
O6—C8—C8ii | 116.9 (3) | O9—Eu1—C7 | 62.82 (6) |
O8—C9—O9iii | 126.9 (2) | O10—Eu1—C7 | 132.68 (6) |
O8—C9—C9iii | 118.7 (3) | O8—Eu1—C7 | 98.11 (6) |
O9iii—C9—C9iii | 114.4 (3) | C7i—Eu1—C7 | 28.45 (8) |
O1—Eu1—O5 | 80.96 (6) | O1—Eu1—C8ii | 102.84 (6) |
O1—Eu1—O7 | 85.97 (6) | O5—Eu1—C8ii | 146.68 (6) |
O5—Eu1—O7 | 134.62 (6) | O7—Eu1—C8ii | 19.51 (6) |
O1—Eu1—O6 | 138.32 (6) | O6—Eu1—C8ii | 47.81 (6) |
O5—Eu1—O6 | 140.49 (6) | O4—Eu1—C8ii | 119.19 (6) |
O7—Eu1—O6 | 67.29 (5) | O11—Eu1—C8ii | 135.25 (6) |
O1—Eu1—O4 | 137.52 (6) | O9—Eu1—C8ii | 71.90 (6) |
O5—Eu1—O4 | 67.69 (6) | O10—Eu1—C8ii | 67.29 (6) |
O7—Eu1—O4 | 136.49 (6) | O8—Eu1—C8ii | 80.29 (6) |
O6—Eu1—O4 | 75.83 (6) | C7i—Eu1—C8ii | 142.17 (6) |
O1—Eu1—O11 | 76.53 (6) | C7—Eu1—C8ii | 129.65 (6) |
O5—Eu1—O11 | 78.03 (7) | C6—N1—C5 | 123.8 (2) |
O7—Eu1—O11 | 140.07 (7) | C6—N1—H1 | 120 (2) |
O6—Eu1—O11 | 103.48 (6) | C5—N1—H1 | 116 (2) |
O4—Eu1—O11 | 69.67 (6) | C1—O1—Eu1 | 158.00 (17) |
O1—Eu1—O9 | 139.48 (6) | C4—O3—H3A | 109.5 |
O5—Eu1—O9 | 83.77 (6) | C7—O4—Eu1 | 115.60 (15) |
O7—Eu1—O9 | 78.60 (6) | C7i—O5—Eu1 | 118.04 (15) |
O6—Eu1—O9 | 67.69 (6) | C8—O6—Eu1 | 118.79 (14) |
O4—Eu1—O9 | 66.30 (6) | C8ii—O7—Eu1 | 119.54 (15) |
O11—Eu1—O9 | 135.93 (6) | C9—O8—Eu1 | 118.26 (15) |
O1—Eu1—O10 | 75.35 (6) | C9iii—O9—Eu1 | 120.53 (15) |
O5—Eu1—O10 | 143.27 (6) | Eu1—O10—H7 | 111 (3) |
O7—Eu1—O10 | 71.49 (6) | Eu1—O10—H8 | 119 (2) |
O6—Eu1—O10 | 66.30 (6) | H7—O10—H8 | 105 (3) |
O4—Eu1—O10 | 113.98 (6) | Eu1—O11—H9 | 125 (3) |
O11—Eu1—O10 | 69.47 (7) | Eu1—O11—H10 | 116 (3) |
O9—Eu1—O10 | 131.87 (6) | H9—O11—H10 | 109 (4) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O9iv | 0.83 (3) | 1.84 (3) | 2.662 (3) | 172 (3) |
O3—H3A···O2v | 0.82 | 1.73 | 2.543 (2) | 169 |
O10—H7···O4vi | 0.76 (4) | 2.26 (4) | 3.016 (2) | 168 (4) |
O10—H8···O2vii | 0.92 (4) | 1.85 (4) | 2.759 (3) | 170 (3) |
O11—H9···O6vi | 0.88 (4) | 1.90 (4) | 2.771 (3) | 170 (4) |
O11—H10···O3viii | 0.74 (4) | 2.04 (4) | 2.776 (3) | 172 (4) |
Symmetry codes: (iv) x, y, z+1; (v) x, y−1, z; (vi) −x+2, −y+2, −z+1; (vii) −x+2, −y+2, −z+2; (viii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Eu2(C6H5NO3)2(C2O4)3(H2O)4] |
Mr | 918.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 153 |
a, b, c (Å) | 7.5912 (2), 8.0973 (3), 10.6706 (3) |
α, β, γ (°) | 103.493 (3), 98.589 (3), 92.240 (3) |
V (Å3) | 628.78 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 5.05 |
Crystal size (mm) | 0.24 × 0.17 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.377, 0.688 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12455, 3135, 2965 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.038, 1.09 |
No. of reflections | 3135 |
No. of parameters | 221 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.55, −0.54 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O9i | 0.83 (3) | 1.84 (3) | 2.662 (3) | 172 (3) |
O3—H3A···O2ii | 0.82 | 1.73 | 2.543 (2) | 169 |
O10—H7···O4iii | 0.76 (4) | 2.26 (4) | 3.016 (2) | 168 (4) |
O10—H8···O2iv | 0.92 (4) | 1.85 (4) | 2.759 (3) | 170 (3) |
O11—H9···O6iii | 0.88 (4) | 1.90 (4) | 2.771 (3) | 170 (4) |
O11—H10···O3v | 0.74 (4) | 2.04 (4) | 2.776 (3) | 172 (4) |
Symmetry codes: (i) x, y, z+1; (ii) x, y−1, z; (iii) −x+2, −y+2, −z+1; (iv) −x+2, −y+2, −z+2; (v) x, y+1, z. |
Pyridine-carboxylic derivatives are of resent interest in coordination polymers due to their structural diverity and unique physical properties (Black et al., 2009; Cañadillas-Delgado et al., 2010). Some transition and/or rare earth metal complexes with pyridine-2,5/6-dicarboxylic acid (Sun et al., 2010; Wen et al., 2007) or 2/6-hydroxynicotinic acid (Hu et al., 2007; Xu et al., 2008) have been prepared and documented. Recently, a few coordination polymers from 5-hydroxynicotinic acid are reported, in which the multidentate bridging ligand exhibits versatile coordination modes in constructing transition metal (Yang et al., 2011) and rare earth metal (Zhang et al., 2012) organic frameworks. The research interest in europium(III) coordination polymers with the ligands comes from their luminescent properties (Decadt et al., 2012; Gai et al., 2012; Ramya et al., 2012) and applications (Bunzli, 2010). Here, we report the crystal structure of an europium(III) complex of a pyridine-carboxylic derivative.
The title compound is isostructural with its Tb(III) and Sm(III) analogues (Zhang et al., 2012). As shown in Fig. 1, the asymmetric unit contains an EuIII ion, a 3-H-5-hydroxynicotinate ligand, one and half oxalate ligands and two coordinated water molecules. The EuIII ion is bonded to nine O atoms, one from the 3-H-5-hydroxynicotinate ligand, six from three oxalate ligands and two from the water molecules, exhibiting a highly distorted tricapped trigonal geometry. The EuIII ions are linked by the oxalate ligands into a brickwall-like layer parallel to (001) (Fig. 2), with Eu···Eu distances of 6.1886 (3), 6.2845 (3) and 6.4206 (3) Å. In the compound, the three oxalate ligands are centrosymmetric and bridge metal ions in a side-by-side coordination manner. The layers are stabilized by intralayer O—H···O hydrogen bonds and further linked through interlayer O—H···O hydrogen bonds and π–π interactions between the pyridine rings [centroid–centroid distance = 3.5741 (14) Å] into a three-dimensional supramolecular network.