Download citation
Download citation
link to html
In the title coordination polymer, {[Ba(C7H2N2O7)(H2O)2]·H2O}n, the BaII atom is ten-coordinated by seven O atoms from four 3,5-dinitro­salicylatate ligands, two μ2-bridging aqua ligands and one water mol­ecule. The coordination mode is best described as a bicapped square-anti­prismatic geometry. The 3,5-dinitrosalicylatate ligands bridge three Ba atoms. Centrosymmetrically related dinuclear barium units, with a Ba...Ba separation of 4.767 (5) Å, form infinite chains, which are further self-assembled into a supra­molecular network through inter­molecular O—H...O hydrogen-bonding inter­actions between O atoms of 3,5-dinitro­salicylatate ligands and water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808006338/im2052sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808006338/im2052Isup2.hkl
Contains datablock I

CCDC reference: 684434

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.026
  • wR factor = 0.068
  • Data-to-parameter ratio = 11.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT420_ALERT_2_B D-H Without Acceptor O2W - H3W ... ?
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.75 Ratio PLAT480_ALERT_4_C Long H...A H-Bond Reported H4W .. N1 .. 2.69 Ang. PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.35 Ratio
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 9
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the structural investigation of 3,5-dinitrosalicylatato complexes, it has been found that the 3,5-dinitrosalicylatato moiety functions as a multidentate ligand (Song et al., 2007) with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ba complex obtained by the reaction of 3,5-dinitrosalicylic acid and barium chloride in alkaline aqueous solution.

As illustrated in Figure 1, the BaII atom displays a bicapped square antiprismatic coordination environment, defined by seven O atoms from four 3,5-dinitrosalicylatato ligands, two µ2-bridging aqua ligands and one water molecule. The 3,5-dinitrosalicylatato ligands link barium ions to form infinite chains, which are further self-assembled into a supramolecular network through intermolecular O—H···O hydrogen bonding interactions (Table 1) involving the uncoordinating water molecules, coordinating water molecules as donors and O atoms of 3,5-dinitrosalicylatato ligands as acceptors (Fig. 2).

Related literature top

For related literature, see: Song et al. (2007).

Experimental top

A mixture of barium chloride (1 mmol), 3,5-dinitrosalicylic acid (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The obtained crystals obtained were washed with water and dryed in air.

Refinement top

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.39 Å, each within a standard deviation of 0.01 Å, and with Uiso(H) = 1.5 Ueq(O)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of the title compound. The intermolecluar hydrogen bonds are shown as dashed lines.
Poly[[µ2-aqua-aqua(µ3-3,5-dinitrosalicylato)barium(II)] monohydrate] top
Crystal data top
[Ba(C7H2N2O7)(H2O)2]·H2OF(000) = 800
Mr = 417.49Dx = 2.246 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5837 reflections
a = 11.9649 (6) Åθ = 2.8–27.9°
b = 4.1866 (2) ŵ = 3.27 mm1
c = 26.121 (1) ÅT = 296 K
β = 109.332 (3)°Block, yellow
V = 1234.7 (1) Å30.30 × 0.26 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2374 independent reflections
Radiation source: fine-focus sealed tube2189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.392, Tmax = 0.472k = 44
8615 measured reflectionsl = 3132
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0339P)2 + 1.4739P]
where P = (Fo2 + 2Fc2)/3
2374 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 1.03 e Å3
9 restraintsΔρmin = 1.30 e Å3
Crystal data top
[Ba(C7H2N2O7)(H2O)2]·H2OV = 1234.7 (1) Å3
Mr = 417.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9649 (6) ŵ = 3.27 mm1
b = 4.1866 (2) ÅT = 296 K
c = 26.121 (1) Å0.30 × 0.26 × 0.23 mm
β = 109.332 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
2374 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2189 reflections with I > 2σ(I)
Tmin = 0.392, Tmax = 0.472Rint = 0.041
8615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0269 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.03 e Å3
2374 reflectionsΔρmin = 1.30 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.698106 (16)0.59849 (4)0.002749 (8)0.01250 (10)
O10.7177 (2)0.1028 (5)0.06998 (10)0.0150 (5)
O20.5320 (2)0.3574 (6)0.05297 (11)0.0211 (6)
O30.4012 (2)0.0694 (6)0.07602 (11)0.0190 (6)
O40.5934 (3)0.0066 (8)0.28282 (12)0.0311 (7)
O50.7491 (3)0.3054 (8)0.31157 (12)0.0359 (7)
O60.9954 (3)0.3764 (8)0.19294 (14)0.0416 (9)
O70.8915 (2)0.5460 (7)0.11347 (12)0.0251 (6)
N10.6755 (3)0.1544 (8)0.27501 (14)0.0245 (7)
N20.9007 (3)0.4015 (7)0.15565 (14)0.0205 (7)
C10.5067 (3)0.1530 (8)0.08248 (14)0.0116 (7)
C20.6052 (3)0.0051 (9)0.12815 (14)0.0129 (7)
C30.5950 (3)0.0128 (9)0.17862 (15)0.0167 (7)
H30.52700.06290.18440.020*
C40.6874 (3)0.1461 (9)0.22201 (15)0.0178 (8)
C50.7878 (3)0.2691 (9)0.21433 (15)0.0191 (8)
H50.84880.35520.24310.023*
C60.7951 (3)0.2603 (9)0.16271 (14)0.0158 (7)
C70.7074 (3)0.1200 (8)0.11687 (15)0.0146 (8)
O1W0.8608 (2)0.1295 (6)0.00092 (12)0.0205 (6)
H2W0.922 (2)0.101 (10)0.0272 (9)0.031*
H1W0.881 (3)0.137 (10)0.0265 (9)0.031*
O2W0.7483 (2)0.6467 (6)0.09980 (12)0.0223 (6)
H3W0.688 (2)0.758 (8)0.1068 (17)0.033*
H4W0.732 (3)0.484 (6)0.1189 (16)0.033*
O3W0.0565 (2)0.9715 (8)0.08622 (12)0.0255 (6)
H5W0.110 (3)1.093 (8)0.1033 (15)0.038*
H6W0.047 (4)0.837 (8)0.1074 (13)0.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01402 (13)0.01055 (14)0.01455 (15)0.00009 (7)0.00690 (10)0.00038 (8)
O10.0191 (13)0.0156 (14)0.0133 (13)0.0010 (9)0.0091 (11)0.0007 (10)
O20.0199 (13)0.0222 (15)0.0235 (15)0.0031 (10)0.0105 (12)0.0089 (11)
O30.0142 (12)0.0185 (15)0.0238 (15)0.0005 (10)0.0055 (11)0.0015 (11)
O40.0331 (16)0.0413 (17)0.0244 (16)0.0037 (14)0.0167 (13)0.0019 (15)
O50.0411 (18)0.0464 (19)0.0186 (16)0.0102 (15)0.0077 (14)0.0100 (15)
O60.0227 (16)0.066 (3)0.033 (2)0.0138 (14)0.0056 (15)0.0021 (16)
O70.0248 (14)0.0226 (15)0.0300 (17)0.0044 (11)0.0117 (12)0.0052 (13)
N10.0296 (18)0.0263 (18)0.0184 (18)0.0037 (14)0.0089 (15)0.0003 (14)
N20.0151 (15)0.0223 (19)0.0230 (19)0.0046 (12)0.0049 (14)0.0040 (14)
C10.0132 (16)0.0130 (18)0.0082 (17)0.0010 (13)0.0030 (14)0.0023 (13)
C20.0163 (16)0.0102 (17)0.0128 (18)0.0025 (14)0.0056 (14)0.0018 (14)
C30.0178 (17)0.0153 (18)0.0178 (19)0.0006 (15)0.0071 (15)0.0015 (16)
C40.0214 (18)0.021 (2)0.0116 (18)0.0022 (14)0.0060 (15)0.0015 (15)
C50.0190 (17)0.018 (2)0.0166 (19)0.0003 (15)0.0013 (15)0.0030 (16)
C60.0129 (16)0.016 (2)0.0181 (19)0.0012 (14)0.0042 (14)0.0002 (15)
C70.0184 (18)0.0121 (19)0.0146 (19)0.0044 (13)0.0074 (15)0.0040 (13)
O1W0.0156 (13)0.0291 (16)0.0186 (15)0.0036 (10)0.0079 (11)0.0005 (12)
O2W0.0290 (15)0.0188 (15)0.0222 (15)0.0010 (11)0.0126 (13)0.0019 (11)
O3W0.0206 (14)0.0334 (17)0.0235 (16)0.0020 (12)0.0086 (12)0.0046 (13)
Geometric parameters (Å, º) top
Ba1—O12.678 (2)O5—N11.237 (4)
Ba1—O1i2.706 (2)O6—N21.230 (5)
Ba1—O2i2.726 (3)O7—N21.230 (4)
Ba1—O1W2.777 (3)N1—C41.438 (5)
Ba1—O3ii2.813 (3)N2—C61.462 (4)
Ba1—O2iii2.840 (3)C1—C21.505 (5)
Ba1—O2W2.940 (3)C1—Ba1iii3.290 (3)
Ba1—O1Wi2.966 (3)C2—C31.366 (5)
Ba1—O3iii2.989 (3)C2—C71.447 (5)
Ba1—O73.056 (3)C3—C41.410 (5)
Ba1—C1iii3.290 (3)C3—H30.9300
Ba1—Ba1i4.1866 (2)C4—C51.382 (5)
Ba1—H3W2.90 (5)C5—C61.380 (5)
O1—C71.273 (4)C5—H50.9300
O1—Ba1iv2.706 (2)C6—C71.431 (5)
O2—C11.254 (4)O1W—Ba1iv2.966 (3)
O2—Ba1iv2.726 (3)O1W—H2W0.83 (4)
O2—Ba1iii2.840 (3)O1W—H1W0.83 (4)
O3—C11.266 (4)O2W—H3W0.83 (4)
O3—Ba1ii2.813 (3)O2W—H4W0.83 (4)
O3—Ba1iii2.989 (3)O3W—H5W0.82 (4)
O4—N11.233 (4)O3W—H6W0.83 (4)
O1—Ba1—O1i102.07 (8)O7—Ba1—Ba1i94.12 (5)
O1—Ba1—O2i69.92 (8)C1iii—Ba1—Ba1i124.53 (6)
O1i—Ba1—O2i63.59 (7)O1—Ba1—H3W142.3 (6)
O1—Ba1—O1W63.49 (7)O1i—Ba1—H3W115.3 (6)
O1i—Ba1—O1W130.70 (8)O2i—Ba1—H3W131.3 (3)
O2i—Ba1—O1W133.10 (8)O1W—Ba1—H3W86.9 (3)
O1—Ba1—O3ii161.23 (8)O3ii—Ba1—H3W41.2 (3)
O1i—Ba1—O3ii81.53 (7)O2iii—Ba1—H3W81.9 (7)
O2i—Ba1—O3ii96.08 (8)O2W—Ba1—H3W16.3 (6)
O1W—Ba1—O3ii127.72 (8)O1Wi—Ba1—H3W68.0 (7)
O1—Ba1—O2iii85.43 (8)O3iii—Ba1—H3W67.3 (7)
O1i—Ba1—O2iii118.10 (7)O7—Ba1—H3W136.2 (6)
O2i—Ba1—O2iii62.17 (9)C1iii—Ba1—H3W71.6 (7)
O1W—Ba1—O2iii107.83 (7)Ba1i—Ba1—H3W76.7 (6)
O3ii—Ba1—O2iii76.78 (8)C7—O1—Ba1124.9 (2)
O1—Ba1—O2W130.60 (7)C7—O1—Ba1iv130.8 (2)
O1i—Ba1—O2W122.52 (7)Ba1—O1—Ba1iv102.07 (8)
O2i—Ba1—O2W146.64 (8)C1—O2—Ba1iv134.8 (2)
O1W—Ba1—O2W71.15 (8)C1—O2—Ba1iii99.6 (2)
O3ii—Ba1—O2W56.60 (7)Ba1iv—O2—Ba1iii117.83 (9)
O2iii—Ba1—O2W90.76 (8)C1—O3—Ba1ii116.9 (2)
O1—Ba1—O1Wi132.52 (7)C1—O3—Ba1iii92.2 (2)
O1i—Ba1—O1Wi60.61 (7)Ba1ii—O3—Ba1iii92.33 (8)
O2i—Ba1—O1Wi122.95 (7)N2—O7—Ba1134.3 (2)
O1W—Ba1—O1Wi93.55 (7)O4—N1—O5122.1 (3)
O3ii—Ba1—O1Wi65.38 (7)O4—N1—C4119.0 (3)
O2iii—Ba1—O1Wi142.04 (8)O5—N1—C4118.9 (3)
O2W—Ba1—O1Wi66.46 (8)O7—N2—O6122.5 (3)
O1—Ba1—O3iii78.80 (7)O7—N2—C6119.2 (3)
O1i—Ba1—O3iii162.60 (7)O6—N2—C6118.3 (3)
O2i—Ba1—O3iii101.22 (7)O2—C1—O3122.7 (3)
O1W—Ba1—O3iii65.50 (7)O2—C1—C2118.9 (3)
O3ii—Ba1—O3iii92.33 (8)O3—C1—C2118.5 (3)
O2iii—Ba1—O3iii44.50 (7)O2—C1—Ba1iii58.32 (18)
O2W—Ba1—O3iii65.05 (7)O3—C1—Ba1iii65.18 (18)
O1Wi—Ba1—O3iii131.14 (7)C2—C1—Ba1iii169.1 (2)
O1—Ba1—O756.58 (7)C3—C2—C7121.9 (3)
O1i—Ba1—O764.28 (8)C3—C2—C1119.4 (3)
O2i—Ba1—O789.64 (8)C7—C2—C1118.7 (3)
O1W—Ba1—O769.50 (8)C2—C3—C4120.0 (3)
O3ii—Ba1—O7138.31 (7)C2—C3—H3120.0
O2iii—Ba1—O7139.60 (8)C4—C3—H3120.0
O2W—Ba1—O7123.25 (7)C5—C4—C3121.3 (3)
O1Wi—Ba1—O776.92 (7)C5—C4—N1119.9 (3)
O3iii—Ba1—O7127.03 (7)C3—C4—N1118.8 (3)
O1—Ba1—C1iii83.60 (8)C6—C5—C4118.1 (3)
O1i—Ba1—C1iii140.04 (8)C6—C5—H5121.0
O2i—Ba1—C1iii82.29 (8)C4—C5—H5121.0
O1W—Ba1—C1iii87.53 (8)C5—C6—C7124.2 (3)
O3ii—Ba1—C1iii82.12 (8)C5—C6—N2116.7 (3)
O2iii—Ba1—C1iii22.07 (8)C7—C6—N2119.1 (3)
O2W—Ba1—C1iii75.72 (8)O1—C7—C6123.4 (3)
O1Wi—Ba1—C1iii139.44 (8)O1—C7—C2122.2 (3)
O3iii—Ba1—C1iii22.61 (8)C6—C7—C2114.4 (3)
O7—Ba1—C1iii139.53 (8)Ba1—O1W—Ba1iv93.55 (7)
O1—Ba1—Ba1i140.79 (5)Ba1—O1W—H2W121 (3)
O1i—Ba1—Ba1i38.72 (5)Ba1iv—O1W—H2W107 (3)
O2i—Ba1—Ba1i86.11 (5)Ba1—O1W—H1W113 (3)
O1W—Ba1—Ba1i135.00 (5)Ba1iv—O1W—H1W115 (3)
O3ii—Ba1—Ba1i45.50 (5)H2W—O1W—H1W106.4 (17)
O2iii—Ba1—Ba1i110.82 (5)Ba1—O2W—H3W79 (3)
O2W—Ba1—Ba1i86.06 (5)Ba1—O2W—H4W114 (4)
O1Wi—Ba1—Ba1i41.45 (5)H3W—O2W—H4W108 (4)
O3iii—Ba1—Ba1i137.83 (5)H5W—O3W—H6W108 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H6W···O7v0.82 (3)2.27 (3)2.916 (4)135 (4)
O3W—H5W···O5vi0.82 (4)2.60 (4)2.985 (4)110 (3)
O3W—H5W···O2Wvii0.82 (4)2.04 (3)2.755 (4)145 (4)
O2W—H4W···N1viii0.83 (3)2.69 (4)3.340 (4)137 (4)
O2W—H4W···O4viii0.83 (3)2.55 (4)3.080 (4)123 (3)
O2W—H4W···O5viii0.83 (3)2.25 (3)2.993 (4)150 (5)
O2W—H3W···O3ii0.83 (3)2.01 (2)2.730 (4)145 (4)
O1W—H1W···O3Wii0.83 (3)1.99 (2)2.798 (4)164 (4)
O1W—H2W···O3Wix0.83 (3)1.90 (3)2.725 (4)171 (4)
Symmetry codes: (ii) x+1, y+1, z; (v) x1, y, z; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y+2, z; (viii) x, y+1/2, z1/2; (ix) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Ba(C7H2N2O7)(H2O)2]·H2O
Mr417.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.9649 (6), 4.1866 (2), 26.121 (1)
β (°) 109.332 (3)
V3)1234.7 (1)
Z4
Radiation typeMo Kα
µ (mm1)3.27
Crystal size (mm)0.30 × 0.26 × 0.23
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.392, 0.472
No. of measured, independent and
observed [I > 2σ(I)] reflections
8615, 2374, 2189
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.05
No. of reflections2374
No. of parameters199
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.03, 1.30

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H6W···O7i0.82 (3)2.27 (3)2.916 (4)135 (4)
O3W—H5W···O5ii0.82 (4)2.60 (4)2.985 (4)110 (3)
O3W—H5W···O2Wiii0.82 (4)2.04 (3)2.755 (4)145 (4)
O2W—H4W···N1iv0.83 (3)2.69 (4)3.340 (4)137 (4)
O2W—H4W···O4iv0.83 (3)2.55 (4)3.080 (4)123 (3)
O2W—H4W···O5iv0.83 (3)2.25 (3)2.993 (4)150 (5)
O2W—H3W···O3v0.83 (3)2.01 (2)2.730 (4)145 (4)
O1W—H1W···O3Wv0.83 (3)1.991 (16)2.798 (4)164 (4)
O1W—H2W···O3Wvi0.83 (3)1.90 (3)2.725 (4)171 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+2, z; (iv) x, y+1/2, z1/2; (v) x+1, y+1, z; (vi) x+1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds