Download citation
Download citation
link to html
The asymmetric unit of the title compound [Mn(NCS)2(C9H13N)4] consists of one MnII cation located on a center of inversion, one thio­cyanato anion, one 3-tert-butyl­pyridine ligand and one 4-tert-butyl­pyridine ligand in general positions. The tert-butyl group of the 4-tert-butyl­pyridine ligand is disordered over two sets of sites in a 0.60:0.40 ratio. The MnII cation is coordinated by six N atoms of four tert-butyl­pyridine ligands and two N-bonded thio­cyanato anions within a slightly distorted octa­hedral coordination environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812041128/im2404sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812041128/im2404Isup2.hkl
Contains datablock I

CCDC reference: 909712

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.049
  • wR factor = 0.128
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.964 PLAT213_ALERT_2_C Atom C28 has ADP max/min Ratio ..... 3.2 prola PLAT213_ALERT_2_C Atom C29' has ADP max/min Ratio ..... 3.5 prola PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.3 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C23 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C26 PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 4.489 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 4 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 123 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 11
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 6 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00900 Deg. PLAT301_ALERT_3_G Note: Main Residue Disorder ................... 13 Perc. PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 84 C29' -C26 -C27 1.555 1.555 1.555 44.10 Deg. PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 94 C28 -C26 -C27' 1.555 1.555 1.555 42.70 Deg. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 16
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 12 ALERT level C = Check. Ensure it is not caused by an omission or oversight 8 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The structure determination of the title compound was performed as part of a project on the synthesis of new coordination polymers based on transition metal thiocyanates and the investigations of their magnetic behaviour (Boeckmann et al., 2010; Boeckmann et al., 2011). Within this project we have reacted manganese(II)thiocyanate monohydrate with 4-tert-butylpyridine in water, which resulted in the formation of crystals of the title compound by accident. Apparently, the 4-tert-butylpyridine was contaminated with 3-tert-butylpyridine to a degree that allowed the formation of a few single crystals of the title compound. It was on the other hand not possible to obtain phase pure crystalline powder samples. In the crystal structure Mn atoms are surrounded by six N atoms of four tert-butylpyridine ligands and two N-bonded thiocyanato anions in mutual trans orientation in a slightly distorted octahedral geometry (Fig. 1). Mn···N distances range from 2.180 (3) Å to 2.337 (2) Å. It is also worth mentioning that so far no other compound containing 3-tert-butylpyridine has been reported in the CSD.

Related literature top

For related structures see: Nassimbeni et al. (1990) (4-tert-butylpyridine only). For the background to this work see: Boeckmann et al. (2010, 2011).

Experimental top

The title compound was obtained accidently during the reaction of 28.4 mg Mn(NCS)2 × H2O (0.15 mmol) with 44.4 µL 4-tert-butylpyridine (0.30 mmol), obtained from Sigma Aldrich, in 1.50 ml water at RT in a closed 3 mL snap cap vial. After three weeks colourless needles of the title compound were obtained.

Refinement top

H atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) of the parent atom using a riding model with C—H = 0.95 Å for aromatic and 0.98 Å for methyl hydrogen atoms. The tert-butyl group of the 4-tert-butylpyridine ligand is disordered and was refined using a split model with fixed site occupation factors of 0.60 and 0.40. Distances between the methyl groups in the two disordered moieties were restrained to be equal.

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compund with displacement ellipsoids drawn at the 50% probability level (symmetry code: i = -x + 1, -y + 1, -z + 2). Disorder is shown as full and open bonds.
Trans-bis(3-tert-butylpyridine-κN)bis(4-tert-butylpyridine-κN)bis(thiocyanato-κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C9H13N)4]Z = 1
Mr = 711.92F(000) = 379
Triclinic, P1Dx = 1.165 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5921 (7) ÅCell parameters from 6934 reflections
b = 10.7253 (9) Åθ = 1.9–28.2°
c = 11.6286 (10) ŵ = 0.46 mm1
α = 66.870 (9)°T = 200 K
β = 68.011 (9)°Needle, colourless
γ = 76.359 (9)°0.13 × 0.09 × 0.05 mm
V = 1014.59 (17) Å3
Data collection top
STOE IPDS-1
diffractometer
3017 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
Phi scansh = 1111
7271 measured reflectionsk = 1312
3845 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.489P]
where P = (Fo2 + 2Fc2)/3
3845 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.92 e Å3
3 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Mn(NCS)2(C9H13N)4]γ = 76.359 (9)°
Mr = 711.92V = 1014.59 (17) Å3
Triclinic, P1Z = 1
a = 9.5921 (7) ÅMo Kα radiation
b = 10.7253 (9) ŵ = 0.46 mm1
c = 11.6286 (10) ÅT = 200 K
α = 66.870 (9)°0.13 × 0.09 × 0.05 mm
β = 68.011 (9)°
Data collection top
STOE IPDS-1
diffractometer
3017 reflections with I > 2σ(I)
7271 measured reflectionsRint = 0.037
3845 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.03Δρmax = 0.92 e Å3
3845 reflectionsΔρmin = 0.88 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.50001.00000.03151 (17)
N10.6416 (3)0.6660 (2)0.9167 (2)0.0419 (5)
C10.6822 (3)0.7724 (2)0.8511 (2)0.0383 (6)
S10.73642 (11)0.92047 (9)0.75445 (13)0.0912 (4)
N110.3015 (2)0.65601 (19)0.94157 (18)0.0352 (5)
C110.1639 (3)0.6132 (3)0.9872 (2)0.0418 (6)
H110.15230.52001.03870.050*
C120.0397 (3)0.6983 (3)0.9625 (3)0.0481 (7)
H120.05550.66410.99500.058*
C130.0547 (3)0.8350 (3)0.8892 (3)0.0433 (6)
H130.03070.89500.87130.052*
C140.1938 (3)0.8843 (2)0.8421 (2)0.0367 (5)
C150.3133 (3)0.7888 (2)0.8708 (2)0.0370 (5)
H150.41030.81990.83800.044*
C160.2198 (3)1.0344 (3)0.7629 (3)0.0493 (7)
C170.3273 (5)1.0455 (4)0.6249 (3)0.0840 (13)
H17A0.34511.14110.57400.126*
H17B0.28251.01160.58110.126*
H17C0.42350.99100.63100.126*
C180.0701 (4)1.1229 (3)0.7584 (4)0.0711 (10)
H18A0.08961.21820.70830.107*
H18B0.00431.11490.84830.107*
H18C0.02061.09220.71560.107*
C190.2930 (4)1.0855 (3)0.8312 (4)0.0690 (10)
H19A0.30971.18150.78150.103*
H19B0.38991.03120.83460.103*
H19C0.22581.07650.92100.103*
N210.5965 (2)0.4594 (2)0.80246 (18)0.0363 (5)
C210.5945 (4)0.3378 (3)0.7974 (3)0.0516 (7)
H210.54770.26970.87690.062*
C220.6561 (4)0.3048 (3)0.6840 (3)0.0527 (8)
H220.65090.21600.68720.063*
C230.7253 (3)0.3997 (2)0.5657 (2)0.0349 (5)
C240.7275 (4)0.5254 (3)0.5714 (2)0.0540 (8)
H240.77350.59540.49340.065*
C250.6638 (4)0.5507 (3)0.6890 (2)0.0512 (7)
H250.66840.63830.68880.061*
C260.7927 (3)0.3670 (3)0.4375 (2)0.0448 (6)
C270.6680 (9)0.3097 (12)0.4244 (8)0.100 (3)0.60
H27A0.63340.23070.50300.150*0.60
H27B0.70870.28190.34620.150*0.60
H27C0.58280.38020.41560.150*0.60
C280.8526 (15)0.4830 (7)0.3205 (6)0.113 (4)0.60
H28A0.89320.45470.24260.170*0.60
H28B0.93330.51450.33140.170*0.60
H28C0.77140.55720.30930.170*0.60
C290.9189 (9)0.2494 (8)0.4536 (6)0.084 (2)0.60
H29A0.87890.17240.53240.125*0.60
H29B1.00160.27980.46280.125*0.60
H29C0.95670.22100.37590.125*0.60
C27'0.7316 (12)0.4873 (11)0.3296 (8)0.064 (3)0.40
H27D0.74870.57480.32770.096*0.40
H27E0.62310.48430.35130.096*0.40
H27F0.78520.47730.24310.096*0.40
C28'0.9667 (10)0.3858 (13)0.3845 (9)0.079 (3)0.40
H28D0.97950.47460.38280.118*0.40
H28E1.01050.38120.29520.118*0.40
H28F1.01810.31320.44260.118*0.40
C29'0.769 (2)0.2383 (12)0.4445 (10)0.116 (7)0.40
H29D0.81570.22850.35740.174*0.40
H29E0.65970.23190.47330.174*0.40
H29F0.81340.16570.50760.174*0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0411 (3)0.0235 (3)0.0266 (3)0.0085 (2)0.0061 (2)0.00652 (18)
N10.0488 (13)0.0310 (11)0.0420 (11)0.0114 (9)0.0091 (9)0.0093 (9)
C10.0349 (14)0.0326 (13)0.0469 (14)0.0053 (10)0.0150 (11)0.0099 (11)
S10.0620 (6)0.0369 (4)0.1414 (10)0.0216 (4)0.0427 (6)0.0232 (5)
N110.0437 (12)0.0289 (10)0.0315 (10)0.0072 (9)0.0101 (8)0.0083 (8)
C110.0470 (15)0.0324 (12)0.0417 (13)0.0122 (11)0.0088 (11)0.0086 (10)
C120.0404 (15)0.0459 (15)0.0531 (15)0.0123 (12)0.0083 (12)0.0137 (12)
C130.0407 (15)0.0400 (14)0.0451 (14)0.0019 (11)0.0118 (11)0.0133 (11)
C140.0417 (14)0.0324 (12)0.0315 (11)0.0043 (10)0.0077 (10)0.0095 (9)
C150.0393 (14)0.0326 (12)0.0340 (12)0.0086 (10)0.0065 (10)0.0080 (9)
C160.0475 (16)0.0301 (13)0.0551 (16)0.0028 (11)0.0099 (13)0.0055 (11)
C170.109 (3)0.0498 (19)0.0509 (19)0.018 (2)0.0052 (19)0.0024 (15)
C180.066 (2)0.0398 (16)0.091 (2)0.0001 (15)0.0324 (19)0.0019 (16)
C190.062 (2)0.0373 (16)0.107 (3)0.0050 (14)0.0248 (19)0.0252 (17)
N210.0482 (13)0.0308 (10)0.0283 (9)0.0064 (9)0.0089 (8)0.0101 (8)
C210.078 (2)0.0334 (13)0.0322 (12)0.0183 (13)0.0019 (12)0.0103 (10)
C220.079 (2)0.0310 (13)0.0393 (14)0.0149 (13)0.0011 (13)0.0138 (11)
C230.0412 (14)0.0330 (12)0.0311 (11)0.0033 (10)0.0115 (10)0.0116 (9)
C240.086 (2)0.0397 (14)0.0294 (12)0.0248 (14)0.0041 (13)0.0078 (11)
C250.084 (2)0.0333 (13)0.0350 (13)0.0208 (13)0.0081 (13)0.0116 (11)
C260.0581 (17)0.0444 (14)0.0312 (12)0.0050 (12)0.0094 (11)0.0166 (11)
C270.078 (5)0.181 (10)0.091 (5)0.010 (5)0.023 (4)0.102 (7)
C280.221 (12)0.065 (4)0.027 (3)0.048 (6)0.011 (5)0.017 (3)
C290.082 (5)0.098 (5)0.063 (4)0.024 (4)0.012 (3)0.048 (4)
C27'0.079 (6)0.082 (6)0.036 (4)0.001 (5)0.020 (4)0.027 (4)
C28'0.056 (5)0.114 (8)0.057 (5)0.015 (5)0.006 (4)0.044 (6)
C29'0.205 (17)0.079 (7)0.052 (6)0.083 (10)0.040 (8)0.047 (6)
Geometric parameters (Å, º) top
Mn1—N12.180 (2)C21—C221.378 (4)
Mn1—N1i2.180 (2)C21—H210.9500
Mn1—N212.3081 (18)C22—C231.380 (3)
Mn1—N21i2.3081 (18)C22—H220.9500
Mn1—N11i2.337 (2)C23—C241.381 (4)
Mn1—N112.337 (2)C23—C261.531 (3)
N1—C11.157 (3)C24—C251.380 (4)
C1—S11.614 (3)C24—H240.9500
N11—C111.343 (3)C25—H250.9500
N11—C151.344 (3)C26—C29'1.419 (9)
C11—C121.368 (4)C26—C281.467 (7)
C11—H110.9500C26—C291.534 (7)
C12—C131.387 (4)C26—C271.546 (8)
C12—H120.9500C26—C28'1.580 (10)
C13—C141.385 (4)C26—C27'1.583 (9)
C13—H130.9500C27—H27A0.9800
C14—C151.393 (4)C27—H27B0.9800
C14—C161.535 (3)C27—H27C0.9800
C15—H150.9500C28—H28A0.9800
C16—C171.524 (4)C28—H28B0.9800
C16—C181.530 (4)C28—H28C0.9800
C16—C191.537 (5)C29—H29A0.9800
C17—H17A0.9800C29—H29B0.9800
C17—H17B0.9800C29—H29C0.9800
C17—H17C0.9800C27'—H27D0.9800
C18—H18A0.9800C27'—H27E0.9800
C18—H18B0.9800C27'—H27F0.9800
C18—H18C0.9800C28'—H28D0.9800
C19—H19A0.9800C28'—H28E0.9800
C19—H19B0.9800C28'—H28F0.9800
C19—H19C0.9800C29'—H29D0.9800
N21—C251.327 (3)C29'—H29E0.9800
N21—C211.333 (3)C29'—H29F0.9800
N1—Mn1—N1i180.000 (1)C23—C22—H22119.8
N1—Mn1—N2189.88 (8)C22—C23—C24115.3 (2)
N1i—Mn1—N2190.12 (8)C22—C23—C26121.8 (2)
N1—Mn1—N21i90.12 (8)C24—C23—C26122.9 (2)
N1i—Mn1—N21i89.88 (8)C25—C24—C23120.9 (2)
N21—Mn1—N21i180.000 (1)C25—C24—H24119.6
N1—Mn1—N11i90.23 (8)C23—C24—H24119.6
N1i—Mn1—N11i89.77 (8)N21—C25—C24123.6 (2)
N21—Mn1—N11i86.16 (7)N21—C25—H25118.2
N21i—Mn1—N11i93.84 (7)C24—C25—H25118.2
N1—Mn1—N1189.77 (8)C29'—C26—C28128.7 (5)
N1i—Mn1—N1190.23 (8)C29'—C26—C23116.5 (4)
N21—Mn1—N1193.84 (7)C28—C26—C23114.0 (3)
N21i—Mn1—N1186.16 (7)C29'—C26—C2961.8 (8)
N11i—Mn1—N11180.00 (10)C28—C26—C29109.6 (6)
C1—N1—Mn1157.6 (2)C23—C26—C29108.3 (3)
N1—C1—S1177.4 (2)C29'—C26—C2744.1 (8)
C11—N11—C15117.1 (2)C28—C26—C27111.9 (6)
C11—N11—Mn1118.51 (16)C23—C26—C27106.9 (3)
C15—N11—Mn1124.28 (17)C29—C26—C27105.7 (5)
N11—C11—C12122.7 (2)C29'—C26—C28'111.6 (8)
N11—C11—H11118.7C28—C26—C28'59.6 (6)
C12—C11—H11118.7C23—C26—C28'107.0 (4)
C11—C12—C13119.2 (3)C29—C26—C28'55.6 (5)
C11—C12—H12120.4C27—C26—C28'145.3 (5)
C13—C12—H12120.4C29'—C26—C27'111.2 (8)
C14—C13—C12120.2 (3)C28—C26—C27'42.7 (5)
C14—C13—H13119.9C23—C26—C27'107.4 (4)
C12—C13—H13119.9C29—C26—C27'142.3 (4)
C13—C14—C15116.1 (2)C27—C26—C27'74.8 (6)
C13—C14—C16123.6 (2)C28'—C26—C27'102.1 (6)
C15—C14—C16120.3 (2)C26—C27—H27A109.5
N11—C15—C14124.7 (2)C26—C27—H27B109.5
N11—C15—H15117.6H27A—C27—H27B109.5
C14—C15—H15117.6C26—C27—H27C109.5
C17—C16—C18111.4 (3)H27A—C27—H27C109.5
C17—C16—C14109.0 (2)H27B—C27—H27C109.5
C18—C16—C14111.0 (2)C26—C28—H28A109.5
C17—C16—C19108.8 (3)C26—C28—H28B109.5
C18—C16—C19107.7 (3)H28A—C28—H28B109.5
C14—C16—C19108.8 (2)C26—C28—H28C109.5
C16—C17—H17A109.5H28A—C28—H28C109.5
C16—C17—H17B109.5H28B—C28—H28C109.5
H17A—C17—H17B109.5C26—C29—H29A109.5
C16—C17—H17C109.5C26—C29—H29B109.5
H17A—C17—H17C109.5H29A—C29—H29B109.5
H17B—C17—H17C109.5C26—C29—H29C109.5
C16—C18—H18A109.5H29A—C29—H29C109.5
C16—C18—H18B109.5H29B—C29—H29C109.5
H18A—C18—H18B109.5C26—C27'—H27D109.5
C16—C18—H18C109.5C26—C27'—H27E109.5
H18A—C18—H18C109.5H27D—C27'—H27E109.5
H18B—C18—H18C109.5C26—C27'—H27F109.5
C16—C19—H19A109.5H27D—C27'—H27F109.5
C16—C19—H19B109.5H27E—C27'—H27F109.5
H19A—C19—H19B109.5C26—C28'—H28D109.5
C16—C19—H19C109.5C26—C28'—H28E109.5
H19A—C19—H19C109.5H28D—C28'—H28E109.5
H19B—C19—H19C109.5C26—C28'—H28F109.5
C25—N21—C21115.7 (2)H28D—C28'—H28F109.5
C25—N21—Mn1123.21 (16)H28E—C28'—H28F109.5
C21—N21—Mn1121.01 (15)C26—C29'—H29D109.5
N21—C21—C22124.0 (2)C26—C29'—H29E109.5
N21—C21—H21118.0H29D—C29'—H29E109.5
C22—C21—H21118.0C26—C29'—H29F109.5
C21—C22—C23120.5 (2)H29D—C29'—H29F109.5
C21—C22—H22119.8H29E—C29'—H29F109.5
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C9H13N)4]
Mr711.92
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.5921 (7), 10.7253 (9), 11.6286 (10)
α, β, γ (°)66.870 (9), 68.011 (9), 76.359 (9)
V3)1014.59 (17)
Z1
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.13 × 0.09 × 0.05
Data collection
DiffractometerSTOE IPDS1
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7271, 3845, 3017
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.03
No. of reflections3845
No. of parameters241
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.88

Computer programs: X-AREA (Stoe, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds