Download citation
Download citation
link to html
In the crystal structure of the title compound, (C12H11Cl2N2)2[Ni(C4N2S2)2], the NiII complex dianion is located on an inversion centre. The NiII atom is coordinated by four S atoms in a square-planar geometry. In the cation, the dihedral angle between the benzene and pyrazine rings is 85.2 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808034776/is2350sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808034776/is2350Isup2.hkl
Contains datablock I

CCDC reference: 705229

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.055
  • wR factor = 0.114
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 298.000 Value of melting point given = 0.000 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C1 - C2 ... 1.44 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C3 - C4 ... 1.44 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C7 -- C8 .. 0.12 Ang. PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C16
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Molecular solids based on transition metal dithiolene complexes have attracted intense interest in recent years, not only owing to the fundamental research of magnetic interactions and magneto-structural correlations but also to the development of new functional molecule-based materials (Robertson & Cronin, 2002). Much work has been performed in molecular solids based on M[dithiolene]2 complexes owing to their application as building blocks in molecular-based materials showing magnetic, superconducting and optical properties (Nishijo et al., 2000; Ni et al., 2005). Herein, we report the crystal structure of the title compound, (I).

The molecular structure of (I) is illustrated in Fig. 1. Compound (I) crystallizes in monoclinic system, with one half [Ni(mnt)2]2- dianion and one 1-(2,6-dichlorobenzyl)-3-methylpyrazine cation in an asymmetric unit. The anion [Ni(mnt)2]2- possesses an approximated planar geometry and most of the bond lengths and angles are in good agreement with the various [Ni(mnt)2]2- compounds (Ni et al., 2004; Ren et al., 2004).

Related literature top

For general background, see: Ni et al. (2005); Nishijo et al. (2000); Robertson & Cronin (2002). For related structures, see: Ni et al. (2004); Ren et al. (2004).

Experimental top

Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 mL) at room temperature. Subsequently, a solution of 1-(2,6-dichlorobenzyl)-3-methylpyrazine iodide (952 mg, 2.5 mmol) in methanol (10 mL) was added to the mixture. The black precipitate that was immediately formed was filtered off and washed with methanol. The crude product was recrystallized in acetone (20 mL) to give black block crystals. Anal. Calcd. for C32H22Cl4N8NiS4: C 48.73, H 2.81, N 14.21%. Found: C 48.69, H 2.78, N 14.09%.

Refinement top

The H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. The suffix A corresponds to symmetry code (-x, -y+1, -z).
Bis[1-(2,6-dichlorobenzyl)-3-methylpyrazin-1-ium] bis(maleonitriledithiolato)nickelate(II) top
Crystal data top
(C12H11Cl2N2)2[Ni(C4N2S2)2]F(000) = 860
Mr = 847.33Dx = 1.566 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 773 reflections
a = 9.081 (2) Åθ = 2.6–21.2°
b = 20.238 (5) ŵ = 1.11 mm1
c = 10.489 (2) ÅT = 298 K
β = 111.243 (4)°Block, black
V = 1796.6 (7) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3159 independent reflections
Radiation source: fine-focus sealed tube2170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 106
Tmin = 0.732, Tmax = 0.809k = 2423
8822 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0362P)2]
where P = (Fo2 + 2Fc2)/3
3159 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
(C12H11Cl2N2)2[Ni(C4N2S2)2]V = 1796.6 (7) Å3
Mr = 847.33Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.081 (2) ŵ = 1.11 mm1
b = 20.238 (5) ÅT = 298 K
c = 10.489 (2) Å0.30 × 0.20 × 0.20 mm
β = 111.243 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3159 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2170 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.809Rint = 0.086
8822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.96Δρmax = 0.51 e Å3
3159 reflectionsΔρmin = 0.30 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.00000.0410 (2)
C10.1965 (5)0.45625 (18)0.1702 (4)0.0434 (10)
C20.3109 (6)0.45822 (19)0.2353 (5)0.0475 (11)
C30.0857 (5)0.59184 (19)0.1944 (4)0.0445 (11)
C40.0777 (5)0.6476 (2)0.2820 (5)0.0489 (11)
C50.5497 (5)0.67689 (19)0.7483 (4)0.0418 (10)
C60.4392 (5)0.6850 (2)0.6168 (5)0.0508 (11)
C70.3690 (6)0.7445 (3)0.5682 (5)0.0676 (14)
H70.29360.74770.48040.081*
C80.4110 (6)0.7986 (2)0.6501 (6)0.0735 (16)
H80.36610.83940.61720.088*
C90.5185 (6)0.7936 (2)0.7801 (6)0.0675 (14)
H90.54650.83090.83560.081*
C100.5857 (5)0.7331 (2)0.8293 (5)0.0505 (12)
C110.6274 (5)0.61171 (19)0.7983 (4)0.0486 (11)
H11A0.67940.61300.89700.058*
H11B0.54790.57720.77590.058*
C120.7394 (5)0.53854 (19)0.6677 (5)0.0512 (12)
H120.66290.50710.66290.061*
C130.8486 (6)0.5274 (2)0.6073 (4)0.0524 (12)
H130.84290.48810.55970.063*
C140.9720 (5)0.6256 (2)0.6865 (4)0.0448 (10)
C150.8622 (5)0.63866 (18)0.7459 (4)0.0408 (10)
H150.86960.67760.79490.049*
C161.1035 (5)0.6723 (2)0.7000 (5)0.0666 (14)
H16A1.20270.65020.74300.100*
H16B1.09710.70940.75470.100*
H16C1.09530.68740.61090.100*
Cl10.38504 (16)0.61665 (7)0.50983 (14)0.0775 (4)
Cl20.71852 (16)0.72925 (6)0.99706 (13)0.0719 (4)
N10.4021 (5)0.46159 (18)0.2871 (4)0.0651 (12)
N20.0664 (5)0.69443 (19)0.3446 (4)0.0688 (12)
N30.7460 (4)0.59632 (15)0.7340 (3)0.0415 (9)
N40.9619 (4)0.57012 (18)0.6139 (4)0.0535 (10)
S10.20391 (14)0.51963 (5)0.05585 (12)0.0484 (3)
S20.05266 (14)0.59091 (5)0.11563 (12)0.0532 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0481 (5)0.0298 (4)0.0442 (5)0.0004 (3)0.0155 (4)0.0004 (3)
C10.053 (3)0.030 (2)0.048 (3)0.002 (2)0.018 (2)0.0027 (18)
C20.058 (3)0.031 (2)0.054 (3)0.002 (2)0.021 (3)0.000 (2)
C30.054 (3)0.034 (2)0.047 (3)0.005 (2)0.020 (2)0.0004 (19)
C40.056 (3)0.037 (3)0.056 (3)0.001 (2)0.024 (2)0.002 (2)
C50.040 (3)0.036 (2)0.057 (3)0.0008 (18)0.027 (2)0.006 (2)
C60.042 (3)0.050 (3)0.066 (3)0.005 (2)0.027 (2)0.005 (2)
C70.049 (3)0.075 (4)0.077 (4)0.015 (3)0.021 (3)0.031 (3)
C80.075 (4)0.045 (3)0.113 (5)0.025 (3)0.049 (4)0.021 (3)
C90.079 (4)0.044 (3)0.098 (4)0.008 (3)0.053 (3)0.001 (3)
C100.051 (3)0.045 (3)0.066 (3)0.005 (2)0.034 (2)0.005 (2)
C110.055 (3)0.043 (2)0.057 (3)0.001 (2)0.031 (2)0.005 (2)
C120.052 (3)0.033 (2)0.066 (3)0.000 (2)0.019 (2)0.003 (2)
C130.059 (3)0.041 (3)0.054 (3)0.005 (2)0.016 (2)0.004 (2)
C140.042 (3)0.046 (3)0.046 (3)0.001 (2)0.015 (2)0.003 (2)
C150.044 (3)0.029 (2)0.047 (3)0.0017 (19)0.014 (2)0.0026 (18)
C160.056 (3)0.059 (3)0.089 (4)0.011 (2)0.032 (3)0.007 (3)
Cl10.0753 (10)0.0753 (9)0.0747 (10)0.0217 (7)0.0185 (7)0.0094 (7)
Cl20.0806 (10)0.0729 (9)0.0635 (9)0.0026 (7)0.0276 (7)0.0100 (6)
N10.070 (3)0.052 (3)0.083 (3)0.004 (2)0.040 (3)0.001 (2)
N20.091 (3)0.045 (2)0.076 (3)0.004 (2)0.036 (2)0.017 (2)
N30.046 (2)0.0282 (19)0.049 (2)0.0030 (15)0.0164 (17)0.0058 (15)
N40.053 (3)0.054 (2)0.053 (2)0.0067 (19)0.0196 (19)0.0017 (19)
S10.0551 (8)0.0365 (6)0.0549 (8)0.0057 (5)0.0214 (6)0.0049 (5)
S20.0621 (8)0.0388 (6)0.0658 (8)0.0115 (5)0.0316 (6)0.0107 (5)
Geometric parameters (Å, º) top
Ni1—S22.1596 (11)C8—H80.9300
Ni1—S2i2.1596 (11)C9—C101.382 (6)
Ni1—S1i2.1715 (12)C9—H90.9300
Ni1—S12.1715 (12)C10—Cl21.737 (5)
C1—C3i1.356 (5)C11—N31.496 (5)
C1—C21.436 (6)C11—H11A0.9700
C1—S11.741 (4)C11—H11B0.9700
C2—N11.145 (5)C12—N31.351 (5)
C3—C1i1.356 (5)C12—C131.375 (6)
C3—C41.441 (6)C12—H120.9300
C3—S21.736 (4)C13—N41.326 (5)
C4—N21.136 (5)C13—H130.9300
C5—C101.387 (5)C14—N41.341 (5)
C5—C61.391 (6)C14—C151.379 (5)
C5—C111.498 (5)C14—C161.489 (6)
C6—C71.370 (6)C15—N31.330 (5)
C6—Cl11.737 (4)C15—H150.9300
C7—C81.358 (7)C16—H16A0.9600
C7—H70.9300C16—H16B0.9600
C8—C91.363 (7)C16—H16C0.9600
S2—Ni1—S2i180.00 (3)C5—C10—Cl2120.4 (3)
S2—Ni1—S1i92.37 (4)N3—C11—C5110.5 (3)
S2i—Ni1—S1i87.63 (4)N3—C11—H11A109.6
S2—Ni1—S187.63 (4)C5—C11—H11A109.6
S2i—Ni1—S192.37 (4)N3—C11—H11B109.6
S1i—Ni1—S1180.0C5—C11—H11B109.6
C3i—C1—C2123.1 (4)H11A—C11—H11B108.1
C3i—C1—S1119.9 (3)N3—C12—C13118.3 (4)
C2—C1—S1117.0 (3)N3—C12—H12120.8
N1—C2—C1178.2 (4)C13—C12—H12120.8
C1i—C3—C4123.0 (4)N4—C13—C12122.9 (4)
C1i—C3—S2121.3 (3)N4—C13—H13118.5
C4—C3—S2115.7 (3)C12—C13—H13118.5
N2—C4—C3174.5 (5)N4—C14—C15120.4 (4)
C10—C5—C6115.8 (4)N4—C14—C16118.2 (4)
C10—C5—C11122.1 (4)C15—C14—C16121.4 (4)
C6—C5—C11122.1 (4)N3—C15—C14120.9 (4)
C7—C6—C5123.0 (4)N3—C15—H15119.6
C7—C6—Cl1118.3 (4)C14—C15—H15119.6
C5—C6—Cl1118.7 (3)C14—C16—H16A109.5
C8—C7—C6119.1 (5)C14—C16—H16B109.5
C8—C7—H7120.5H16A—C16—H16B109.5
C6—C7—H7120.5C14—C16—H16C109.5
C7—C8—C9120.6 (5)H16A—C16—H16C109.5
C7—C8—H8119.7H16B—C16—H16C109.5
C9—C8—H8119.7C15—N3—C12119.4 (4)
C8—C9—C10119.9 (5)C15—N3—C11120.0 (3)
C8—C9—H9120.0C12—N3—C11120.5 (3)
C10—C9—H9120.0C13—N4—C14117.9 (4)
C9—C10—C5121.6 (4)C1—S1—Ni1103.14 (15)
C9—C10—Cl2118.0 (4)C3—S2—Ni1103.02 (14)
C10—C5—C6—C70.1 (6)C16—C14—C15—N3179.5 (4)
C11—C5—C6—C7178.7 (4)C14—C15—N3—C122.8 (6)
C10—C5—C6—Cl1178.9 (3)C14—C15—N3—C11179.5 (4)
C11—C5—C6—Cl12.3 (5)C13—C12—N3—C153.9 (6)
C5—C6—C7—C81.6 (7)C13—C12—N3—C11178.4 (4)
Cl1—C6—C7—C8179.4 (4)C5—C11—N3—C1556.1 (5)
C6—C7—C8—C91.7 (8)C5—C11—N3—C12126.2 (4)
C7—C8—C9—C100.1 (8)C12—C13—N4—C142.1 (6)
C8—C9—C10—C51.7 (7)C15—C14—N4—C133.3 (6)
C8—C9—C10—Cl2178.5 (4)C16—C14—N4—C13177.1 (4)
C6—C5—C10—C91.7 (6)C3i—C1—S1—Ni14.5 (4)
C11—C5—C10—C9177.1 (4)C2—C1—S1—Ni1175.2 (3)
C6—C5—C10—Cl2178.5 (3)S2—Ni1—S1—C1175.14 (14)
C11—C5—C10—Cl22.7 (5)S2i—Ni1—S1—C14.86 (14)
C10—C5—C11—N3105.5 (4)C1i—C3—S2—Ni12.9 (4)
C6—C5—C11—N373.2 (5)C4—C3—S2—Ni1179.2 (3)
N3—C12—C13—N41.5 (6)S1i—Ni1—S2—C34.39 (15)
N4—C14—C15—N30.9 (6)S1—Ni1—S2—C3175.61 (15)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C12H11Cl2N2)2[Ni(C4N2S2)2]
Mr847.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.081 (2), 20.238 (5), 10.489 (2)
β (°) 111.243 (4)
V3)1796.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.732, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
8822, 3159, 2170
Rint0.086
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.114, 0.96
No. of reflections3159
No. of parameters224
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds