Download citation
Download citation
link to html
The title compound, [Pt(C15H18NO2S)Cl], was obtained by the cyclo­metallation reaction of cis-bis­(benzonitrile)dichlorido­platinum(II) with N-benzyl­idene-L-methio­nine allyl ester in refluxing toluene. The PtII atom has a square-planar geometry and is tetra-coordinated by the Cl atom and the C, N and S atoms from the benzyl­idene methio­nine ester ligand. In the crystal structure, the S atoms show opposite chiral configurations with respect to the α-carbon of the methio­nine, reducing steric repulsion between the methyl and allyl ester groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680904238X/is2471sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680904238X/is2471Isup2.hkl
Contains datablock I

CCDC reference: 754138

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.020
  • wR factor = 0.052
  • Data-to-parameter ratio = 16.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.86 PLAT230_ALERT_2_C Hirshfeld Test Diff for C6 -- C13 .. 5.16 su PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 10 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 40
Alert level G PLAT128_ALERT_4_G Non-standard setting of Space-group P21/c .... P21/n PLAT793_ALERT_4_G The Model has Chirality at C28 (Verify) .... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Research on cyclometallated complexes (Capapé et al., 2005; Riera et al., 2000) has been focused because of their fundamental applications as luminescent materials (Caubet et al., 2003) and catalysts for a range of cross-coupling reactions. Amino acids, possessing natural chiral backbone and strong coordinating groups, are one of the potent candidates for designing stable cyclometallated complexes with highly controlled stereo-structure (Severin et al., 1998). Here, we report the crystal structure of the platinum (II) complex (1), containing chiral methionine-derived C,N,S-terdentate ligand.

The crystal structure of title compound (1) is presented in Fig. 1. The Pt(II) atom is tetracoordinated in a square-planar environment by a Cl atom and C, N, S atoms from benzylidene methionine ester ligand. In the [Pt (C15H18NO2S)Cl] (1), S atoms showed opposite chiral configurations to the α-carbon of methionine for reducing steric repulsion between methyl and allyl ester groups (Fig. 2).

Related literature top

For cyclometallated benzylideneamine terdentate PtII complexes, see: Capapé et al. (2005); Caubet et al. (2003); Riera et al. (2000). For organometallic amino acid complexes, see: Severin et al. (1998).

Experimental top

The methionine-derived ligand was synthesized from three step reactions, esterification, deprotection, condensation using Fmoc-L-methionine as a starting material (Fig. 3). A suspension of cis-[PtCl2(PhCN)2] and methionine-derived ligand was refluxed under nitrogen atmosphere for 3 h. The crude mixture was purified by SiO2 flash column chromatography. Single crystals for X-ray analyses were obtained from a CH2Cl2 solution.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with Carene—H and Callyl—H = 0.93 Å, Cmethyl—H = 0.96 Å, Calkyl—H = 0.97Å and Cα—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(Carene, Calkyl) and Uiso(H) = 1.5Ueq(Cmethyl). Electron density synthesis with coefficients Fo—Fc: Highest peak 1.36 at 0.0428, 0.4390, 0.1909 (0.86 Å from Pt1)

Structure description top

Research on cyclometallated complexes (Capapé et al., 2005; Riera et al., 2000) has been focused because of their fundamental applications as luminescent materials (Caubet et al., 2003) and catalysts for a range of cross-coupling reactions. Amino acids, possessing natural chiral backbone and strong coordinating groups, are one of the potent candidates for designing stable cyclometallated complexes with highly controlled stereo-structure (Severin et al., 1998). Here, we report the crystal structure of the platinum (II) complex (1), containing chiral methionine-derived C,N,S-terdentate ligand.

The crystal structure of title compound (1) is presented in Fig. 1. The Pt(II) atom is tetracoordinated in a square-planar environment by a Cl atom and C, N, S atoms from benzylidene methionine ester ligand. In the [Pt (C15H18NO2S)Cl] (1), S atoms showed opposite chiral configurations to the α-carbon of methionine for reducing steric repulsion between methyl and allyl ester groups (Fig. 2).

For cyclometallated benzylideneamine terdentate PtII complexes, see: Capapé et al. (2005); Caubet et al. (2003); Riera et al. (2000). For organometallic amino acid complexes, see: Severin et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (RC,SS)-1 with 50% probability displacement.
[Figure 2] Fig. 2. The packing structure of (1). Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. Synthetic scheme of the amino acid-derived ligand for 1.
(RSC,SRS)-(2-{[1-allyloxycarbonyl-3- (methylsulfanyl)propyl]iminomethyl}phenyl- κ3S,N,C1)chloridoplatinum(II) top
Crystal data top
[Pt(C15H18NO2S)Cl]F(000) = 968
Mr = 506.90Dx = 2.098 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1024 reflections
a = 8.6000 (13) Åθ = 2.8–26.0°
b = 9.5093 (14) ŵ = 9.04 mm1
c = 19.679 (3) ÅT = 180 K
β = 94.398 (2)°Prism, orange
V = 1604.6 (4) Å30.50 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3105 independent reflections
Radiation source: fine-focus sealed tube2854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 910
Tmin = 0.610, Tmax = 0.862k = 1111
12273 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.033P)2 + 0.6405P]
where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max = 0.003
191 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Pt(C15H18NO2S)Cl]V = 1604.6 (4) Å3
Mr = 506.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6000 (13) ŵ = 9.04 mm1
b = 9.5093 (14) ÅT = 180 K
c = 19.679 (3) Å0.50 × 0.10 × 0.10 mm
β = 94.398 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2854 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.862Rint = 0.024
12273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.07Δρmax = 1.36 e Å3
3105 reflectionsΔρmin = 0.48 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.456604 (14)0.848674 (12)0.309063 (6)0.01942 (6)
S40.63428 (10)0.87893 (9)0.22448 (5)0.02394 (18)
Cl10.60649 (11)1.00955 (10)0.37235 (5)0.0338 (2)
C30.3033 (4)0.8222 (3)0.37990 (18)0.0224 (7)
N40.3141 (3)0.7078 (3)0.26035 (14)0.0222 (6)
C60.1849 (5)0.9473 (5)0.0659 (2)0.0518 (12)
H6A0.15300.87930.09800.062*
H6B0.22031.03410.08010.062*
O70.1383 (4)0.8499 (3)0.16257 (16)0.0423 (7)
C90.2011 (4)0.6636 (3)0.29340 (19)0.0258 (8)
H90.13180.59590.27520.031*
C110.1695 (5)0.8600 (4)0.4821 (2)0.0331 (9)
H110.16390.90670.52340.040*
O120.2371 (3)0.7266 (3)0.07819 (13)0.0377 (6)
C130.1798 (5)0.9200 (5)0.0011 (3)0.0497 (11)
H130.21220.98930.03240.060*
C150.1855 (4)0.7230 (3)0.36017 (17)0.0242 (7)
C160.5768 (4)0.7677 (4)0.15222 (17)0.0277 (7)
H16A0.51390.82290.11900.033*
H16B0.66990.73880.13110.033*
C170.2223 (4)0.7597 (4)0.14303 (18)0.0292 (8)
C180.0640 (4)0.6922 (4)0.40057 (19)0.0322 (8)
H180.01000.62460.38680.039*
C190.2922 (4)0.8882 (4)0.44249 (18)0.0274 (7)
H190.36850.95240.45800.033*
C200.0548 (4)0.7633 (4)0.46131 (18)0.0366 (9)
H200.02770.74650.48810.044*
C210.1259 (5)0.7871 (5)0.0261 (2)0.0469 (11)
H21A0.11000.72170.01160.056*
H21B0.02640.80090.04530.056*
C270.8092 (4)0.7906 (4)0.2577 (2)0.0355 (9)
H27A0.78810.69220.26270.053*
H27B0.84340.82980.30120.053*
H27C0.88920.80290.22680.053*
C280.3198 (4)0.6605 (3)0.18980 (18)0.0246 (8)
H280.26750.56890.18670.030*
C290.4852 (4)0.6366 (3)0.16894 (19)0.0270 (8)
H29A0.54360.58700.20560.032*
H29B0.47930.57560.12930.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01859 (9)0.02131 (9)0.01877 (9)0.00125 (4)0.00404 (6)0.00029 (4)
S40.0227 (4)0.0254 (4)0.0247 (5)0.0004 (3)0.0077 (3)0.0000 (3)
Cl10.0320 (5)0.0411 (5)0.0291 (5)0.0148 (4)0.0066 (4)0.0086 (4)
C30.0202 (18)0.0253 (16)0.0217 (18)0.0021 (13)0.0012 (14)0.0065 (13)
N40.0247 (15)0.0216 (14)0.0206 (14)0.0022 (11)0.0042 (11)0.0008 (11)
C60.046 (3)0.062 (3)0.050 (3)0.009 (2)0.020 (2)0.018 (2)
O70.0392 (17)0.0494 (18)0.0387 (17)0.0171 (13)0.0061 (14)0.0016 (12)
C90.0243 (19)0.0242 (18)0.029 (2)0.0058 (13)0.0012 (15)0.0004 (13)
C110.030 (2)0.047 (2)0.022 (2)0.0010 (16)0.0050 (16)0.0026 (15)
O120.0289 (14)0.0599 (18)0.0244 (13)0.0047 (13)0.0030 (11)0.0035 (12)
C130.036 (2)0.052 (3)0.062 (3)0.007 (2)0.005 (2)0.001 (2)
C150.0224 (17)0.0290 (18)0.0211 (17)0.0015 (13)0.0013 (13)0.0021 (13)
C160.0244 (18)0.036 (2)0.0236 (17)0.0017 (15)0.0079 (14)0.0030 (15)
C170.0224 (18)0.037 (2)0.0287 (19)0.0002 (15)0.0044 (14)0.0039 (16)
C180.024 (2)0.042 (2)0.030 (2)0.0109 (16)0.0030 (15)0.0034 (17)
C190.0253 (19)0.0330 (18)0.0240 (18)0.0018 (15)0.0021 (14)0.0021 (15)
C200.028 (2)0.059 (3)0.0234 (19)0.0062 (18)0.0097 (15)0.0058 (17)
C210.036 (2)0.071 (3)0.033 (2)0.000 (2)0.0041 (18)0.009 (2)
C270.0222 (19)0.043 (2)0.041 (2)0.0063 (16)0.0015 (16)0.0047 (18)
C280.029 (2)0.0233 (18)0.0219 (18)0.0019 (13)0.0018 (15)0.0044 (12)
C290.027 (2)0.0287 (18)0.0255 (19)0.0064 (14)0.0037 (15)0.0075 (14)
Geometric parameters (Å, º) top
Pt1—C32.006 (4)C13—C211.446 (7)
Pt1—N42.009 (3)C13—H130.9300
Pt1—Cl12.3037 (9)C15—C181.392 (5)
Pt1—S42.3618 (9)C16—C291.524 (5)
S4—C271.801 (4)C16—H16A0.9700
S4—C161.810 (3)C16—H16B0.9700
C3—C191.392 (5)C17—C281.524 (5)
C3—C151.417 (5)C18—C201.381 (5)
N4—C91.281 (4)C18—H180.9300
N4—C281.464 (4)C19—H190.9300
C6—C131.348 (6)C20—H200.9300
C6—H6A0.9300C21—H21A0.9700
C6—H6B0.9300C21—H21B0.9700
O7—C171.204 (4)C27—H27A0.9600
C9—C151.446 (5)C27—H27B0.9600
C9—H90.9300C27—H27C0.9600
C11—C191.386 (5)C28—C291.528 (5)
C11—C201.387 (5)C28—H280.9800
C11—H110.9300C29—H29A0.9700
O12—C171.330 (4)C29—H29B0.9700
O12—C211.464 (5)
C3—Pt1—N480.72 (13)O7—C17—O12125.4 (3)
C3—Pt1—Cl194.46 (10)O7—C17—C28124.4 (3)
N4—Pt1—Cl1175.18 (8)O12—C17—C28110.1 (3)
C3—Pt1—S4179.20 (10)C20—C18—C15119.1 (3)
N4—Pt1—S498.56 (8)C20—C18—H18120.4
Cl1—Pt1—S486.26 (3)C15—C18—H18120.4
C27—S4—C16100.53 (18)C11—C19—C3121.2 (3)
C27—S4—Pt1104.77 (14)C11—C19—H19119.4
C16—S4—Pt1109.27 (12)C3—C19—H19119.4
C19—C3—C15116.5 (3)C18—C20—C11119.6 (3)
C19—C3—Pt1130.7 (3)C18—C20—H20120.2
C15—C3—Pt1112.8 (2)C11—C20—H20120.2
C9—N4—C28117.6 (3)C13—C21—O12111.9 (4)
C9—N4—Pt1115.8 (2)C13—C21—H21A109.2
C28—N4—Pt1126.4 (2)O12—C21—H21A109.2
C13—C6—H6A120.0C13—C21—H21B109.2
C13—C6—H6B120.0O12—C21—H21B109.2
H6A—C6—H6B120.0H21A—C21—H21B107.9
N4—C9—C15117.4 (3)S4—C27—H27A109.5
N4—C9—H9121.3S4—C27—H27B109.5
C15—C9—H9121.3H27A—C27—H27B109.5
C19—C11—C20121.1 (4)S4—C27—H27C109.5
C19—C11—H11119.4H27A—C27—H27C109.5
C20—C11—H11119.4H27B—C27—H27C109.5
C17—O12—C21118.2 (3)N4—C28—C17109.0 (3)
C6—C13—C21122.5 (5)N4—C28—C29113.6 (3)
C6—C13—H13118.8C17—C28—C29114.2 (3)
C21—C13—H13118.8N4—C28—H28106.5
C18—C15—C3122.4 (3)C17—C28—H28106.5
C18—C15—C9124.2 (3)C29—C28—H28106.5
C3—C15—C9113.3 (3)C16—C29—C28116.4 (3)
C29—C16—S4115.0 (2)C16—C29—H29A108.2
C29—C16—H16A108.5C28—C29—H29A108.2
S4—C16—H16A108.5C16—C29—H29B108.2
C29—C16—H16B108.5C28—C29—H29B108.2
S4—C16—H16B108.5H29A—C29—H29B107.4
H16A—C16—H16B107.5
N4—Pt1—S4—C27107.41 (16)C21—O12—C17—C28165.9 (3)
Cl1—Pt1—S4—C2772.70 (14)C3—C15—C18—C201.8 (6)
Cl1—Pt1—S4—C16179.70 (13)C9—C15—C18—C20175.2 (3)
N4—Pt1—C3—C19176.3 (4)C20—C11—C19—C31.1 (6)
Cl1—Pt1—C3—C193.6 (3)C15—C3—C19—C111.6 (5)
N4—Pt1—C3—C151.1 (2)Pt1—C3—C19—C11175.8 (3)
Cl1—Pt1—C3—C15179.0 (2)C15—C18—C20—C112.4 (6)
C3—Pt1—N4—C91.8 (3)C19—C11—C20—C181.0 (6)
S4—Pt1—N4—C9178.5 (2)C6—C13—C21—O12128.9 (4)
C3—Pt1—N4—C28172.9 (3)C17—O12—C21—C1390.1 (5)
S4—Pt1—N4—C286.8 (3)C9—N4—C28—C1786.9 (4)
C28—N4—C9—C15173.0 (3)Pt1—N4—C28—C1787.7 (3)
Pt1—N4—C9—C152.2 (4)C9—N4—C28—C29144.4 (3)
C19—C3—C15—C180.1 (5)Pt1—N4—C28—C2940.9 (4)
Pt1—C3—C15—C18177.7 (3)O7—C17—C28—N49.1 (5)
C19—C3—C15—C9177.5 (3)O12—C17—C28—N4174.3 (3)
Pt1—C3—C15—C90.3 (4)O7—C17—C28—C29137.4 (4)
N4—C9—C15—C18176.1 (3)O12—C17—C28—C2946.0 (4)
N4—C9—C15—C31.2 (4)S4—C16—C29—C2869.7 (4)
C27—S4—C16—C2983.2 (3)N4—C28—C29—C1678.1 (4)
Pt1—S4—C16—C2926.7 (3)C17—C28—C29—C1647.8 (4)
C21—O12—C17—O710.6 (6)

Experimental details

Crystal data
Chemical formula[Pt(C15H18NO2S)Cl]
Mr506.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)8.6000 (13), 9.5093 (14), 19.679 (3)
β (°) 94.398 (2)
V3)1604.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)9.04
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.610, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
12273, 3105, 2854
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.052, 1.07
No. of reflections3105
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 0.48

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds