




Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810006495/is2526sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536810006495/is2526Isup2.hkl |
CCDC reference: 770063
Key indicators
- Single-crystal X-ray study
- T = 296 K
- Mean
(C-C) = 0.003 Å
- R factor = 0.025
- wR factor = 0.057
- Data-to-parameter ratio = 16.5
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C9 PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. Br1 .. 3.58 Ang. PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. Br1 .. 3.58 Ang. PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 6
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 2472 Count of symmetry unique reflns 1482 Completeness (_total/calc) 166.80% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 990 Fraction of Friedel pairs measured 0.668 Are heavy atom types Z>Si present yes PLAT917_ALERT_2_G The FCF is likely NOT based on a BASF/TWIN Flack ! PLAT960_ALERT_3_G Number of Intensities with I .LT. - 2*sig(I) .. 1 PLAT063_ALERT_4_G Crystal Size Likely too Large for Beam Size .... 0.80 mm PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
A hot methanol solution (10 ml) of 2-amino-5-bromopyridine (87 mg, Aldrich) and a hot aqueous solution (10 ml) of succinic acid (59 mg, Merck) were mixed and warmed over a water bath for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Single crystals of the title compound appeared from the mother liquor after a few days.
Atom H1N1 was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.97 Å, O—H = 0.82 Å and N—H = 0.86 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). 995 Friedel pairs were used to determine the absolute configuration.
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
C5H6N2Br+·C4H5O4− | F(000) = 584 |
Mr = 291.11 | Dx = 1.756 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4688 reflections |
a = 5.3275 (2) Å | θ = 3.0–26.7° |
b = 13.6226 (5) Å | µ = 3.74 mm−1 |
c = 15.1687 (5) Å | T = 296 K |
V = 1100.86 (7) Å3 | Needle, yellow |
Z = 4 | 0.80 × 0.15 × 0.13 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2472 independent reflections |
Radiation source: fine-focus sealed tube | 2138 reflections with I > 2s(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −6→6 |
Tmin = 0.155, Tmax = 0.650 | k = −17→16 |
10042 measured reflections | l = −19→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0248P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.002 |
2472 reflections | Δρmax = 0.21 e Å−3 |
150 parameters | Δρmin = −0.31 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 995 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.013 (8) |
C5H6N2Br+·C4H5O4− | V = 1100.86 (7) Å3 |
Mr = 291.11 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.3275 (2) Å | µ = 3.74 mm−1 |
b = 13.6226 (5) Å | T = 296 K |
c = 15.1687 (5) Å | 0.80 × 0.15 × 0.13 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2472 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2138 reflections with I > 2s(I) |
Tmin = 0.155, Tmax = 0.650 | Rint = 0.029 |
10042 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.057 | Δρmax = 0.21 e Å−3 |
S = 0.99 | Δρmin = −0.31 e Å−3 |
2472 reflections | Absolute structure: Flack (1983), 995 Friedel pairs |
150 parameters | Absolute structure parameter: 0.013 (8) |
0 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0791 (3) | 0.66915 (12) | 0.38303 (10) | 0.0490 (4) | |
O2 | 0.2588 (3) | 0.53970 (10) | 0.32236 (11) | 0.0441 (4) | |
O3 | 0.0528 (4) | 0.80559 (14) | 0.20813 (14) | 0.0633 (6) | |
O4 | −0.3210 (4) | 0.86482 (12) | 0.24424 (12) | 0.0561 (5) | |
H4 | −0.2572 | 0.9169 | 0.2290 | 0.084* | |
C6 | 0.0954 (4) | 0.60694 (15) | 0.32351 (14) | 0.0341 (5) | |
C7 | −0.0907 (5) | 0.61018 (17) | 0.24855 (15) | 0.0450 (6) | |
H7A | −0.1850 | 0.5493 | 0.2485 | 0.054* | |
H7B | 0.0017 | 0.6134 | 0.1935 | 0.054* | |
C8 | −0.2747 (5) | 0.69486 (17) | 0.25115 (16) | 0.0437 (6) | |
H8A | −0.4068 | 0.6826 | 0.2085 | 0.052* | |
H8B | −0.3515 | 0.6971 | 0.3091 | 0.052* | |
C9 | −0.1593 (5) | 0.79274 (16) | 0.23193 (13) | 0.0377 (5) | |
Br1 | 1.17196 (5) | 0.336238 (18) | 0.513704 (18) | 0.05230 (10) | |
N1 | 0.6002 (4) | 0.52635 (13) | 0.45518 (13) | 0.0345 (4) | |
N2 | 0.4388 (4) | 0.66737 (14) | 0.51595 (13) | 0.0459 (5) | |
H2A | 0.3300 | 0.6690 | 0.4741 | 0.055* | |
H2B | 0.4388 | 0.7123 | 0.5558 | 0.055* | |
C1 | 0.7639 (4) | 0.45042 (15) | 0.45213 (15) | 0.0377 (5) | |
H1 | 0.7547 | 0.4047 | 0.4067 | 0.045* | |
C2 | 0.9404 (4) | 0.44144 (16) | 0.51537 (15) | 0.0380 (5) | |
C3 | 0.9540 (5) | 0.51139 (18) | 0.58345 (16) | 0.0414 (6) | |
H3 | 1.0756 | 0.5056 | 0.6271 | 0.050* | |
C4 | 0.7899 (5) | 0.58693 (16) | 0.58521 (14) | 0.0405 (5) | |
H4A | 0.7984 | 0.6332 | 0.6302 | 0.049* | |
C5 | 0.6060 (4) | 0.59588 (15) | 0.51909 (14) | 0.0343 (5) | |
H1N1 | 0.482 (5) | 0.5320 (17) | 0.4180 (16) | 0.047 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0616 (11) | 0.0425 (9) | 0.0428 (8) | 0.0111 (9) | −0.0104 (8) | −0.0157 (8) |
O2 | 0.0495 (10) | 0.0309 (8) | 0.0520 (9) | 0.0067 (7) | −0.0090 (8) | −0.0090 (7) |
O3 | 0.0470 (12) | 0.0576 (12) | 0.0852 (14) | −0.0024 (9) | 0.0118 (11) | 0.0229 (10) |
O4 | 0.0603 (11) | 0.0347 (9) | 0.0733 (12) | 0.0024 (10) | 0.0199 (11) | 0.0111 (8) |
C6 | 0.0412 (13) | 0.0265 (10) | 0.0347 (11) | −0.0057 (9) | 0.0013 (9) | −0.0001 (9) |
C7 | 0.0572 (17) | 0.0345 (12) | 0.0432 (13) | −0.0017 (11) | −0.0075 (12) | −0.0049 (10) |
C8 | 0.0426 (15) | 0.0392 (12) | 0.0493 (13) | −0.0033 (10) | −0.0088 (11) | 0.0050 (10) |
C9 | 0.0418 (13) | 0.0385 (12) | 0.0330 (10) | −0.0026 (12) | −0.0029 (12) | 0.0039 (9) |
Br1 | 0.04413 (14) | 0.04024 (13) | 0.07255 (17) | 0.00556 (11) | −0.00191 (13) | 0.00411 (12) |
N1 | 0.0360 (11) | 0.0308 (10) | 0.0367 (10) | −0.0035 (8) | −0.0032 (9) | −0.0029 (8) |
N2 | 0.0480 (11) | 0.0377 (10) | 0.0520 (10) | 0.0049 (9) | −0.0099 (10) | −0.0151 (10) |
C1 | 0.0415 (13) | 0.0291 (11) | 0.0426 (11) | −0.0051 (10) | 0.0030 (10) | −0.0034 (9) |
C2 | 0.0364 (12) | 0.0334 (11) | 0.0442 (11) | −0.0016 (9) | 0.0024 (11) | 0.0036 (10) |
C3 | 0.0397 (13) | 0.0436 (13) | 0.0410 (12) | −0.0064 (12) | −0.0046 (11) | 0.0035 (11) |
C4 | 0.0443 (14) | 0.0411 (12) | 0.0362 (11) | −0.0048 (12) | −0.0015 (11) | −0.0057 (10) |
C5 | 0.0355 (11) | 0.0303 (10) | 0.0370 (10) | −0.0069 (9) | 0.0046 (10) | −0.0002 (9) |
O1—C6 | 1.241 (2) | N1—C1 | 1.354 (3) |
O2—C6 | 1.264 (3) | N1—C5 | 1.356 (3) |
O3—C9 | 1.199 (3) | N1—H1N1 | 0.85 (3) |
O4—C9 | 1.319 (3) | N2—C5 | 1.321 (3) |
O4—H4 | 0.8200 | N2—H2A | 0.8600 |
C6—C7 | 1.509 (3) | N2—H2B | 0.8600 |
C7—C8 | 1.514 (3) | C1—C2 | 1.349 (3) |
C7—H7A | 0.9700 | C1—H1 | 0.9300 |
C7—H7B | 0.9700 | C2—C3 | 1.407 (3) |
C8—C9 | 1.497 (3) | C3—C4 | 1.351 (3) |
C8—H8A | 0.9700 | C3—H3 | 0.9300 |
C8—H8B | 0.9700 | C4—C5 | 1.407 (3) |
Br1—C2 | 1.891 (2) | C4—H4A | 0.9300 |
C9—O4—H4 | 109.5 | C1—N1—H1N1 | 121.6 (17) |
O1—C6—O2 | 123.6 (2) | C5—N1—H1N1 | 115.4 (17) |
O1—C6—C7 | 118.8 (2) | C5—N2—H2A | 120.0 |
O2—C6—C7 | 117.60 (18) | C5—N2—H2B | 120.0 |
C6—C7—C8 | 115.32 (18) | H2A—N2—H2B | 120.0 |
C6—C7—H7A | 108.4 | C2—C1—N1 | 119.6 (2) |
C8—C7—H7A | 108.4 | C2—C1—H1 | 120.2 |
C6—C7—H7B | 108.4 | N1—C1—H1 | 120.2 |
C8—C7—H7B | 108.4 | C1—C2—C3 | 119.8 (2) |
H7A—C7—H7B | 107.5 | C1—C2—Br1 | 120.93 (17) |
C9—C8—C7 | 114.1 (2) | C3—C2—Br1 | 119.31 (18) |
C9—C8—H8A | 108.7 | C4—C3—C2 | 119.8 (2) |
C7—C8—H8A | 108.7 | C4—C3—H3 | 120.1 |
C9—C8—H8B | 108.7 | C2—C3—H3 | 120.1 |
C7—C8—H8B | 108.7 | C3—C4—C5 | 120.2 (2) |
H8A—C8—H8B | 107.6 | C3—C4—H4A | 119.9 |
O3—C9—O4 | 123.3 (2) | C5—C4—H4A | 119.9 |
O3—C9—C8 | 125.1 (2) | N2—C5—N1 | 118.3 (2) |
O4—C9—C8 | 111.5 (2) | N2—C5—C4 | 123.99 (19) |
C1—N1—C5 | 122.9 (2) | N1—C5—C4 | 117.7 (2) |
O1—C6—C7—C8 | 3.3 (3) | C1—C2—C3—C4 | 0.2 (3) |
O2—C6—C7—C8 | −177.4 (2) | Br1—C2—C3—C4 | 179.88 (18) |
C6—C7—C8—C9 | 70.8 (3) | C2—C3—C4—C5 | −0.1 (3) |
C7—C8—C9—O3 | 6.8 (3) | C1—N1—C5—N2 | 179.6 (2) |
C7—C8—C9—O4 | −173.26 (18) | C1—N1—C5—C4 | −0.7 (3) |
C5—N1—C1—C2 | 0.8 (3) | C3—C4—C5—N2 | −180.0 (2) |
N1—C1—C2—C3 | −0.5 (3) | C3—C4—C5—N1 | 0.4 (3) |
N1—C1—C2—Br1 | 179.82 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O2 | 0.85 (3) | 1.88 (3) | 2.720 (3) | 171 (3) |
N2—H2A···O1 | 0.86 | 1.92 | 2.782 (3) | 178 |
N2—H2B···O1i | 0.86 | 2.01 | 2.805 (3) | 154 |
O4—H4···O2ii | 0.82 | 1.85 | 2.609 (2) | 154 |
C1—H1···O3iii | 0.93 | 2.43 | 3.280 (3) | 152 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H6N2Br+·C4H5O4− |
Mr | 291.11 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 5.3275 (2), 13.6226 (5), 15.1687 (5) |
V (Å3) | 1100.86 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.74 |
Crystal size (mm) | 0.80 × 0.15 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.155, 0.650 |
No. of measured, independent and observed [I > 2s(I)] reflections | 10042, 2472, 2138 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.057, 0.99 |
No. of reflections | 2472 |
No. of parameters | 150 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.31 |
Absolute structure | Flack (1983), 995 Friedel pairs |
Absolute structure parameter | 0.013 (8) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O2 | 0.85 (3) | 1.88 (3) | 2.720 (3) | 171 (3) |
N2—H2A···O1 | 0.8600 | 1.9200 | 2.782 (3) | 178.00 |
N2—H2B···O1i | 0.8600 | 2.0100 | 2.805 (3) | 154.00 |
O4—H4···O2ii | 0.8200 | 1.8500 | 2.609 (2) | 154.00 |
C1—H1···O3iii | 0.9300 | 2.4300 | 3.280 (3) | 152.00 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2. |
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported. In this paper, we present the X-ray single-crystal structure of 2-amino-5-bromopyridinium hydrogen succinate (I).
The asymmetric unit of (I) (Fig. 1) contains a 2-amino-5-bromopyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallization experiment. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [122.9 (2)°] is subtended at the protonated N1 atom. The bond lengths (Allen et al., 1987) and angles are normal.
In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds, forming a R22(8) ring motif (Bernstein et al., 1995). The hydrogen succinate anions self-assemble via O4—H4···O2 (Table 1) hydrogen bonds. Furthermore, the crystal structure is stabilized by weak C—H···O hydrogen bonds, forming a 3D-network.