Download citation
Download citation
link to html
In the title compound, C5H6BrN2+·C4H5O4, the pyridine N atom of the 2-amino-5-bromo­pyridine mol­ecule is protonated. The protonated N atom and the amino group are linked via N—H...O hydrogen bonds to the carboxyl­ate O atoms of the singly deprotonated succinate anion. The hydrogen succinate anions are linked via O—H...O hydrogen bonds. A weak inter­molecular C—H...O hydrogen bond is also observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810006495/is2526sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810006495/is2526Isup2.hkl
Contains datablock I

CCDC reference: 770063

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.025
  • wR factor = 0.057
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C9 PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. Br1 .. 3.58 Ang. PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. Br1 .. 3.58 Ang. PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 6
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 2472 Count of symmetry unique reflns 1482 Completeness (_total/calc) 166.80% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 990 Fraction of Friedel pairs measured 0.668 Are heavy atom types Z>Si present yes PLAT917_ALERT_2_G The FCF is likely NOT based on a BASF/TWIN Flack ! PLAT960_ALERT_3_G Number of Intensities with I .LT. - 2*sig(I) .. 1 PLAT063_ALERT_4_G Crystal Size Likely too Large for Beam Size .... 0.80 mm PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported. In this paper, we present the X-ray single-crystal structure of 2-amino-5-bromopyridinium hydrogen succinate (I).

The asymmetric unit of (I) (Fig. 1) contains a 2-amino-5-bromopyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallization experiment. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [122.9 (2)°] is subtended at the protonated N1 atom. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds, forming a R22(8) ring motif (Bernstein et al., 1995). The hydrogen succinate anions self-assemble via O4—H4···O2 (Table 1) hydrogen bonds. Furthermore, the crystal structure is stabilized by weak C—H···O hydrogen bonds, forming a 3D-network.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Goubitz et al. (2001); Vaday & Foxman (1999). For applications of succinic acid, see: Sauer et al. (2008). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A hot methanol solution (10 ml) of 2-amino-5-bromopyridine (87 mg, Aldrich) and a hot aqueous solution (10 ml) of succinic acid (59 mg, Merck) were mixed and warmed over a water bath for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Single crystals of the title compound appeared from the mother liquor after a few days.

Refinement top

Atom H1N1 was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.97 Å, O—H = 0.82 Å and N—H = 0.86 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). 995 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.
2-Amino-5-bromopyridinium hydrogen succinate top
Crystal data top
C5H6N2Br+·C4H5O4F(000) = 584
Mr = 291.11Dx = 1.756 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4688 reflections
a = 5.3275 (2) Åθ = 3.0–26.7°
b = 13.6226 (5) ŵ = 3.74 mm1
c = 15.1687 (5) ÅT = 296 K
V = 1100.86 (7) Å3Needle, yellow
Z = 40.80 × 0.15 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2472 independent reflections
Radiation source: fine-focus sealed tube2138 reflections with I > 2s(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.155, Tmax = 0.650k = 1716
10042 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0248P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
2472 reflectionsΔρmax = 0.21 e Å3
150 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 995 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (8)
Crystal data top
C5H6N2Br+·C4H5O4V = 1100.86 (7) Å3
Mr = 291.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3275 (2) ŵ = 3.74 mm1
b = 13.6226 (5) ÅT = 296 K
c = 15.1687 (5) Å0.80 × 0.15 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2472 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2138 reflections with I > 2s(I)
Tmin = 0.155, Tmax = 0.650Rint = 0.029
10042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057Δρmax = 0.21 e Å3
S = 0.99Δρmin = 0.31 e Å3
2472 reflectionsAbsolute structure: Flack (1983), 995 Friedel pairs
150 parametersAbsolute structure parameter: 0.013 (8)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0791 (3)0.66915 (12)0.38303 (10)0.0490 (4)
O20.2588 (3)0.53970 (10)0.32236 (11)0.0441 (4)
O30.0528 (4)0.80559 (14)0.20813 (14)0.0633 (6)
O40.3210 (4)0.86482 (12)0.24424 (12)0.0561 (5)
H40.25720.91690.22900.084*
C60.0954 (4)0.60694 (15)0.32351 (14)0.0341 (5)
C70.0907 (5)0.61018 (17)0.24855 (15)0.0450 (6)
H7A0.18500.54930.24850.054*
H7B0.00170.61340.19350.054*
C80.2747 (5)0.69486 (17)0.25115 (16)0.0437 (6)
H8A0.40680.68260.20850.052*
H8B0.35150.69710.30910.052*
C90.1593 (5)0.79274 (16)0.23193 (13)0.0377 (5)
Br11.17196 (5)0.336238 (18)0.513704 (18)0.05230 (10)
N10.6002 (4)0.52635 (13)0.45518 (13)0.0345 (4)
N20.4388 (4)0.66737 (14)0.51595 (13)0.0459 (5)
H2A0.33000.66900.47410.055*
H2B0.43880.71230.55580.055*
C10.7639 (4)0.45042 (15)0.45213 (15)0.0377 (5)
H10.75470.40470.40670.045*
C20.9404 (4)0.44144 (16)0.51537 (15)0.0380 (5)
C30.9540 (5)0.51139 (18)0.58345 (16)0.0414 (6)
H31.07560.50560.62710.050*
C40.7899 (5)0.58693 (16)0.58521 (14)0.0405 (5)
H4A0.79840.63320.63020.049*
C50.6060 (4)0.59588 (15)0.51909 (14)0.0343 (5)
H1N10.482 (5)0.5320 (17)0.4180 (16)0.047 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0616 (11)0.0425 (9)0.0428 (8)0.0111 (9)0.0104 (8)0.0157 (8)
O20.0495 (10)0.0309 (8)0.0520 (9)0.0067 (7)0.0090 (8)0.0090 (7)
O30.0470 (12)0.0576 (12)0.0852 (14)0.0024 (9)0.0118 (11)0.0229 (10)
O40.0603 (11)0.0347 (9)0.0733 (12)0.0024 (10)0.0199 (11)0.0111 (8)
C60.0412 (13)0.0265 (10)0.0347 (11)0.0057 (9)0.0013 (9)0.0001 (9)
C70.0572 (17)0.0345 (12)0.0432 (13)0.0017 (11)0.0075 (12)0.0049 (10)
C80.0426 (15)0.0392 (12)0.0493 (13)0.0033 (10)0.0088 (11)0.0050 (10)
C90.0418 (13)0.0385 (12)0.0330 (10)0.0026 (12)0.0029 (12)0.0039 (9)
Br10.04413 (14)0.04024 (13)0.07255 (17)0.00556 (11)0.00191 (13)0.00411 (12)
N10.0360 (11)0.0308 (10)0.0367 (10)0.0035 (8)0.0032 (9)0.0029 (8)
N20.0480 (11)0.0377 (10)0.0520 (10)0.0049 (9)0.0099 (10)0.0151 (10)
C10.0415 (13)0.0291 (11)0.0426 (11)0.0051 (10)0.0030 (10)0.0034 (9)
C20.0364 (12)0.0334 (11)0.0442 (11)0.0016 (9)0.0024 (11)0.0036 (10)
C30.0397 (13)0.0436 (13)0.0410 (12)0.0064 (12)0.0046 (11)0.0035 (11)
C40.0443 (14)0.0411 (12)0.0362 (11)0.0048 (12)0.0015 (11)0.0057 (10)
C50.0355 (11)0.0303 (10)0.0370 (10)0.0069 (9)0.0046 (10)0.0002 (9)
Geometric parameters (Å, º) top
O1—C61.241 (2)N1—C11.354 (3)
O2—C61.264 (3)N1—C51.356 (3)
O3—C91.199 (3)N1—H1N10.85 (3)
O4—C91.319 (3)N2—C51.321 (3)
O4—H40.8200N2—H2A0.8600
C6—C71.509 (3)N2—H2B0.8600
C7—C81.514 (3)C1—C21.349 (3)
C7—H7A0.9700C1—H10.9300
C7—H7B0.9700C2—C31.407 (3)
C8—C91.497 (3)C3—C41.351 (3)
C8—H8A0.9700C3—H30.9300
C8—H8B0.9700C4—C51.407 (3)
Br1—C21.891 (2)C4—H4A0.9300
C9—O4—H4109.5C1—N1—H1N1121.6 (17)
O1—C6—O2123.6 (2)C5—N1—H1N1115.4 (17)
O1—C6—C7118.8 (2)C5—N2—H2A120.0
O2—C6—C7117.60 (18)C5—N2—H2B120.0
C6—C7—C8115.32 (18)H2A—N2—H2B120.0
C6—C7—H7A108.4C2—C1—N1119.6 (2)
C8—C7—H7A108.4C2—C1—H1120.2
C6—C7—H7B108.4N1—C1—H1120.2
C8—C7—H7B108.4C1—C2—C3119.8 (2)
H7A—C7—H7B107.5C1—C2—Br1120.93 (17)
C9—C8—C7114.1 (2)C3—C2—Br1119.31 (18)
C9—C8—H8A108.7C4—C3—C2119.8 (2)
C7—C8—H8A108.7C4—C3—H3120.1
C9—C8—H8B108.7C2—C3—H3120.1
C7—C8—H8B108.7C3—C4—C5120.2 (2)
H8A—C8—H8B107.6C3—C4—H4A119.9
O3—C9—O4123.3 (2)C5—C4—H4A119.9
O3—C9—C8125.1 (2)N2—C5—N1118.3 (2)
O4—C9—C8111.5 (2)N2—C5—C4123.99 (19)
C1—N1—C5122.9 (2)N1—C5—C4117.7 (2)
O1—C6—C7—C83.3 (3)C1—C2—C3—C40.2 (3)
O2—C6—C7—C8177.4 (2)Br1—C2—C3—C4179.88 (18)
C6—C7—C8—C970.8 (3)C2—C3—C4—C50.1 (3)
C7—C8—C9—O36.8 (3)C1—N1—C5—N2179.6 (2)
C7—C8—C9—O4173.26 (18)C1—N1—C5—C40.7 (3)
C5—N1—C1—C20.8 (3)C3—C4—C5—N2180.0 (2)
N1—C1—C2—C30.5 (3)C3—C4—C5—N10.4 (3)
N1—C1—C2—Br1179.82 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.85 (3)1.88 (3)2.720 (3)171 (3)
N2—H2A···O10.861.922.782 (3)178
N2—H2B···O1i0.862.012.805 (3)154
O4—H4···O2ii0.821.852.609 (2)154
C1—H1···O3iii0.932.433.280 (3)152
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H6N2Br+·C4H5O4
Mr291.11
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.3275 (2), 13.6226 (5), 15.1687 (5)
V3)1100.86 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.74
Crystal size (mm)0.80 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.155, 0.650
No. of measured, independent and
observed [I > 2s(I)] reflections
10042, 2472, 2138
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 0.99
No. of reflections2472
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.31
Absolute structureFlack (1983), 995 Friedel pairs
Absolute structure parameter0.013 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.85 (3)1.88 (3)2.720 (3)171 (3)
N2—H2A···O10.86001.92002.782 (3)178.00
N2—H2B···O1i0.86002.01002.805 (3)154.00
O4—H4···O2ii0.82001.85002.609 (2)154.00
C1—H1···O3iii0.93002.43003.280 (3)152.00
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds