Download citation
Download citation
link to html
In the title complex, cis-[PtCl2(C11H9N)2], the PtII ion is situated in a slightly distorted square-planar environment coordinated by two N atoms from two 2-phenyl­pyridine ligands and two Cl atoms. The two pyridyl planes are inclined with dihedral angles of 59.1 (2) and 61.84 (19)° with respect to the PtCl2N2 plane. In the crystal, the complex mol­ecules display inter- and intra­molecular π–π stacking inter­actions, with centroid-centroid distances of 3.806 (5)–3.845 (5) Å, which form a one-dimensional column structure along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681004393X/is2622sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681004393X/is2622Isup2.hkl
Contains datablock I

CCDC reference: 799847

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.014 Å
  • R factor = 0.039
  • wR factor = 0.076
  • Data-to-parameter ratio = 18.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT973_ALERT_2_B Large Calcd. Positive Residual Density on Pt1 1.53 eA-3
Alert level C PLAT213_ALERT_2_C Atom N2 has ADP max/min Ratio ..... 3.90 oblat PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.31 Ratio PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 14 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 4 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.52 eA-3 PLAT234_ALERT_4_C Large Hirshfeld Difference C10 -- C11 .. 0.18 Ang. PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 3
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.43 From the CIF: _reflns_number_total 4488 Count of symmetry unique reflns 2352 Completeness (_total/calc) 190.82% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2136 Fraction of Friedel pairs measured 0.908 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2 PLAT917_ALERT_2_G The FCF is likely NOT based on a BASF/TWIN Flack ! PLAT794_ALERT_5_G Note: Tentative Bond Valency for Pt1 ....... 2.07
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

It has been well known that metal complexes with 2-phenylpyridinate (ppy = C11H8N) show intense photoluminescence, especially for IrIII and PtII complexes (Evans et al., 2006; Chi & Chou, 2010). Recently, we found that the IrIII complex having both ppy and D-Hpen ligands, [IrIII(ppy)2(D-Hpen)] (D—H2pen = D-penicillamine), readily reacts with AgI ion to give a luminescent S bridged IrIIIAgIIrIII trinuclear complex, [Ag{Ir(ppy)2(D—H0.5pen)}2] (Saito et al., 2010). We report herein the crystal structure of a platinum(II) complex with two monodentate 2-phenylpyridine ligands, [PtCl2(C11H9N)2] (I), which was accidentally obtained in the course of the reaction of [PtCl(ppy-κ2N,C)]2 with 1-thio-β-D-glucose.

The molecular structure of (I) is shown in Fig. 1. In (I), the two pyridyl planes of 2-phenylpyridine ligands are tilted to the coordination plane of Pt1; each of the dihedral angles of the pyridyl unit with respect to the Pt1/N1/N2/Cl1/Cl2 plane is 59.1 (2)° for the N1/C1–C5 plane and 61.84 (19)° for the N2/C12–C16 plane. In each 2-phenylpyridine ligand, the pyridyl and phenyl rings are inclined with angles of 40.4 (2)° for the N1/C1–C5 and C6—C11 planes and 48.1 (2)° for the N2/C12–C16 and C17—C22 planes, allowing them to form a pair of intramolecular ππ stacking interactions with the closest separations of 3.201 (9) and 3.256 (9) Å. Moreover, the complex molecule contacts to the neighboring molecules through intermolecular ππ stacking interactions with the closest separations of 3.438 (10) and 3.389 (10) Å, giving a one-dimensional columnar structure along the a axis (Fig. 2).

Related literature top

For an NMR study on the title compound, see: Pazderski et al. (2009). For the crystal structures of closely related metal complexes, see: Chi & Chou (2010); Evans et al. (2006); Mdleleni et al. (1995); Okada et al. (2001); Saito et al. (2010).

Experimental top

The reaction of [PtCl(ppy)]2 with 1-thio-β-D-glucose sodium salt in ethanol/water (v/v = 4/1) gave a yellow solution. The reaction solution was evaporated to dryness and was recrystallized from hot ethanol to give a small amount of yellow needle crystals of (I).

Refinement top

H atoms bonded to C atoms were placed at calculated positions and refined as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

It has been well known that metal complexes with 2-phenylpyridinate (ppy = C11H8N) show intense photoluminescence, especially for IrIII and PtII complexes (Evans et al., 2006; Chi & Chou, 2010). Recently, we found that the IrIII complex having both ppy and D-Hpen ligands, [IrIII(ppy)2(D-Hpen)] (D—H2pen = D-penicillamine), readily reacts with AgI ion to give a luminescent S bridged IrIIIAgIIrIII trinuclear complex, [Ag{Ir(ppy)2(D—H0.5pen)}2] (Saito et al., 2010). We report herein the crystal structure of a platinum(II) complex with two monodentate 2-phenylpyridine ligands, [PtCl2(C11H9N)2] (I), which was accidentally obtained in the course of the reaction of [PtCl(ppy-κ2N,C)]2 with 1-thio-β-D-glucose.

The molecular structure of (I) is shown in Fig. 1. In (I), the two pyridyl planes of 2-phenylpyridine ligands are tilted to the coordination plane of Pt1; each of the dihedral angles of the pyridyl unit with respect to the Pt1/N1/N2/Cl1/Cl2 plane is 59.1 (2)° for the N1/C1–C5 plane and 61.84 (19)° for the N2/C12–C16 plane. In each 2-phenylpyridine ligand, the pyridyl and phenyl rings are inclined with angles of 40.4 (2)° for the N1/C1–C5 and C6—C11 planes and 48.1 (2)° for the N2/C12–C16 and C17—C22 planes, allowing them to form a pair of intramolecular ππ stacking interactions with the closest separations of 3.201 (9) and 3.256 (9) Å. Moreover, the complex molecule contacts to the neighboring molecules through intermolecular ππ stacking interactions with the closest separations of 3.438 (10) and 3.389 (10) Å, giving a one-dimensional columnar structure along the a axis (Fig. 2).

For an NMR study on the title compound, see: Pazderski et al. (2009). For the crystal structures of closely related metal complexes, see: Chi & Chou (2010); Evans et al. (2006); Mdleleni et al. (1995); Okada et al. (2001); Saito et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of molecular structure of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the one-dimensional columnar structure formed along the a axis in (I).
cis-Dichloridobis(2-phenylpyridine-κN)platinum(II) top
Crystal data top
[PtCl2(C11H9N)2]F(000) = 1104
Mr = 576.37Dx = 1.859 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
Hall symbol: C -2ycCell parameters from 7887 reflections
a = 7.6457 (8) Åθ = 3.1–27.4°
b = 18.0712 (19) ŵ = 7.08 mm1
c = 14.9876 (12) ÅT = 200 K
β = 96.014 (7)°Needle, yellow
V = 2059.4 (3) Å30.30 × 0.05 × 0.03 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3862 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.046
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.329, Tmax = 0.494k = 2323
9783 measured reflectionsl = 1719
4488 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0331P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4488 reflectionsΔρmax = 1.71 e Å3
244 parametersΔρmin = 1.44 e Å3
2 restraintsAbsolute structure: Flack (1983), 2143 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (10)
Crystal data top
[PtCl2(C11H9N)2]V = 2059.4 (3) Å3
Mr = 576.37Z = 4
Monoclinic, CcMo Kα radiation
a = 7.6457 (8) ŵ = 7.08 mm1
b = 18.0712 (19) ÅT = 200 K
c = 14.9876 (12) Å0.30 × 0.05 × 0.03 mm
β = 96.014 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4488 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3862 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 0.494Rint = 0.046
9783 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076Δρmax = 1.71 e Å3
S = 1.04Δρmin = 1.44 e Å3
4488 reflectionsAbsolute structure: Flack (1983), 2143 Friedel pairs
244 parametersAbsolute structure parameter: 0.010 (10)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.74923 (3)0.137846 (14)0.68733 (3)0.01865 (8)
Cl10.6380 (6)0.14739 (18)0.8241 (2)0.0380 (9)
Cl20.9250 (3)0.03890 (12)0.73490 (14)0.0347 (5)
N10.6118 (9)0.2302 (4)0.6440 (4)0.0241 (16)
C10.6562 (11)0.2917 (5)0.6883 (6)0.027 (2)
H10.72750.28780.74400.033*
C20.6038 (13)0.3623 (5)0.6577 (7)0.036 (2)
H20.63770.40530.69160.044*
C30.5000 (13)0.3672 (6)0.5756 (8)0.040 (3)
H30.46420.41400.55130.049*
C40.4511 (12)0.3037 (5)0.5310 (6)0.033 (2)
H40.38080.30610.47490.039*
C50.5031 (11)0.2352 (5)0.5670 (5)0.0252 (19)
C60.4362 (13)0.1654 (5)0.5187 (6)0.032 (2)
C70.4466 (13)0.1573 (6)0.4288 (6)0.040 (3)
H70.49620.19540.39570.047*
C80.3829 (14)0.0917 (7)0.3855 (7)0.049 (3)
H80.38680.08600.32280.059*
C90.3158 (14)0.0368 (6)0.4340 (8)0.053 (3)
H90.27550.00740.40420.064*
C100.3043 (13)0.0433 (6)0.5251 (8)0.046 (3)
H100.25480.00520.55820.055*
C110.3698 (12)0.1092 (5)0.5664 (6)0.032 (2)
H110.36770.11480.62930.039*
N20.8432 (15)0.1270 (4)0.5656 (7)0.017 (2)
C120.7948 (10)0.0630 (4)0.5202 (5)0.0176 (17)
H120.73520.02540.54930.021*
C130.8316 (11)0.0526 (5)0.4328 (5)0.025 (2)
H130.79970.00760.40250.030*
C140.9150 (11)0.1079 (5)0.3899 (5)0.025 (2)
H140.93780.10220.32920.030*
C150.9638 (11)0.1707 (5)0.4360 (5)0.0244 (19)
H151.02120.20910.40690.029*
C160.9313 (10)0.1798 (5)0.5246 (5)0.0161 (17)
C170.9946 (11)0.2464 (5)0.5768 (5)0.0215 (18)
C180.9717 (11)0.3163 (5)0.5396 (6)0.030 (2)
H180.91150.32210.48120.036*
C191.0357 (14)0.3774 (6)0.5868 (9)0.050 (3)
H191.02160.42530.56070.060*
C201.1213 (15)0.3692 (6)0.6731 (9)0.052 (3)
H201.16310.41160.70630.063*
C211.1455 (12)0.2999 (6)0.7105 (6)0.040 (3)
H211.20480.29470.76910.048*
C221.0845 (11)0.2382 (5)0.6636 (5)0.0249 (19)
H221.10250.19030.68920.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02321 (15)0.01661 (13)0.01658 (13)0.0010 (4)0.00416 (8)0.0011 (3)
Cl10.054 (2)0.044 (2)0.0187 (15)0.0007 (18)0.0153 (13)0.0000 (13)
Cl20.0444 (15)0.0290 (13)0.0301 (12)0.0094 (11)0.0017 (9)0.0108 (9)
N10.018 (4)0.029 (4)0.026 (4)0.006 (3)0.004 (3)0.000 (3)
C10.021 (5)0.026 (5)0.037 (5)0.003 (4)0.011 (4)0.004 (4)
C20.033 (6)0.026 (5)0.052 (6)0.008 (5)0.014 (4)0.000 (4)
C30.028 (6)0.025 (6)0.070 (7)0.015 (5)0.016 (5)0.004 (5)
C40.023 (5)0.039 (6)0.036 (5)0.005 (5)0.006 (4)0.014 (4)
C50.021 (5)0.026 (5)0.031 (5)0.001 (4)0.013 (3)0.006 (4)
C60.040 (6)0.027 (5)0.027 (5)0.011 (4)0.000 (4)0.003 (4)
C70.026 (5)0.063 (8)0.029 (5)0.014 (5)0.000 (4)0.001 (4)
C80.041 (7)0.050 (7)0.052 (6)0.022 (6)0.019 (5)0.015 (6)
C90.031 (6)0.037 (7)0.085 (9)0.011 (5)0.021 (6)0.019 (6)
C100.028 (6)0.041 (7)0.067 (8)0.012 (5)0.007 (5)0.004 (5)
C110.035 (6)0.021 (5)0.042 (6)0.002 (4)0.006 (4)0.015 (4)
N20.021 (5)0.004 (4)0.026 (6)0.006 (3)0.001 (4)0.002 (3)
C120.018 (4)0.007 (4)0.028 (4)0.000 (3)0.002 (3)0.005 (3)
C130.024 (5)0.024 (5)0.028 (5)0.009 (4)0.003 (3)0.008 (3)
C140.027 (5)0.036 (5)0.013 (4)0.008 (4)0.001 (3)0.002 (3)
C150.024 (5)0.025 (5)0.024 (5)0.009 (4)0.002 (3)0.007 (4)
C160.014 (4)0.018 (5)0.017 (4)0.001 (4)0.005 (3)0.006 (3)
C170.020 (5)0.020 (5)0.026 (4)0.002 (4)0.008 (3)0.002 (3)
C180.024 (5)0.021 (5)0.045 (5)0.001 (4)0.007 (4)0.004 (4)
C190.029 (6)0.025 (6)0.098 (10)0.004 (5)0.018 (6)0.007 (5)
C200.035 (6)0.038 (7)0.086 (9)0.020 (6)0.019 (6)0.031 (6)
C210.032 (6)0.058 (8)0.032 (5)0.012 (5)0.013 (4)0.022 (5)
C220.031 (5)0.018 (5)0.026 (5)0.001 (4)0.009 (3)0.010 (3)
Geometric parameters (Å, º) top
Pt1—N22.039 (10)C10—H100.9500
Pt1—N12.041 (7)C11—H110.9500
Pt1—Cl22.304 (2)N2—C161.352 (11)
Pt1—Cl12.306 (4)N2—C121.373 (11)
N1—C11.321 (11)C12—C131.381 (11)
N1—C51.353 (10)C12—H120.9500
C1—C21.400 (12)C13—C141.381 (12)
C1—H10.9500C13—H130.9500
C2—C31.396 (15)C14—C151.361 (12)
C2—H20.9500C14—H140.9500
C3—C41.360 (14)C15—C161.386 (11)
C3—H30.9500C15—H150.9500
C4—C51.392 (12)C16—C171.489 (11)
C4—H40.9500C17—C181.385 (12)
C5—C61.515 (12)C17—C221.414 (11)
C6—C71.366 (13)C18—C191.374 (14)
C6—C111.370 (13)C18—H180.9500
C7—C81.413 (15)C19—C201.396 (16)
C7—H70.9500C19—H190.9500
C8—C91.361 (16)C20—C211.376 (15)
C8—H80.9500C20—H200.9500
C9—C101.383 (15)C21—C221.374 (12)
C9—H90.9500C21—H210.9500
C10—C111.409 (13)C22—H220.9500
N2—Pt1—N190.7 (3)C6—C11—C10122.1 (9)
N2—Pt1—Cl287.3 (3)C6—C11—H11118.9
N1—Pt1—Cl2175.3 (2)C10—C11—H11118.9
N2—Pt1—Cl1178.4 (3)C16—N2—C12119.4 (9)
N1—Pt1—Cl189.8 (2)C16—N2—Pt1125.3 (7)
Cl2—Pt1—Cl192.32 (11)C12—N2—Pt1115.0 (7)
C1—N1—C5118.4 (8)N2—C12—C13120.9 (8)
C1—N1—Pt1115.5 (6)N2—C12—H12119.5
C5—N1—Pt1125.2 (6)C13—C12—H12119.5
N1—C1—C2123.5 (9)C12—C13—C14119.5 (8)
N1—C1—H1118.3C12—C13—H13120.2
C2—C1—H1118.3C14—C13—H13120.2
C3—C2—C1117.6 (10)C15—C14—C13118.9 (8)
C3—C2—H2121.2C15—C14—H14120.5
C1—C2—H2121.2C13—C14—H14120.5
C4—C3—C2118.8 (9)C14—C15—C16121.2 (8)
C4—C3—H3120.6C14—C15—H15119.4
C2—C3—H3120.6C16—C15—H15119.4
C3—C4—C5120.5 (9)N2—C16—C15120.0 (9)
C3—C4—H4119.8N2—C16—C17118.8 (8)
C5—C4—H4119.8C15—C16—C17121.2 (8)
N1—C5—C4121.0 (8)C18—C17—C22119.7 (8)
N1—C5—C6119.9 (8)C18—C17—C16120.4 (7)
C4—C5—C6119.1 (8)C22—C17—C16119.8 (7)
C7—C6—C11119.9 (9)C19—C18—C17120.2 (9)
C7—C6—C5120.6 (9)C19—C18—H18119.9
C11—C6—C5119.6 (8)C17—C18—H18119.9
C6—C7—C8119.3 (10)C18—C19—C20119.9 (10)
C6—C7—H7120.3C18—C19—H19120.0
C8—C7—H7120.3C20—C19—H19120.0
C9—C8—C7119.9 (10)C21—C20—C19120.3 (10)
C9—C8—H8120.1C21—C20—H20119.8
C7—C8—H8120.1C19—C20—H20119.8
C8—C9—C10122.1 (10)C22—C21—C20120.4 (9)
C8—C9—H9118.9C22—C21—H21119.8
C10—C9—H9118.9C20—C21—H21119.8
C9—C10—C11116.7 (11)C21—C22—C17119.5 (9)
C9—C10—H10121.7C21—C22—H22120.3
C11—C10—H10121.7C17—C22—H22120.3
N2—Pt1—N1—C1118.5 (6)N1—Pt1—N2—C1655.4 (9)
Cl1—Pt1—N1—C163.0 (6)Cl2—Pt1—N2—C16120.4 (9)
N2—Pt1—N1—C550.4 (7)N1—Pt1—N2—C12117.8 (7)
Cl1—Pt1—N1—C5128.1 (7)Cl2—Pt1—N2—C1266.4 (7)
C5—N1—C1—C23.3 (12)C16—N2—C12—C131.4 (14)
Pt1—N1—C1—C2166.4 (7)Pt1—N2—C12—C13172.2 (6)
N1—C1—C2—C30.3 (13)N2—C12—C13—C141.3 (13)
C1—C2—C3—C41.8 (14)C12—C13—C14—C152.0 (12)
C2—C3—C4—C50.3 (14)C13—C14—C15—C160.0 (12)
C1—N1—C5—C45.5 (12)C12—N2—C16—C153.4 (14)
Pt1—N1—C5—C4163.1 (6)Pt1—N2—C16—C15169.5 (7)
C1—N1—C5—C6174.5 (8)C12—N2—C16—C17175.5 (8)
Pt1—N1—C5—C616.9 (11)Pt1—N2—C16—C1711.5 (13)
C3—C4—C5—N14.0 (13)C14—C15—C16—N22.8 (13)
C3—C4—C5—C6175.9 (8)C14—C15—C16—C17176.2 (8)
N1—C5—C6—C7130.7 (9)N2—C16—C17—C18135.0 (9)
C4—C5—C6—C749.3 (12)C15—C16—C17—C1846.0 (11)
N1—C5—C6—C1147.3 (12)N2—C16—C17—C2247.4 (12)
C4—C5—C6—C11132.7 (9)C15—C16—C17—C22131.6 (8)
C11—C6—C7—C82.1 (14)C22—C17—C18—C190.1 (13)
C5—C6—C7—C8179.9 (8)C16—C17—C18—C19177.7 (8)
C6—C7—C8—C91.5 (14)C17—C18—C19—C201.1 (14)
C7—C8—C9—C101.2 (16)C18—C19—C20—C211.5 (16)
C8—C9—C10—C111.5 (15)C19—C20—C21—C220.5 (15)
C7—C6—C11—C102.5 (15)C20—C21—C22—C170.7 (13)
C5—C6—C11—C10179.5 (8)C18—C17—C22—C211.1 (12)
C9—C10—C11—C62.1 (14)C16—C17—C22—C21178.7 (8)

Experimental details

Crystal data
Chemical formula[PtCl2(C11H9N)2]
Mr576.37
Crystal system, space groupMonoclinic, Cc
Temperature (K)200
a, b, c (Å)7.6457 (8), 18.0712 (19), 14.9876 (12)
β (°) 96.014 (7)
V3)2059.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.08
Crystal size (mm)0.30 × 0.05 × 0.03
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.329, 0.494
No. of measured, independent and
observed [I > 2σ(I)] reflections
9783, 4488, 3862
Rint0.046
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.076, 1.04
No. of reflections4488
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.71, 1.44
Absolute structureFlack (1983), 2143 Friedel pairs
Absolute structure parameter0.010 (10)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds