Download citation
Download citation
link to html
The asymmetric unit of the title compound, [MnCl2(C11H17N3)], contains two crystallographically independent mol­ecules with slightly different geometries. In each mol­ecule, the MnII ion is five coordinated by the N,N′,N′′-tridentate Schiff base and two Cl atoms in a distorted square-pyramidal geometry. In the crystal, C—H...Cl hydrogen bonds link adjacent mol­ecules into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811002030/is2666sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811002030/is2666Isup2.hkl
Contains datablock I

CCDC reference: 811190

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.027
  • wR factor = 0.063
  • Data-to-parameter ratio = 20.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 54.00 A   3 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 4
Alert level G PLAT794_ALERT_5_G Note: Tentative Bond Valency for Mn1 ....... 2.08 PLAT794_ALERT_5_G Note: Tentative Bond Valency for Mn2 ....... 2.12
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The title compound was obtained upon complexation of the Schiff base, N,N-dimethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine, with MnCl2. Similar to its analogous copper(II) complex (Saleh Salga et al., 2010), the metal center is five-coordinated by the N,N',N"-tridentate Schiff base and two Cl atoms. Two geometrically different molecules exist in the crystal structure. In both molecules, the MnII ions are in a square-pyramidal coordination environment with different degrees of distortion from the ideal geometry as revealed by the τ values of 0.101 for Mn1 complex and 0.035 for Mn2 complex. The weighted r.m.s. fit for the superposition of the non-H atoms in both molecules is 0.0868 Å. The Mn—Cl and Mn—N bond lengths in the two molecules are comparable with those in the related structures (Gibson et al., 2003; Reardon et al., 2002). In the crystal, the adjacent molecules are connected via C—H···Cl hydrogen bonds into a three-dimensional polymeric structure. The crystal structure contains void spaces with the size of 54.00 Å-3 within which there is no evidence for included solvent.

Related literature top

For the structure of a CuCl2 complex of the same Schiff base, see: Saleh Salga et al. (2010). For structures of similar MnII complexes, see: Gibson et al. (2003); Reardon et al. (2002).

Experimental top

A mixture of 2-acetylpyridine (0.61 g, 5 mmol) and N,N-dimethylethyldiamine (0.44 g, 5 mmol) in ethanol (50 ml) was refluxed for 2 hr followed by addition of a solution of manganese(II) chloride (0.63 g, 5 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then set aside at room temperature. The crystals of the title compound were obtained after a few days.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.95–0.99 Å) and were treated as riding on their parent atoms, with Uiso(H) set to 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms have been omitted for clarity.
Dichlorido{N,N-dimethyl-N'-[1-(2- pyridyl)ethylidene]ethane-1,2-diamine- κ3N,N',N"}manganese(II) top
Crystal data top
[MnCl2(C11H17N3)]F(000) = 1304
Mr = 317.12Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7274 reflections
a = 17.6157 (8) Åθ = 2.4–29.6°
b = 9.9269 (4) ŵ = 1.24 mm1
c = 20.4710 (8) ÅT = 100 K
β = 124.592 (3)°Block, brown
V = 2946.9 (2) Å30.19 × 0.13 × 0.09 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
6426 independent reflections
Radiation source: fine-focus sealed tube5326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.798, Tmax = 0.897k = 1212
26611 measured reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.699P]
where P = (Fo2 + 2Fc2)/3
6426 reflections(Δ/σ)max = 0.004
313 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[MnCl2(C11H17N3)]V = 2946.9 (2) Å3
Mr = 317.12Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.6157 (8) ŵ = 1.24 mm1
b = 9.9269 (4) ÅT = 100 K
c = 20.4710 (8) Å0.19 × 0.13 × 0.09 mm
β = 124.592 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6426 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5326 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.897Rint = 0.043
26611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
6426 reflectionsΔρmin = 0.32 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.124031 (16)0.97384 (3)0.858429 (14)0.01582 (7)
Cl11.23612 (3)0.80041 (5)0.91747 (2)0.02316 (10)
Cl21.15773 (3)1.20051 (5)0.90329 (2)0.02196 (10)
N11.04215 (9)0.90231 (15)0.90492 (8)0.0168 (3)
N20.97678 (9)0.99030 (14)0.76157 (8)0.0160 (3)
N31.12012 (10)0.99132 (15)0.74495 (9)0.0197 (3)
C11.07802 (12)0.85447 (19)0.97795 (10)0.0216 (4)
H11.14300.84351.01250.026*
C21.02463 (13)0.8203 (2)1.00538 (10)0.0242 (4)
H21.05260.78771.05790.029*
C30.93044 (12)0.83419 (19)0.95525 (10)0.0234 (4)
H30.89220.81110.97260.028*
C40.89186 (12)0.88283 (19)0.87851 (10)0.0200 (4)
H40.82700.89290.84270.024*
C50.94953 (11)0.91610 (18)0.85543 (9)0.0156 (3)
C60.91493 (11)0.96556 (17)0.77415 (9)0.0153 (3)
C70.81348 (11)0.98027 (19)0.71441 (10)0.0213 (4)
H7A0.80211.02610.66720.032*
H7B0.78711.03340.73730.032*
H7C0.78470.89100.69950.032*
C80.95400 (11)1.03545 (19)0.68423 (10)0.0188 (4)
H8A0.90821.10930.66360.023*
H8B0.92740.96020.64570.023*
C91.04255 (12)1.08444 (19)0.69561 (10)0.0199 (4)
H9A1.03251.09400.64310.024*
H9B1.05851.17430.72110.024*
C101.20578 (13)1.0510 (2)0.76109 (12)0.0322 (5)
H10A1.19941.06620.71090.048*
H10B1.25740.98950.79440.048*
H10C1.21751.13710.78880.048*
C111.10379 (13)0.8605 (2)0.70528 (11)0.0289 (4)
H11A1.04820.81910.69650.043*
H11B1.15680.80130.73870.043*
H11C1.09550.87400.65420.043*
Mn20.399031 (16)0.52217 (3)0.750325 (14)0.01472 (7)
Cl30.27334 (3)0.67387 (4)0.68459 (2)0.01975 (9)
Cl40.35006 (3)0.30314 (4)0.75588 (2)0.01934 (9)
N40.46738 (9)0.59908 (15)0.87463 (8)0.0169 (3)
N50.55015 (9)0.51120 (14)0.80993 (8)0.0169 (3)
N60.41710 (9)0.49145 (14)0.65054 (8)0.0168 (3)
C120.42304 (12)0.65017 (19)0.90427 (10)0.0207 (4)
H120.35780.65830.87030.025*
C130.46790 (13)0.6921 (2)0.98259 (10)0.0257 (4)
H130.43400.72691.00200.031*
C140.56266 (13)0.6821 (2)1.03155 (10)0.0272 (4)
H140.59520.70991.08540.033*
C150.60977 (12)0.6307 (2)1.00105 (10)0.0238 (4)
H150.67510.62401.03370.029*
C160.56054 (11)0.58944 (18)0.92261 (10)0.0178 (4)
C170.60500 (11)0.53567 (18)0.88397 (10)0.0182 (4)
C180.70730 (12)0.5158 (2)0.93333 (11)0.0286 (4)
H18A0.72390.44440.97230.043*
H18B0.73780.59990.96100.043*
H18C0.72720.49010.89900.043*
C190.58162 (11)0.46412 (18)0.76133 (10)0.0190 (4)
H19A0.63000.39470.79040.023*
H19B0.60790.54010.74900.023*
C200.49955 (11)0.40536 (19)0.68527 (10)0.0198 (4)
H20A0.51550.39420.64640.024*
H20B0.48550.31510.69640.024*
C210.33693 (12)0.4222 (2)0.58233 (10)0.0240 (4)
H21A0.28200.47880.56030.036*
H21B0.32700.33610.59980.036*
H21C0.34850.40590.54150.036*
C220.43085 (12)0.62049 (19)0.62313 (10)0.0235 (4)
H22A0.44580.60330.58450.035*
H22B0.48170.66990.66850.035*
H22C0.37430.67420.59820.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01282 (12)0.01482 (15)0.01788 (13)0.00021 (10)0.00756 (10)0.00039 (10)
Cl10.0172 (2)0.0201 (3)0.0250 (2)0.00366 (17)0.00763 (17)0.00099 (18)
Cl20.0208 (2)0.0159 (2)0.0226 (2)0.00041 (17)0.00844 (17)0.00178 (17)
N10.0158 (7)0.0151 (9)0.0162 (7)0.0004 (6)0.0071 (6)0.0001 (6)
N20.0165 (7)0.0143 (8)0.0165 (7)0.0002 (6)0.0090 (6)0.0007 (6)
N30.0177 (7)0.0193 (9)0.0244 (8)0.0016 (6)0.0133 (6)0.0015 (6)
C10.0190 (8)0.0213 (11)0.0185 (8)0.0008 (7)0.0071 (7)0.0017 (7)
C20.0292 (9)0.0224 (11)0.0187 (9)0.0008 (8)0.0122 (8)0.0030 (8)
C30.0296 (9)0.0216 (11)0.0263 (9)0.0020 (8)0.0202 (8)0.0005 (8)
C40.0187 (8)0.0192 (11)0.0217 (9)0.0001 (7)0.0113 (7)0.0018 (7)
C50.0166 (8)0.0115 (9)0.0170 (8)0.0003 (6)0.0085 (7)0.0011 (7)
C60.0151 (8)0.0116 (9)0.0185 (8)0.0006 (6)0.0092 (7)0.0011 (7)
C70.0152 (8)0.0259 (11)0.0199 (9)0.0009 (7)0.0083 (7)0.0019 (7)
C80.0194 (8)0.0202 (11)0.0165 (8)0.0016 (7)0.0099 (7)0.0023 (7)
C90.0253 (9)0.0161 (10)0.0215 (9)0.0013 (7)0.0152 (7)0.0013 (7)
C100.0257 (10)0.0407 (14)0.0371 (11)0.0042 (9)0.0221 (9)0.0018 (9)
C110.0342 (11)0.0244 (12)0.0302 (10)0.0037 (8)0.0195 (9)0.0055 (8)
Mn20.01270 (12)0.01534 (15)0.01475 (13)0.00070 (10)0.00696 (10)0.00102 (10)
Cl30.01567 (18)0.0178 (2)0.0222 (2)0.00130 (16)0.00860 (16)0.00015 (17)
Cl40.01727 (19)0.0164 (2)0.0241 (2)0.00004 (16)0.01153 (17)0.00154 (17)
N40.0164 (7)0.0160 (9)0.0176 (7)0.0028 (6)0.0092 (6)0.0010 (6)
N50.0157 (7)0.0154 (9)0.0195 (7)0.0004 (6)0.0099 (6)0.0007 (6)
N60.0171 (7)0.0153 (9)0.0166 (7)0.0017 (6)0.0087 (6)0.0009 (6)
C120.0203 (8)0.0191 (11)0.0250 (9)0.0040 (7)0.0143 (7)0.0020 (7)
C130.0324 (10)0.0259 (12)0.0254 (9)0.0054 (8)0.0204 (8)0.0064 (8)
C140.0340 (10)0.0276 (12)0.0173 (9)0.0093 (8)0.0129 (8)0.0057 (8)
C150.0210 (9)0.0251 (12)0.0182 (9)0.0038 (8)0.0069 (7)0.0002 (7)
C160.0180 (8)0.0148 (10)0.0176 (8)0.0013 (7)0.0083 (7)0.0026 (7)
C170.0159 (8)0.0141 (10)0.0209 (8)0.0006 (7)0.0082 (7)0.0023 (7)
C180.0160 (9)0.0335 (13)0.0261 (10)0.0028 (8)0.0059 (8)0.0031 (8)
C190.0176 (8)0.0182 (10)0.0236 (9)0.0024 (7)0.0131 (7)0.0008 (7)
C200.0242 (9)0.0167 (10)0.0233 (9)0.0013 (7)0.0163 (8)0.0011 (7)
C210.0228 (9)0.0267 (12)0.0187 (9)0.0051 (8)0.0095 (7)0.0049 (8)
C220.0246 (9)0.0217 (11)0.0238 (9)0.0004 (8)0.0135 (8)0.0043 (8)
Geometric parameters (Å, º) top
Mn1—N22.2015 (14)Mn2—N52.2134 (13)
Mn1—N12.2470 (14)Mn2—N42.2426 (13)
Mn1—N32.2911 (14)Mn2—N62.2596 (14)
Mn1—Cl12.3694 (5)Mn2—Cl42.3656 (5)
Mn1—Cl22.3748 (5)Mn2—Cl32.3659 (5)
N1—C11.337 (2)N4—C121.332 (2)
N1—C51.353 (2)N4—C161.355 (2)
N2—C61.278 (2)N5—C171.275 (2)
N2—C81.465 (2)N5—C191.464 (2)
N3—C111.471 (2)N6—C221.473 (2)
N3—C101.474 (2)N6—C201.474 (2)
N3—C91.475 (2)N6—C211.475 (2)
C1—C21.384 (2)C12—C131.389 (2)
C1—H10.9500C12—H120.9500
C2—C31.375 (3)C13—C141.379 (3)
C2—H20.9500C13—H130.9500
C3—C41.397 (2)C14—C151.388 (3)
C3—H30.9500C14—H140.9500
C4—C51.382 (2)C15—C161.385 (2)
C4—H40.9500C15—H150.9500
C5—C61.493 (2)C16—C171.493 (2)
C6—C71.493 (2)C17—C181.497 (2)
C7—H7A0.9800C18—H18A0.9800
C7—H7B0.9800C18—H18B0.9800
C7—H7C0.9800C18—H18C0.9800
C8—C91.520 (2)C19—C201.516 (2)
C8—H8A0.9900C19—H19A0.9900
C8—H8B0.9900C19—H19B0.9900
C9—H9A0.9900C20—H20A0.9900
C9—H9B0.9900C20—H20B0.9900
C10—H10A0.9800C21—H21A0.9800
C10—H10B0.9800C21—H21B0.9800
C10—H10C0.9800C21—H21C0.9800
C11—H11A0.9800C22—H22A0.9800
C11—H11B0.9800C22—H22B0.9800
C11—H11C0.9800C22—H22C0.9800
N2—Mn1—N172.15 (5)N5—Mn2—N471.84 (5)
N2—Mn1—N374.89 (5)N5—Mn2—N675.47 (5)
N1—Mn1—N3142.78 (5)N4—Mn2—N6144.23 (5)
N2—Mn1—Cl1136.71 (4)N5—Mn2—Cl4106.59 (4)
N1—Mn1—Cl195.96 (4)N4—Mn2—Cl4103.53 (4)
N3—Mn1—Cl196.25 (4)N6—Mn2—Cl499.31 (4)
N2—Mn1—Cl2100.72 (4)N5—Mn2—Cl3142.11 (4)
N1—Mn1—Cl2102.43 (4)N4—Mn2—Cl398.91 (4)
N3—Mn1—Cl2100.22 (4)N6—Mn2—Cl397.95 (4)
Cl1—Mn1—Cl2122.565 (18)Cl4—Mn2—Cl3111.302 (17)
C1—N1—C5118.48 (14)C12—N4—C16118.60 (14)
C1—N1—Mn1125.20 (11)C12—N4—Mn2124.80 (11)
C5—N1—Mn1116.24 (11)C16—N4—Mn2116.58 (11)
C6—N2—C8122.33 (14)C17—N5—C19123.01 (14)
C6—N2—Mn1120.52 (11)C17—N5—Mn2120.56 (11)
C8—N2—Mn1117.11 (10)C19—N5—Mn2116.24 (10)
C11—N3—C10109.47 (15)C22—N6—C20110.98 (13)
C11—N3—C9111.13 (14)C22—N6—C21108.69 (13)
C10—N3—C9109.52 (14)C20—N6—C21109.77 (14)
C11—N3—Mn1112.15 (11)C22—N6—Mn2111.41 (10)
C10—N3—Mn1111.44 (11)C20—N6—Mn2104.36 (9)
C9—N3—Mn1102.98 (10)C21—N6—Mn2111.59 (10)
N1—C1—C2122.84 (16)N4—C12—C13122.92 (16)
N1—C1—H1118.6N4—C12—H12118.5
C2—C1—H1118.6C13—C12—H12118.5
C3—C2—C1118.86 (16)C14—C13—C12118.55 (17)
C3—C2—H2120.6C14—C13—H13120.7
C1—C2—H2120.6C12—C13—H13120.7
C2—C3—C4118.98 (16)C13—C14—C15119.07 (16)
C2—C3—H3120.5C13—C14—H14120.5
C4—C3—H3120.5C15—C14—H14120.5
C5—C4—C3118.98 (15)C16—C15—C14119.31 (16)
C5—C4—H4120.5C16—C15—H15120.3
C3—C4—H4120.5C14—C15—H15120.3
N1—C5—C4121.86 (15)N4—C16—C15121.54 (16)
N1—C5—C6115.07 (14)N4—C16—C17115.15 (14)
C4—C5—C6123.05 (14)C15—C16—C17123.29 (15)
N2—C6—C7125.25 (15)N5—C17—C16115.24 (14)
N2—C6—C5115.62 (14)N5—C17—C18125.93 (16)
C7—C6—C5119.12 (14)C16—C17—C18118.83 (15)
C6—C7—H7A109.5C17—C18—H18A109.5
C6—C7—H7B109.5C17—C18—H18B109.5
H7A—C7—H7B109.5H18A—C18—H18B109.5
C6—C7—H7C109.5C17—C18—H18C109.5
H7A—C7—H7C109.5H18A—C18—H18C109.5
H7B—C7—H7C109.5H18B—C18—H18C109.5
N2—C8—C9107.72 (13)N5—C19—C20108.22 (13)
N2—C8—H8A110.2N5—C19—H19A110.1
C9—C8—H8A110.2C20—C19—H19A110.1
N2—C8—H8B110.2N5—C19—H19B110.1
C9—C8—H8B110.2C20—C19—H19B110.1
H8A—C8—H8B108.5H19A—C19—H19B108.4
N3—C9—C8112.06 (14)N6—C20—C19112.10 (14)
N3—C9—H9A109.2N6—C20—H20A109.2
C8—C9—H9A109.2C19—C20—H20A109.2
N3—C9—H9B109.2N6—C20—H20B109.2
C8—C9—H9B109.2C19—C20—H20B109.2
H9A—C9—H9B107.9H20A—C20—H20B107.9
N3—C10—H10A109.5N6—C21—H21A109.5
N3—C10—H10B109.5N6—C21—H21B109.5
H10A—C10—H10B109.5H21A—C21—H21B109.5
N3—C10—H10C109.5N6—C21—H21C109.5
H10A—C10—H10C109.5H21A—C21—H21C109.5
H10B—C10—H10C109.5H21B—C21—H21C109.5
N3—C11—H11A109.5N6—C22—H22A109.5
N3—C11—H11B109.5N6—C22—H22B109.5
H11A—C11—H11B109.5H22A—C22—H22B109.5
N3—C11—H11C109.5N6—C22—H22C109.5
H11A—C11—H11C109.5H22A—C22—H22C109.5
H11B—C11—H11C109.5H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl4i0.952.733.6115 (18)155
C7—H7B···Cl3i0.982.753.7280 (18)175
C14—H14···Cl4ii0.952.823.7048 (18)156
C19—H19A···Cl3iii0.992.643.5839 (18)159
C19—H19B···Cl4i0.992.733.6579 (19)156
C22—H22B···Cl4i0.982.783.6693 (19)151
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[MnCl2(C11H17N3)]
Mr317.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.6157 (8), 9.9269 (4), 20.4710 (8)
β (°) 124.592 (3)
V3)2946.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.19 × 0.13 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
26611, 6426, 5326
Rint0.043
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.02
No. of reflections6426
No. of parameters313
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl4i0.952.733.6115 (18)155
C7—H7B···Cl3i0.982.753.7280 (18)175
C14—H14···Cl4ii0.952.823.7048 (18)156
C19—H19A···Cl3iii0.992.643.5839 (18)159
C19—H19B···Cl4i0.992.733.6579 (19)156
C22—H22B···Cl4i0.982.783.6693 (19)151
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds