Download citation
Download citation
link to html
The quinoline ring system of the title salt, C11H12NO+·HSO4, is essentially planar, with a maximum deviation of 0.054 (2) Å for all non H atoms. In the crystal, the cations and anions are linked via N—H...O, O—H...O and weak C—H...O hydrogen bonds, and are stacked respectively in columns along the a axis. π–π stacking inter­actions, with centroid–centroid distances of 3.5473 (12) and 3.6926 (12) Å, are also observed. The crystal studied was an inversion twin with refined components of 0.43 (7):0.57 (7).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812049483/is5225sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812049483/is5225Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536812049483/is5225Isup3.cml
Supplementary material

CCDC reference: 920233

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.039
  • wR factor = 0.103
  • Data-to-parameter ratio = 18.8

checkCIF/PLATON results

No syntax errors found



Alert level C STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.430 From the CIF: _refine_ls_abs_structure_Flack_su 0.070 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT033_ALERT_4_G Flack x Value Deviates .gt. 2*sigma from Zero .. 0.430 PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 3 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 4
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh et al., 2010a,b). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991) and biologically active compounds (Markees et al., 1970). Herein we report the synthesis of 8-hydroxy-5,7-dimethylquinolin-1-ium hydrogen sulfate.

The asymmetric unit of the title compound (Fig. 1) consists of one 8-hydroxy-5,7-dimethylquinolin-1-ium cation and one hydrogen sulfate anion. One proton is transferred from the hydroxyl group of sulfuric acid to the atom N1 of 8-hydroxy-5,7-dimethylquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is essentially planar with a maximum deviation of 0.054 (2) Å at atom C8. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the cations are linked by the anions via intermolecular N1—H1N1···O3i, O5—H1O5···O2ii, O1—H1O1···O4i, C3—H3A···O5iii and C11—H11C···O3ii hydrogen bonds (symmetry codes in Table 1) into a three-dimensional network. Furthermore, the crystal structure is stabilized by the following ππ interactions: (a) between pyridine (N1/C1–C5, centroid Cg1) and benzene (C1/C5–C9, centroid Cg2) rings Cg1···Cg2 (1/2 + x, 1/2 - y, 2 - z) 3.5473 (12) Å and (b) between benzene rings (C1/C5–C9, centroid Cg2) Cg2···Cg2 (-1/2 + x, 1/2 - y, 2 - z) 3.6926 (12) Å. The crystal studied was an inversion twin, with a ratio of the twin components of 0.43 (7):0.57 (7).

Related literature top

For background to and the biological activity of quinoline derivatives, see: Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Markees et al. (1970). For related structures, see: Loh et al. (2010a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A few drops of sulfuric acid were added to a hot methanol solution (20 ml) of 8-hydroxy-5,7-dimethylquinoline (36 mg, Aldrich) which had been warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

O- and N-bound H atoms were located in a difference Fourier map and refined freely [refined distances: O—H = 0.97 (4) and 0.79 (3) Å, N—H = 0.91 (2) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group. The crystal studied was an inversion twin, with a ratio of the twin components of 0.43 (7):0.57 (7). The Hooft y parameter was 0.48 (4).

Structure description top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh et al., 2010a,b). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991) and biologically active compounds (Markees et al., 1970). Herein we report the synthesis of 8-hydroxy-5,7-dimethylquinolin-1-ium hydrogen sulfate.

The asymmetric unit of the title compound (Fig. 1) consists of one 8-hydroxy-5,7-dimethylquinolin-1-ium cation and one hydrogen sulfate anion. One proton is transferred from the hydroxyl group of sulfuric acid to the atom N1 of 8-hydroxy-5,7-dimethylquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is essentially planar with a maximum deviation of 0.054 (2) Å at atom C8. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the cations are linked by the anions via intermolecular N1—H1N1···O3i, O5—H1O5···O2ii, O1—H1O1···O4i, C3—H3A···O5iii and C11—H11C···O3ii hydrogen bonds (symmetry codes in Table 1) into a three-dimensional network. Furthermore, the crystal structure is stabilized by the following ππ interactions: (a) between pyridine (N1/C1–C5, centroid Cg1) and benzene (C1/C5–C9, centroid Cg2) rings Cg1···Cg2 (1/2 + x, 1/2 - y, 2 - z) 3.5473 (12) Å and (b) between benzene rings (C1/C5–C9, centroid Cg2) Cg2···Cg2 (-1/2 + x, 1/2 - y, 2 - z) 3.6926 (12) Å. The crystal studied was an inversion twin, with a ratio of the twin components of 0.43 (7):0.57 (7).

For background to and the biological activity of quinoline derivatives, see: Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Markees et al. (1970). For related structures, see: Loh et al. (2010a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
8-Hydroxy-5,7-dimethylquinolin-1-ium hydrogen sulfate top
Crystal data top
C11H12NO+·HSO4F(000) = 568
Mr = 271.28Dx = 1.567 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6153 reflections
a = 6.6750 (9) Åθ = 2.8–29.9°
b = 11.6952 (14) ŵ = 0.30 mm1
c = 14.7283 (18) ÅT = 100 K
V = 1149.8 (3) Å3Block, yellow
Z = 40.41 × 0.17 × 0.15 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3341 independent reflections
Radiation source: fine-focus sealed tube3142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 30.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.889, Tmax = 0.956k = 1616
9735 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.0691P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3341 reflectionsΔρmax = 0.84 e Å3
178 parametersΔρmin = 0.42 e Å3
0 restraintsAbsolute structure: Flack (1983), 1410 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.43 (7)
Crystal data top
C11H12NO+·HSO4V = 1149.8 (3) Å3
Mr = 271.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6750 (9) ŵ = 0.30 mm1
b = 11.6952 (14) ÅT = 100 K
c = 14.7283 (18) Å0.41 × 0.17 × 0.15 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3341 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3142 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.956Rint = 0.040
9735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103Δρmax = 0.84 e Å3
S = 1.05Δρmin = 0.42 e Å3
3341 reflectionsAbsolute structure: Flack (1983), 1410 Friedel pairs
178 parametersAbsolute structure parameter: 0.43 (7)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15917 (7)0.73295 (3)0.89075 (3)0.01680 (11)
O10.3784 (2)0.68512 (11)0.89220 (9)0.0235 (3)
O20.0640 (3)0.66640 (10)0.82023 (10)0.0284 (3)
O30.1707 (3)0.85435 (10)0.87008 (9)0.0270 (3)
O40.0779 (3)0.70976 (12)0.98112 (10)0.0307 (3)
O50.7154 (2)0.37726 (9)1.19245 (7)0.0180 (3)
N10.7224 (2)0.45539 (10)1.01976 (9)0.0145 (3)
C10.7217 (3)0.33937 (12)1.03458 (9)0.0126 (3)
C20.7309 (3)0.50147 (13)0.93688 (10)0.0165 (3)
H2A0.73490.58220.93020.020*
C30.7339 (3)0.43178 (14)0.85994 (10)0.0175 (3)
H3A0.73940.46460.80100.021*
C40.7288 (3)0.31450 (14)0.87066 (9)0.0158 (3)
H4A0.72830.26650.81860.019*
C50.7243 (3)0.26499 (13)0.95828 (9)0.0128 (3)
C60.7217 (3)0.14410 (12)0.97396 (10)0.0138 (3)
C70.7275 (3)0.10657 (13)1.06266 (10)0.0156 (3)
H7A0.72910.02651.07330.019*
C80.7312 (3)0.18055 (14)1.13898 (10)0.0151 (3)
C90.7197 (3)0.29722 (12)1.12470 (9)0.0137 (3)
C100.7169 (3)0.06073 (13)0.89626 (11)0.0189 (3)
H10A0.70940.01740.92010.028*
H10B0.83880.06920.85980.028*
H10C0.59940.07600.85830.028*
C110.7464 (3)0.13120 (14)1.23285 (11)0.0203 (4)
H11A0.83150.18041.27040.030*
H11B0.80520.05451.22960.030*
H11C0.61250.12641.25980.030*
H1N10.713 (4)0.5064 (18)1.0663 (15)0.015 (5)*
H1O50.630 (5)0.359 (2)1.227 (2)0.038 (8)*
H1O10.454 (6)0.718 (3)0.942 (2)0.060 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0199 (2)0.01535 (16)0.01516 (16)0.00047 (15)0.00309 (16)0.00102 (12)
O10.0210 (7)0.0244 (5)0.0250 (6)0.0039 (5)0.0003 (6)0.0053 (5)
O20.0380 (9)0.0183 (5)0.0289 (6)0.0014 (6)0.0167 (7)0.0033 (5)
O30.0395 (9)0.0146 (5)0.0268 (6)0.0008 (6)0.0120 (6)0.0010 (4)
O40.0316 (8)0.0373 (7)0.0232 (6)0.0046 (7)0.0116 (6)0.0026 (5)
O50.0252 (7)0.0174 (5)0.0113 (4)0.0031 (5)0.0034 (5)0.0027 (4)
N10.0161 (7)0.0135 (5)0.0139 (5)0.0003 (5)0.0017 (5)0.0007 (4)
C10.0130 (7)0.0129 (6)0.0120 (6)0.0003 (6)0.0007 (6)0.0000 (5)
C20.0174 (8)0.0151 (6)0.0170 (6)0.0011 (6)0.0006 (7)0.0044 (5)
C30.0179 (9)0.0205 (7)0.0142 (6)0.0002 (7)0.0005 (7)0.0039 (5)
C40.0169 (8)0.0193 (6)0.0112 (6)0.0002 (6)0.0003 (6)0.0004 (5)
C50.0125 (7)0.0153 (6)0.0107 (5)0.0004 (6)0.0000 (5)0.0002 (5)
C60.0136 (7)0.0133 (6)0.0146 (6)0.0003 (6)0.0005 (6)0.0020 (5)
C70.0151 (8)0.0141 (6)0.0177 (6)0.0007 (6)0.0018 (6)0.0012 (5)
C80.0139 (8)0.0180 (6)0.0134 (6)0.0006 (6)0.0011 (6)0.0016 (5)
C90.0159 (7)0.0156 (6)0.0098 (6)0.0014 (6)0.0005 (6)0.0008 (5)
C100.0219 (9)0.0172 (6)0.0176 (6)0.0010 (6)0.0010 (7)0.0053 (5)
C110.0240 (10)0.0219 (7)0.0149 (6)0.0038 (7)0.0012 (7)0.0067 (5)
Geometric parameters (Å, º) top
S1—O21.4451 (13)C4—C51.4148 (18)
S1—O31.4542 (12)C4—H4A0.9500
S1—O41.4626 (14)C5—C61.433 (2)
S1—O11.5668 (15)C6—C71.379 (2)
O1—H1O10.97 (4)C6—C101.504 (2)
O5—C91.3685 (17)C7—C81.419 (2)
O5—H1O50.79 (3)C7—H7A0.9500
N1—C21.3355 (18)C8—C91.383 (2)
N1—C11.3743 (17)C8—C111.502 (2)
N1—H1N10.91 (2)C10—H10A0.9800
C1—C91.4160 (18)C10—H10B0.9800
C1—C51.4212 (19)C10—H10C0.9800
C2—C31.396 (2)C11—H11A0.9800
C2—H2A0.9500C11—H11B0.9800
C3—C41.381 (2)C11—H11C0.9800
C3—H3A0.9500
O2—S1—O3113.50 (8)C1—C5—C6118.45 (12)
O2—S1—O4113.03 (10)C7—C6—C5117.81 (13)
O3—S1—O4113.04 (8)C7—C6—C10121.01 (13)
O2—S1—O1103.19 (8)C5—C6—C10121.17 (13)
O3—S1—O1107.56 (9)C6—C7—C8123.86 (14)
O4—S1—O1105.54 (9)C6—C7—H7A118.1
S1—O1—H1O1111 (2)C8—C7—H7A118.1
C9—O5—H1O5108 (2)C9—C8—C7118.70 (13)
C2—N1—C1122.94 (13)C9—C8—C11121.54 (14)
C2—N1—H1N1115.2 (14)C7—C8—C11119.75 (14)
C1—N1—H1N1121.8 (14)O5—C9—C8124.42 (13)
N1—C1—C9119.52 (13)O5—C9—C1116.46 (13)
N1—C1—C5118.60 (13)C8—C9—C1119.05 (13)
C9—C1—C5121.89 (13)C6—C10—H10A109.5
N1—C2—C3120.46 (14)C6—C10—H10B109.5
N1—C2—H2A119.8H10A—C10—H10B109.5
C3—C2—H2A119.8C6—C10—H10C109.5
C4—C3—C2119.12 (14)H10A—C10—H10C109.5
C4—C3—H3A120.4H10B—C10—H10C109.5
C2—C3—H3A120.4C8—C11—H11A109.5
C3—C4—C5120.74 (13)C8—C11—H11B109.5
C3—C4—H4A119.6H11A—C11—H11B109.5
C5—C4—H4A119.6C8—C11—H11C109.5
C4—C5—C1118.11 (13)H11A—C11—H11C109.5
C4—C5—C6123.44 (13)H11B—C11—H11C109.5
C2—N1—C1—C9177.73 (17)C1—C5—C6—C10177.83 (16)
C2—N1—C1—C51.9 (3)C5—C6—C7—C81.5 (3)
C1—N1—C2—C31.8 (3)C10—C6—C7—C8179.68 (18)
N1—C2—C3—C40.3 (3)C6—C7—C8—C92.9 (3)
C2—C3—C4—C51.2 (3)C6—C7—C8—C11177.37 (18)
C3—C4—C5—C11.1 (3)C7—C8—C9—O5177.81 (17)
C3—C4—C5—C6179.12 (17)C11—C8—C9—O51.9 (3)
N1—C1—C5—C40.4 (2)C7—C8—C9—C15.3 (3)
C9—C1—C5—C4179.20 (17)C11—C8—C9—C1175.01 (17)
N1—C1—C5—C6179.41 (16)N1—C1—C9—O51.0 (3)
C9—C1—C5—C61.0 (3)C5—C1—C9—O5179.39 (16)
C4—C5—C6—C7176.82 (17)N1—C1—C9—C8176.17 (17)
C1—C5—C6—C73.4 (3)C5—C1—C9—C83.4 (3)
C4—C5—C6—C102.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.91 (2)1.90 (2)2.7753 (17)161 (2)
O5—H1O5···O2ii0.79 (3)1.91 (3)2.698 (2)172 (2)
O1—H1O1···O4i0.97 (4)1.64 (4)2.601 (2)172 (3)
C3—H3A···O5iii0.952.463.3448 (19)154
C11—H11C···O3ii0.982.503.445 (3)161
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1/2, y+1, z+1/2; (iii) x+3/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC11H12NO+·HSO4
Mr271.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.6750 (9), 11.6952 (14), 14.7283 (18)
V3)1149.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.41 × 0.17 × 0.15
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.889, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
9735, 3341, 3142
Rint0.040
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.05
No. of reflections3341
No. of parameters178
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.42
Absolute structureFlack (1983), 1410 Friedel pairs
Absolute structure parameter0.43 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.91 (2)1.90 (2)2.7753 (17)161 (2)
O5—H1O5···O2ii0.79 (3)1.91 (3)2.698 (2)172 (2)
O1—H1O1···O4i0.97 (4)1.64 (4)2.601 (2)172 (3)
C3—H3A···O5iii0.952.463.3448 (19)154
C11—H11C···O3ii0.982.503.445 (3)161
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1/2, y+1, z+1/2; (iii) x+3/2, y+1, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds