Download citation
Download citation
link to html
In the title compound, [Cu(C5H3N2O2)2(H2O)2], the CuII ion, located on an inversion center, exhibits an octa­hedral coordination geometry. The equatorial plane is defined by two trans-related N,O-bidentate pyridazine-3-carboxyl­ate ligands and the axial positions are occupied by two water mol­ecules. In the crystal, mol­ecules are connected by O—H...O hydrogen bonds between the water mol­ecules and the noncoordinating carboxyl­ate O atoms, forming layers parallel to the bc plane. The layers are stacked along the a axis by further O—H...O hydrogen bonds between the water mol­ecules and the coordinating carboxyl­ate O atoms. Weak C—H...O hydrogen bonds are also observed between the pyridazine rings and the water mol­ecules and between the pyridazine rings and the non-coordinating carboxyl­ate O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814004334/is5342sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814004334/is5342Isup2.hkl
Contains datablock I

CCDC reference: 988680

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.027
  • wR factor = 0.065
  • Data-to-parameter ratio = 11.6

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 3 Note PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 2 Note PLAT794_ALERT_5_G Tentative Bond Valency for Cu1 (II) ..... 2.23 Note PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 3 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The metal ion, the pyridazine ring and carboxylate atoms are coplanar. As expected, the Cu—O and Cu—N distances (Table 1) are similar to the Zn(II) and Co(II) analogue compounds (Gryz et al., 2004; Artetxe et al., 2013). Table 2 summarizes the geometrical parameters of the O—H···O and C—H···O hydrogen bonding interactions.

Related literature top

For an isotypic zinc(II) complex, see: Gryz et al. (2004). For a related cobalt(II) complex which contains two non-coordinating water molecules, see: Artetxe et al. (2013).

Experimental top

To a solution of CuCl2.2H2O (34 mg, 0.2 mmol) in water (10 mL) 3-pyridazine carboxylic acid (48 mg, 0.4 mmol) was dropwise added and the resulting solution was stirred for 1 h at 80 °C. Blue prismatic crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of the resulting solution after six days.

Refinement top

H atoms of the water molecules were located in a Fourier difference map and refined isotropically with O—H bond lengths restrained to 0.88 (1) Å. All H atoms of the pyridazine ring were positioned geometrically and refined using a riding model with standard SHELXL parameters.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing atom labelling and 50% probability displacement ellipsoids. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Left: View of the crystal packing along the b axis. Right: Projection of a layer along the a axis (O—H···O hydrogen bonds represented as dotted red lines and weak C—H···O interactions as dotted green lines).
trans-Diaquabis(pyridazine-3-carboxylato-κ2N2,O)copper(II) top
Crystal data top
[Cu(C5H3N2O2)2(H2O)2]F(000) = 350
Mr = 345.76Dx = 1.951 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1663 reflections
a = 5.4014 (1) Åθ = 2.8–28.4°
b = 11.5633 (3) ŵ = 1.89 mm1
c = 9.6283 (2) ÅT = 100 K
β = 101.837 (3)°Prism, blue
V = 588.58 (2) Å30.19 × 0.09 × 0.06 mm
Z = 2
Data collection top
Agilent SuperNova
diffractometer
1216 independent reflections
Radiation source: Nova (Mo) X-ray micro-source1077 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.022
Detector resolution: 16.2439 pixels mm-1θmax = 26.5°, θmin = 2.8°
ω scansh = 66
Absorption correction: numerical
(CrysAlis PRO; Agilent, 2012)
k = 1314
Tmin = 0.772, Tmax = 0.898l = 129
2532 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.6643P]
where P = (Fo2 + 2Fc2)/3
1216 reflections(Δ/σ)max < 0.001
105 parametersΔρmax = 0.44 e Å3
3 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C5H3N2O2)2(H2O)2]V = 588.58 (2) Å3
Mr = 345.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.4014 (1) ŵ = 1.89 mm1
b = 11.5633 (3) ÅT = 100 K
c = 9.6283 (2) Å0.19 × 0.09 × 0.06 mm
β = 101.837 (3)°
Data collection top
Agilent SuperNova
diffractometer
1216 independent reflections
Absorption correction: numerical
(CrysAlis PRO; Agilent, 2012)
1077 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.898Rint = 0.022
2532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.44 e Å3
1216 reflectionsΔρmin = 0.45 e Å3
105 parameters
Special details top

Experimental. IR (cm-1): 3554(s), 3315(s), 3233(s), 1628(s), 1571(m), 1578(s), 1365(w), 1231(w), 1152(w), 1091(w), 1072(w), 1039(w), 978(m), 851(m), 785(m), 722(m), 669(w), 536(w), 440(w).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.4961 (4)0.27046 (19)0.4096 (2)0.0083 (4)
C40.4421 (4)0.15278 (19)0.3920 (2)0.0107 (4)
H40.51530.10710.33180.013*
C50.2754 (4)0.10781 (19)0.4680 (2)0.0106 (5)
H50.23130.030.46060.013*
C60.1737 (4)0.18136 (19)0.5564 (2)0.0111 (5)
H60.06320.15030.60890.013*
C70.6781 (4)0.33471 (19)0.3358 (2)0.0097 (4)
Cu10.50.50.50.00820 (13)
N10.2267 (3)0.29375 (16)0.5696 (2)0.0101 (4)
N20.3890 (3)0.33637 (16)0.49462 (18)0.0084 (4)
O10.7022 (3)0.44303 (13)0.36438 (16)0.0100 (3)
O20.7873 (3)0.28108 (13)0.25561 (17)0.0135 (4)
O1W0.1555 (3)0.53934 (14)0.30161 (17)0.0121 (3)
H1WA0.014 (3)0.514 (2)0.321 (3)0.024 (8)*
H1WB0.149 (6)0.6143 (9)0.292 (4)0.051 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0088 (10)0.0095 (11)0.0063 (10)0.0001 (8)0.0005 (8)0.0003 (8)
C40.0128 (11)0.0094 (11)0.0094 (10)0.0035 (9)0.0014 (9)0.0004 (8)
C50.0107 (10)0.0082 (11)0.0117 (11)0.0007 (8)0.0007 (9)0.0019 (8)
C60.0106 (10)0.0125 (11)0.0106 (11)0.0011 (9)0.0028 (9)0.0014 (9)
C70.0091 (10)0.0120 (11)0.0080 (10)0.0007 (8)0.0018 (9)0.0001 (9)
Cu10.0111 (2)0.0052 (2)0.0101 (2)0.00061 (14)0.00618 (15)0.00061 (14)
N10.0107 (9)0.0099 (9)0.0104 (9)0.0019 (7)0.0039 (8)0.0002 (7)
N20.0091 (9)0.0092 (9)0.0072 (9)0.0007 (7)0.0021 (7)0.0013 (7)
O10.0112 (7)0.0071 (8)0.0128 (8)0.0012 (6)0.0052 (6)0.0004 (6)
O20.0158 (8)0.0120 (8)0.0152 (8)0.0009 (6)0.0094 (7)0.0033 (6)
O1W0.0101 (8)0.0105 (8)0.0161 (8)0.0006 (6)0.0037 (7)0.0023 (7)
Geometric parameters (Å, º) top
C3—N21.334 (3)C7—C31.520 (3)
C3—C41.395 (3)Cu1—O1i1.9792 (15)
C3—C71.520 (3)Cu1—O11.9792 (15)
C4—C51.374 (3)Cu1—N21.9822 (18)
C4—H40.93Cu1—N2i1.9822 (18)
C5—C61.393 (3)Cu1—O1W2.4207 (16)
C5—H50.93Cu1—O1Wi2.4207 (16)
C6—N11.331 (3)N1—N21.339 (3)
C6—H60.93O1W—H1WA0.872 (10)
C7—O21.231 (3)O1W—H1WB0.872 (10)
C7—O11.283 (3)
N2—C3—C4121.7 (2)O1i—Cu1—N2i82.52 (7)
N2—C3—C7114.28 (19)N2—Cu1—N2i180
C4—C3—C7124.0 (2)O1—Cu1—O1W88.90 (6)
C5—C4—C3116.6 (2)O1i—Cu1—O1W91.10 (6)
C5—C4—H4121.7N2—Cu1—O1W88.82 (6)
C3—C4—H4121.7N2i—Cu1—O1W91.18 (6)
C4—C5—C6118.6 (2)O1—Cu1—O1Wi91.10 (6)
C4—C5—H5120.7O1i—Cu1—O1Wi88.90 (6)
C6—C5—H5120.7N2—Cu1—O1Wi91.18 (6)
N1—C6—C5123.4 (2)N2i—Cu1—O1Wi88.82 (6)
N1—C6—H6118.3O1W—Cu1—O1Wi180
C5—C6—H6118.3C6—N1—N2117.37 (19)
O2—C7—O1125.8 (2)C3—N2—N1122.33 (19)
O2—C7—C3119.1 (2)C3—N2—Cu1113.24 (15)
O1—C7—C3115.06 (19)N1—N2—Cu1124.43 (14)
O1i—Cu1—O1180C7—O1—Cu1114.89 (13)
O1—Cu1—N282.52 (7)Cu1—O1W—H1WA109.8 (19)
O1i—Cu1—N297.48 (7)Cu1—O1W—H1WB106 (2)
O1—Cu1—N2i97.48 (7)H1WA—O1W—H1WB109 (2)
N2—C3—C4—C50.8 (3)O1W—Cu1—N2—C389.46 (15)
C7—C3—C4—C5179.22 (19)O1Wi—Cu1—N2—C390.54 (15)
C3—C4—C5—C60.2 (3)O1—Cu1—N2—N1179.32 (17)
C4—C5—C6—N11.1 (3)O1i—Cu1—N2—N10.68 (17)
C5—C6—N1—N20.9 (3)O1W—Cu1—N2—N191.63 (16)
C4—C3—N2—N11.0 (3)O1Wi—Cu1—N2—N188.37 (16)
C7—C3—N2—N1179.04 (18)O2—C7—O1—Cu1179.34 (18)
C4—C3—N2—Cu1179.92 (16)C3—C7—O1—Cu10.8 (2)
C7—C3—N2—Cu10.1 (2)N2—Cu1—O1i—C7i179.30 (15)
C6—N1—N2—C30.1 (3)N2—Cu1—O1—C70.70 (15)
C6—N1—N2—Cu1178.91 (15)O1W—Cu1—O1—C789.65 (15)
O1—Cu1—N2—C30.41 (14)O1Wi—Cu1—O1—C790.35 (15)
O1i—Cu1—N2—C3179.59 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1ii0.87 (2)1.99 (2)2.865 (2)175 (2)
O1W—H1WB···O2iii0.87 (1)2.03 (2)2.878 (2)165 (3)
C4—H4···O1Wiv0.932.523.403 (3)158
C6—H6···O2v0.932.393.141 (3)138
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x1, y+1/2, z+1/2.
Selected bond lengths (Å) top
Cu1—O11.9792 (15)Cu1—O1W2.4207 (16)
Cu1—N21.9822 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.874 (19)1.993 (19)2.865 (2)175 (2)
O1W—H1WB···O2ii0.872 (11)2.028 (15)2.878 (2)165 (3)
C4—H4···O1Wiii0.9302.523.403 (3)158
C6—H6···O2iv0.9302.393.141 (3)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds