Download citation
Download citation
link to html
The title compound, [Cu(C20H23N3O4)], crystallizes in the space group Cc with two independent mol­ecules in the asymmetric unit. The CuII atoms are each coordinated by the penta­dentate Schiff base ligand in a distorted trigonal bipyramidal N3O2 geometry. The equatorial plane is formed by the two phenolic O atoms and the amine N atom, while the axial positions are occupied by the two imine N atoms. In the crystal, the two independent mol­ecules are each connected into a column along the b axis through inter­molecular O—H...O hydrogen bonds. The two independent columns are further linked through an N—H...O hydrogen bond, forming a double-column structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015019684/is5426sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015019684/is5426Isup2.hkl
Contains datablock I

CCDC reference: 1404639

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.070
  • wR factor = 0.182
  • Data-to-parameter ratio = 23.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H6 .. H8 .. 1.84 Ang.
Alert level C PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0114 Ang. PLAT420_ALERT_2_C D-H Without Acceptor N5 - H5A .. Please Check PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.567 Check PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 2 Report PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 2 Note PLAT915_ALERT_3_C Low Friedel Pair Coverage ...................... 73 % PLAT971_ALERT_2_C Check Calcd Residual Density 0.98A From Cu1 1.87 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.99A From Cu1 1.84 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 1.07A From Cu1 1.75 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 1.75A From O3 1.75 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 1.06A From Cu2 1.68 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.90A From Cu2 1.65 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 1.12A From N4 1.63 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.88A From Cu1 1.61 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 1.11A From N6 1.55 eA-3 PLAT972_ALERT_2_C Check Calcd Residual Density 0.79A From Cu2 -1.76 eA-3 PLAT972_ALERT_2_C Check Calcd Residual Density 0.75A From Cu2 -1.60 eA-3 PLAT972_ALERT_2_C Check Calcd Residual Density 0.90A From Cu1 -1.53 eA-3 PLAT975_ALERT_2_C Check Calcd Residual Density 0.84A From O5 0.76 eA-3
Alert level G PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 1 Report PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 6 Report PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 45.30 Why ? PLAT128_ALERT_4_G Alternate Setting for Input Space Group Cc Ic Note PLAT432_ALERT_2_G Short Inter X...Y Contact O8 .. C34 .. 2.98 Ang. PLAT792_ALERT_1_G The Model has Chirality at N2 (Polar SPGR) S Verify PLAT792_ALERT_1_G The Model has Chirality at N5 (Polar SPGR) R Verify PLAT794_ALERT_5_G Tentative Bond Valency for Cu1 (II) ..... 2.19 Note PLAT794_ALERT_5_G Tentative Bond Valency for Cu2 (II) ..... 2.19 Note PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 8 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 3 Report PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 15 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 19 ALERT level C = Check. Ensure it is not caused by an omission or oversight 12 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 18 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

Schiff bases and their coordination compounds play an important role in metal coordination chemistry. A large number of Schiff bases and their metal complexes have been synthesized and extensively studied because they have some characteristic properties such as manifestations of novel structures, thermal stability, relevant biological properties, high synthesis flexibility and medicinal utility (Brown & Wardeska, 1982; Averseng et al., 2001; Sanmartin et al., 2000; Lan et al., 2009).

The title compound crystallizes in the non-centrosymmetric monoclinic space group Cc with two molecules in the asymmetric unit. Since the two independent molecules have a similar geometry, we restrict the following discussion to one molecule. The Schiff ligand coordinates the metal ions as a pentadentate [ONNNO] chelating ligand through the phenolic O atoms (O1 and O2) and one aminic (N2) and two iminic N atoms (N1 and N3). The equatorial plane of the trigonal bipyramidal geometry is formed by atoms N2, O1 and O3. The Cu1—N2 [2.226 (6) Å] bond is significantly longer than the other two Cu1—O1 [2.074 (5) Å] and Cu1—O3 [2.049 (5) Å]. The two axial bond lengths are almost equal [Cu1—N1 = 1.939 (6) and Cu1—N3 = 1.942 (6) Å]. Deviation from regular trigonal bipyramid is evident from the bond angles of N2—Cu1—O1 = 113.3 (2)°, N2—Cu1—O3 = 125.3 (2)° and O1—Cu1—O3 = 121.1 (2)°. The terminal OH groups of the ligands are uncoordinated.

Related literature top

For characteristic properties of Schiff bases and their metal complexes, see: Averseng et al. (2001); Sanmartin et al. (2000); Brown & Wardeska (1982); Lan et al. (2009).

Experimental top

To a stirred solution of the Schiff base H4L (0.4 mmol, 0.148 mg) dissolved in (20 ml EtOH and 20 ml CH3CN) were added Cu(OAc)2.H2O (0.4 mmol, 0.08 g) followed by Et3N (0.12 mmol, 0.16 ml). The resulting mixture was refluxed for 5–6 h. The reaction mixture was filtered. Dark colored crystals were obtained after 2–5 days by slow diffusion of diethyl ether into the solution.

Refinement top

The structure was refined as an inversion twin. The anisotropic displacement parameters of atom C28 were restrained towards isotropy with a standard deviation of 0.005 Å. H atoms were placed at geometrically calculated positions with O—H = 0.84 Å, N—H = 1.00 Å, C(sp2)—H = 0.95 Å and C(sp3)—H = 0.99 Å and refined with a riding model. Uiso(H) was set 1.2 times Ueq(C, N) or 1.5 times Ueq(O). The initial torsion angles of the hydroxy groups were determined via circular difference Fourier syntheses and subsequently refined while maintaining a tetrahedral angle at the O atom.

Structure description top

Schiff bases and their coordination compounds play an important role in metal coordination chemistry. A large number of Schiff bases and their metal complexes have been synthesized and extensively studied because they have some characteristic properties such as manifestations of novel structures, thermal stability, relevant biological properties, high synthesis flexibility and medicinal utility (Brown & Wardeska, 1982; Averseng et al., 2001; Sanmartin et al., 2000; Lan et al., 2009).

The title compound crystallizes in the non-centrosymmetric monoclinic space group Cc with two molecules in the asymmetric unit. Since the two independent molecules have a similar geometry, we restrict the following discussion to one molecule. The Schiff ligand coordinates the metal ions as a pentadentate [ONNNO] chelating ligand through the phenolic O atoms (O1 and O2) and one aminic (N2) and two iminic N atoms (N1 and N3). The equatorial plane of the trigonal bipyramidal geometry is formed by atoms N2, O1 and O3. The Cu1—N2 [2.226 (6) Å] bond is significantly longer than the other two Cu1—O1 [2.074 (5) Å] and Cu1—O3 [2.049 (5) Å]. The two axial bond lengths are almost equal [Cu1—N1 = 1.939 (6) and Cu1—N3 = 1.942 (6) Å]. Deviation from regular trigonal bipyramid is evident from the bond angles of N2—Cu1—O1 = 113.3 (2)°, N2—Cu1—O3 = 125.3 (2)° and O1—Cu1—O3 = 121.1 (2)°. The terminal OH groups of the ligands are uncoordinated.

For characteristic properties of Schiff bases and their metal complexes, see: Averseng et al. (2001); Sanmartin et al. (2000); Brown & Wardeska (1982); Lan et al. (2009).

Computing details top

Data collection: DATCOL (Bruker, 2006); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radii. Carbon-bound H atoms are omitted for clarity. The intermolecular N—H···O hydrogen bond is illustrated by a dashed line.
[Figure 2] Fig. 2. Intermolecular O—H···O hydrogen bonds between symmetry-related molecules along the crystallographic b axis.
{6,6'-Dihydroxy-2,2'-[iminobis(propane-1,3-diylnitrilomethanylylidene)]diphenolato-κ5O1,N,N',N'',O1'}copper(II) top
Crystal data top
[Cu(C20H23N3O4)]F(000) = 1800
Mr = 432.95Dx = 1.569 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 28.4747 (8) ÅCell parameters from 32601 reflections
b = 6.186 (5) Åθ = 2.9–33.1°
c = 22.925 (12) ŵ = 1.23 mm1
β = 114.792 (11)°T = 100 K
V = 3666 (3) Å3Prism, grey
Z = 80.07 × 0.06 × 0.02 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
12062 independent reflections
Radiation source: 0.2 x 2mm2 focus rotating anode11048 reflections with I > 2σ(I)
Incoatec Helios focusing multilayer optics monochromatorRint = 0.050
Detector resolution: 18.02 pixels mm-1θmax = 33.1°, θmin = 2.9°
φ and ω scansh = 4343
Absorption correction: gaussian
(SADABS; Bruker, 2006)
k = 99
Tmin = 0.904, Tmax = 0.974l = 3534
26717 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + 45.2966P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
12062 reflectionsΔρmax = 1.82 e Å3
510 parametersΔρmin = 1.65 e Å3
8 restraintsAbsolute structure: Parsons & Flack (2004), 5103 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (2)
Crystal data top
[Cu(C20H23N3O4)]V = 3666 (3) Å3
Mr = 432.95Z = 8
Monoclinic, CcMo Kα radiation
a = 28.4747 (8) ŵ = 1.23 mm1
b = 6.186 (5) ÅT = 100 K
c = 22.925 (12) Å0.07 × 0.06 × 0.02 mm
β = 114.792 (11)°
Data collection top
Enraf–Nonius KappaCCD
diffractometer
12062 independent reflections
Absorption correction: gaussian
(SADABS; Bruker, 2006)
11048 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.974Rint = 0.050
26717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + 45.2966P]
where P = (Fo2 + 2Fc2)/3
S = 1.25Δρmax = 1.82 e Å3
12062 reflectionsΔρmin = 1.65 e Å3
510 parametersAbsolute structure: Parsons & Flack (2004), 5103 Friedel pairs
8 restraintsAbsolute structure parameter: 0.10 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.60730 (3)0.75260 (14)0.60326 (4)0.01256 (14)
Cu20.38464 (3)0.00703 (14)0.28880 (4)0.01287 (15)
C10.6659 (2)1.0247 (11)0.7213 (3)0.0136 (11)
C20.6982 (3)1.2023 (12)0.7533 (4)0.0185 (14)
C30.7240 (3)1.2116 (14)0.8196 (4)0.0229 (16)
H30.74561.33180.83930.027*
C40.7188 (3)1.0482 (14)0.8576 (4)0.0237 (16)
H40.73721.05500.90300.028*
C50.6867 (3)0.8753 (14)0.8294 (3)0.0208 (14)
H50.68230.76510.85560.025*
C60.6601 (2)0.8606 (12)0.7615 (3)0.0156 (12)
C70.6284 (3)0.6718 (12)0.7375 (3)0.0157 (12)
H70.62490.57830.76840.019*
C80.5699 (3)0.4285 (12)0.6616 (4)0.0178 (12)
H8A0.58040.33040.69910.021*
H8B0.57230.34830.62560.021*
C90.5138 (3)0.5056 (13)0.6422 (4)0.0206 (13)
H9A0.48990.40490.60970.025*
H9B0.50590.49970.68040.025*
C100.5038 (3)0.7342 (13)0.6150 (4)0.0185 (13)
H10A0.46620.76420.59770.022*
H10B0.52170.83790.65030.022*
C110.5012 (3)0.9798 (13)0.5322 (4)0.0229 (15)
H11A0.51361.09620.56480.027*
H11B0.46300.97770.51420.027*
C120.5178 (3)1.0307 (13)0.4787 (4)0.0233 (15)
H12A0.49821.15830.45480.028*
H12B0.50830.90720.44850.028*
C130.5753 (3)1.0757 (12)0.5011 (4)0.0200 (14)
H13A0.58151.13390.46470.024*
H13B0.58621.18670.53540.024*
C140.6344 (3)0.8169 (12)0.4967 (3)0.0185 (13)
H140.63350.90550.46240.022*
C150.6668 (3)0.6281 (13)0.5102 (3)0.0164 (12)
C160.6939 (3)0.5967 (16)0.4708 (3)0.0237 (16)
H160.69180.70400.44020.028*
C170.7225 (3)0.4177 (17)0.4763 (4)0.0278 (19)
H170.74010.39960.44930.033*
C180.7265 (3)0.2608 (15)0.5208 (4)0.0247 (16)
H180.74630.13460.52380.030*
C190.7018 (3)0.2845 (12)0.5615 (4)0.0177 (13)
C200.6714 (2)0.4730 (11)0.5577 (3)0.0138 (11)
C210.3889 (2)0.2648 (11)0.3996 (3)0.0133 (11)
C220.4043 (3)0.4517 (12)0.4402 (3)0.0166 (12)
C230.3904 (3)0.4786 (14)0.4908 (4)0.0211 (14)
H230.40040.60640.51600.025*
C240.3619 (3)0.3216 (15)0.5052 (4)0.0236 (15)
H240.35330.34070.54070.028*
C250.3462 (3)0.1381 (13)0.4678 (4)0.0204 (14)
H250.32670.03060.47750.024*
C260.3591 (2)0.1099 (12)0.4149 (4)0.0151 (12)
C270.3376 (3)0.0816 (12)0.3766 (4)0.0172 (12)
H270.31750.17210.39070.021*
C280.3169 (2)0.3457 (12)0.2958 (4)0.0190 (13)
H28A0.30150.41360.32280.023*
H28B0.34290.44680.29330.023*
C290.2746 (3)0.3076 (13)0.2284 (5)0.0253 (17)
H29A0.25040.19680.23090.030*
H29B0.25480.44330.21290.030*
C300.2949 (3)0.2340 (14)0.1794 (4)0.0264 (17)
H30A0.32000.34270.17810.032*
H30B0.26570.23030.13640.032*
C310.3389 (3)0.0262 (13)0.1427 (4)0.0223 (15)
H31A0.31020.00080.10000.027*
H31B0.36690.07700.14760.027*
C320.3589 (4)0.2539 (14)0.1445 (4)0.0280 (17)
H32A0.32930.35540.13050.034*
H32B0.37460.26460.11330.034*
C330.3994 (3)0.3251 (12)0.2112 (4)0.0178 (13)
H33A0.42540.42030.20600.021*
H33B0.38220.40780.23370.021*
C340.4716 (3)0.0908 (11)0.2587 (3)0.0145 (11)
H340.48810.19100.24200.017*
C350.5015 (2)0.0938 (11)0.2915 (3)0.0125 (11)
C360.5534 (3)0.1017 (12)0.2977 (3)0.0161 (12)
H360.56600.01480.28140.019*
C370.5855 (3)0.2712 (13)0.3264 (4)0.0176 (13)
H370.61990.27320.33000.021*
C380.5663 (3)0.4425 (12)0.3503 (3)0.0160 (12)
H380.58820.56200.37010.019*
C390.5161 (2)0.4401 (10)0.3453 (3)0.0117 (10)
C400.4818 (2)0.2639 (10)0.3173 (3)0.0116 (10)
N10.6064 (2)0.8803 (10)0.5256 (3)0.0152 (11)
N20.5213 (2)0.7704 (10)0.5638 (3)0.0152 (10)
H2A0.50660.65330.53110.018*
N30.6041 (2)0.6173 (10)0.6779 (3)0.0140 (10)
N40.3424 (2)0.1445 (10)0.3259 (3)0.0147 (11)
N50.3203 (2)0.0198 (11)0.1927 (3)0.0196 (12)
H5A0.29420.09220.19010.023*
N60.4254 (2)0.1346 (10)0.2496 (3)0.0139 (10)
O10.64396 (19)1.0198 (8)0.6580 (2)0.0154 (9)
O20.7072 (2)1.3649 (9)0.7190 (3)0.0256 (13)
H20.68001.39170.68620.038*
O30.64872 (19)0.4898 (8)0.5970 (2)0.0150 (9)
O40.7093 (2)0.1270 (9)0.6058 (3)0.0232 (11)
H4A0.68390.12260.61530.035*
O50.40226 (19)0.2469 (8)0.3519 (2)0.0144 (8)
O60.4346 (2)0.6078 (9)0.4317 (3)0.0203 (10)
H60.44060.57670.39980.030*
O70.43578 (18)0.2675 (8)0.3168 (2)0.0147 (9)
O80.5012 (2)0.6116 (9)0.3707 (3)0.0177 (10)
H80.46920.60480.36010.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0175 (3)0.0105 (3)0.0090 (3)0.0002 (3)0.0049 (2)0.0018 (3)
Cu20.0123 (3)0.0117 (3)0.0148 (3)0.0012 (3)0.0059 (2)0.0003 (3)
C10.013 (2)0.011 (3)0.013 (3)0.004 (2)0.002 (2)0.002 (2)
C20.015 (3)0.013 (3)0.018 (3)0.002 (2)0.003 (2)0.004 (2)
C30.016 (3)0.025 (4)0.021 (3)0.006 (3)0.001 (2)0.008 (3)
C40.024 (3)0.031 (4)0.011 (3)0.008 (3)0.002 (2)0.005 (3)
C50.019 (3)0.029 (4)0.011 (3)0.008 (3)0.003 (2)0.001 (3)
C60.012 (3)0.022 (3)0.013 (3)0.007 (2)0.005 (2)0.001 (2)
C70.017 (3)0.019 (3)0.014 (3)0.004 (2)0.010 (2)0.004 (2)
C80.024 (3)0.018 (3)0.014 (3)0.002 (2)0.010 (2)0.001 (2)
C90.022 (3)0.021 (3)0.022 (3)0.006 (3)0.012 (3)0.001 (3)
C100.017 (3)0.018 (3)0.021 (3)0.002 (2)0.008 (2)0.004 (3)
C110.019 (3)0.015 (3)0.026 (4)0.003 (3)0.001 (3)0.002 (3)
C120.023 (3)0.019 (4)0.016 (3)0.000 (3)0.004 (2)0.004 (3)
C130.023 (3)0.015 (3)0.018 (3)0.002 (2)0.005 (3)0.006 (3)
C140.023 (3)0.017 (3)0.009 (3)0.008 (2)0.001 (2)0.002 (2)
C150.014 (3)0.026 (3)0.008 (3)0.010 (2)0.004 (2)0.003 (2)
C160.015 (3)0.049 (5)0.010 (3)0.009 (3)0.007 (2)0.003 (3)
C170.015 (3)0.052 (6)0.016 (3)0.008 (3)0.007 (2)0.014 (3)
C180.015 (3)0.034 (4)0.026 (4)0.006 (3)0.008 (3)0.014 (3)
C190.013 (3)0.017 (3)0.023 (3)0.002 (2)0.008 (2)0.006 (3)
C200.011 (2)0.014 (3)0.015 (3)0.003 (2)0.005 (2)0.003 (2)
C210.012 (2)0.013 (3)0.014 (3)0.002 (2)0.004 (2)0.001 (2)
C220.018 (3)0.016 (3)0.012 (3)0.004 (2)0.003 (2)0.000 (2)
C230.021 (3)0.027 (4)0.015 (3)0.007 (3)0.007 (2)0.006 (3)
C240.020 (3)0.036 (4)0.016 (3)0.005 (3)0.009 (3)0.003 (3)
C250.018 (3)0.025 (4)0.020 (3)0.004 (3)0.010 (2)0.002 (3)
C260.007 (2)0.018 (3)0.022 (3)0.001 (2)0.008 (2)0.002 (2)
C270.013 (3)0.016 (3)0.024 (3)0.003 (2)0.009 (2)0.000 (3)
C280.009 (2)0.018 (3)0.034 (4)0.005 (2)0.013 (2)0.005 (3)
C290.010 (3)0.021 (3)0.042 (5)0.005 (2)0.007 (3)0.013 (3)
C300.021 (3)0.020 (4)0.026 (4)0.001 (3)0.002 (3)0.008 (3)
C310.028 (3)0.021 (4)0.012 (3)0.007 (3)0.002 (2)0.001 (3)
C320.041 (4)0.023 (4)0.016 (3)0.011 (3)0.007 (3)0.006 (3)
C330.018 (3)0.014 (3)0.022 (3)0.004 (2)0.009 (3)0.001 (2)
C340.016 (3)0.013 (3)0.017 (3)0.000 (2)0.008 (2)0.002 (2)
C350.010 (2)0.016 (3)0.015 (3)0.004 (2)0.008 (2)0.002 (2)
C360.015 (3)0.019 (3)0.017 (3)0.005 (2)0.010 (2)0.005 (2)
C370.014 (3)0.022 (3)0.019 (3)0.001 (2)0.008 (2)0.004 (3)
C380.015 (3)0.017 (3)0.015 (3)0.003 (2)0.004 (2)0.002 (2)
C390.009 (2)0.010 (2)0.012 (3)0.0016 (18)0.0006 (19)0.002 (2)
C400.014 (2)0.009 (2)0.010 (2)0.001 (2)0.0035 (19)0.001 (2)
N10.018 (2)0.015 (3)0.011 (2)0.004 (2)0.0035 (19)0.003 (2)
N20.018 (2)0.011 (2)0.014 (2)0.0024 (19)0.0043 (19)0.001 (2)
N30.014 (2)0.017 (3)0.011 (2)0.001 (2)0.0052 (19)0.005 (2)
N40.010 (2)0.015 (3)0.021 (3)0.0021 (19)0.009 (2)0.001 (2)
N50.017 (2)0.015 (3)0.017 (3)0.006 (2)0.002 (2)0.004 (2)
N60.014 (2)0.014 (3)0.013 (2)0.0000 (19)0.0049 (19)0.002 (2)
O10.022 (2)0.010 (2)0.0090 (19)0.0003 (17)0.0011 (16)0.0011 (16)
O20.025 (3)0.012 (2)0.022 (3)0.001 (2)0.007 (2)0.000 (2)
O30.020 (2)0.012 (2)0.015 (2)0.0001 (18)0.0093 (17)0.0026 (17)
O40.021 (2)0.015 (2)0.036 (3)0.0031 (19)0.014 (2)0.001 (2)
O50.019 (2)0.013 (2)0.013 (2)0.0039 (17)0.0079 (16)0.0012 (17)
O60.025 (2)0.020 (3)0.017 (2)0.009 (2)0.009 (2)0.004 (2)
O70.0134 (19)0.013 (2)0.018 (2)0.0013 (16)0.0073 (16)0.0032 (18)
O80.015 (2)0.014 (2)0.021 (3)0.0033 (17)0.0051 (18)0.0062 (19)
Geometric parameters (Å, º) top
Cu1—N11.939 (6)C19—C201.433 (10)
Cu1—N31.942 (6)C20—O31.314 (8)
Cu1—O32.049 (5)C21—O51.305 (8)
Cu1—O12.074 (5)C21—C261.417 (9)
Cu1—N22.228 (6)C21—C221.434 (10)
Cu2—N41.936 (6)C22—O61.362 (9)
Cu2—N61.948 (6)C22—C231.384 (11)
Cu2—O52.050 (5)C23—C241.392 (11)
Cu2—O72.084 (5)C23—H230.9500
Cu2—N52.198 (6)C24—C251.379 (12)
C1—O11.316 (8)C24—H240.9500
C1—C21.423 (10)C25—C261.419 (10)
C1—C61.428 (10)C25—H250.9500
C2—O21.366 (10)C26—C271.449 (10)
C2—C31.385 (11)C27—N41.286 (10)
C3—C41.383 (13)C27—H270.9500
C3—H30.9500C28—N41.460 (9)
C4—C51.379 (12)C28—C291.527 (12)
C4—H40.9500C28—H28A0.9900
C5—C61.420 (10)C28—H28B0.9900
C5—H50.9500C29—C301.533 (14)
C6—C71.437 (11)C29—H29A0.9900
C7—N31.290 (9)C29—H29B0.9900
C7—H70.9500C30—N51.479 (11)
C8—N31.466 (10)C30—H30A0.9900
C8—C91.542 (11)C30—H30B0.9900
C8—H8A0.9900C31—N51.477 (11)
C8—H8B0.9900C31—C321.514 (13)
C9—C101.524 (11)C31—H31A0.9900
C9—H9A0.9900C31—H31B0.9900
C9—H9B0.9900C32—C331.543 (11)
C10—N21.471 (10)C32—H32A0.9900
C10—H10A0.9900C32—H32B0.9900
C10—H10B0.9900C33—N61.471 (9)
C11—N21.478 (10)C33—H33A0.9900
C11—C121.521 (13)C33—H33B0.9900
C11—H11A0.9900C34—N61.274 (8)
C11—H11B0.9900C34—C351.434 (10)
C12—C131.522 (11)C34—H340.9500
C12—H12A0.9900C35—C361.425 (9)
C12—H12B0.9900C35—C401.431 (9)
C13—N11.464 (10)C36—C371.365 (11)
C13—H13A0.9900C36—H360.9500
C13—H13B0.9900C37—C381.403 (11)
C14—N11.294 (10)C37—H370.9500
C14—C151.438 (11)C38—C391.386 (9)
C14—H140.9500C38—H380.9500
C15—C201.415 (10)C39—O81.361 (8)
C15—C161.428 (10)C39—C401.425 (9)
C16—C171.349 (14)C40—O71.306 (8)
C16—H160.9500N2—H2A1.0000
C17—C181.379 (14)N5—H5A1.0000
C17—H170.9500O2—H20.8400
C18—C191.391 (11)O4—H4A0.8400
C18—H180.9500O6—H60.8400
C19—O41.357 (10)O8—H80.8400
N1—Cu1—N3176.5 (3)C22—C23—C24121.1 (7)
N1—Cu1—O392.6 (2)C22—C23—H23119.5
N3—Cu1—O387.8 (2)C24—C23—H23119.5
N1—Cu1—O192.4 (2)C25—C24—C23119.7 (7)
N3—Cu1—O190.4 (2)C25—C24—H24120.1
O3—Cu1—O1121.1 (2)C23—C24—H24120.1
N1—Cu1—N291.0 (2)C24—C25—C26120.0 (7)
N3—Cu1—N285.9 (2)C24—C25—H25120.0
O3—Cu1—N2125.3 (2)C26—C25—H25120.0
O1—Cu1—N2113.3 (2)C21—C26—C25121.7 (7)
N4—Cu2—N6178.4 (3)C21—C26—C27123.2 (7)
N4—Cu2—O592.3 (2)C25—C26—C27115.1 (6)
N6—Cu2—O587.9 (2)N4—C27—C26128.1 (7)
N4—Cu2—O790.4 (2)N4—C27—H27115.9
N6—Cu2—O790.9 (2)C26—C27—H27115.9
O5—Cu2—O7116.2 (2)N4—C28—C29111.8 (6)
N4—Cu2—N590.8 (3)N4—C28—H28A109.3
N6—Cu2—N587.7 (3)C29—C28—H28A109.3
O5—Cu2—N5126.1 (2)N4—C28—H28B109.3
O7—Cu2—N5117.5 (2)C29—C28—H28B109.3
O1—C1—C2119.5 (7)H28A—C28—H28B107.9
O1—C1—C6124.4 (6)C28—C29—C30114.1 (6)
C2—C1—C6116.1 (6)C28—C29—H29A108.7
O2—C2—C3117.4 (7)C30—C29—H29A108.7
O2—C2—C1120.5 (6)C28—C29—H29B108.7
C3—C2—C1122.0 (8)C30—C29—H29B108.7
C4—C3—C2120.9 (7)H29A—C29—H29B107.6
C4—C3—H3119.5N5—C30—C29114.7 (7)
C2—C3—H3119.5N5—C30—H30A108.6
C5—C4—C3119.8 (7)C29—C30—H30A108.6
C5—C4—H4120.1N5—C30—H30B108.6
C3—C4—H4120.1C29—C30—H30B108.6
C4—C5—C6120.5 (8)H30A—C30—H30B107.6
C4—C5—H5119.7N5—C31—C32114.3 (7)
C6—C5—H5119.7N5—C31—H31A108.7
C5—C6—C1120.6 (7)C32—C31—H31A108.7
C5—C6—C7115.7 (7)N5—C31—H31B108.7
C1—C6—C7123.7 (6)C32—C31—H31B108.7
N3—C7—C6126.1 (7)H31A—C31—H31B107.6
N3—C7—H7116.9C31—C32—C33114.1 (7)
C6—C7—H7116.9C31—C32—H32A108.7
N3—C8—C9109.0 (6)C33—C32—H32A108.7
N3—C8—H8A109.9C31—C32—H32B108.7
C9—C8—H8A109.9C33—C32—H32B108.7
N3—C8—H8B109.9H32A—C32—H32B107.6
C9—C8—H8B109.9N6—C33—C32110.1 (6)
H8A—C8—H8B108.3N6—C33—H33A109.6
C10—C9—C8113.4 (6)C32—C33—H33A109.6
C10—C9—H9A108.9N6—C33—H33B109.6
C8—C9—H9A108.9C32—C33—H33B109.6
C10—C9—H9B108.9H33A—C33—H33B108.2
C8—C9—H9B108.9N6—C34—C35126.8 (6)
H9A—C9—H9B107.7N6—C34—H34116.6
N2—C10—C9113.6 (6)C35—C34—H34116.6
N2—C10—H10A108.8C36—C35—C40120.2 (6)
C9—C10—H10A108.8C36—C35—C34116.1 (6)
N2—C10—H10B108.8C40—C35—C34123.6 (6)
C9—C10—H10B108.8C37—C36—C35122.1 (7)
H10A—C10—H10B107.7C37—C36—H36118.9
N2—C11—C12112.9 (7)C35—C36—H36118.9
N2—C11—H11A109.0C36—C37—C38118.5 (6)
C12—C11—H11A109.0C36—C37—H37120.8
N2—C11—H11B109.0C38—C37—H37120.8
C12—C11—H11B109.0C39—C38—C37121.0 (6)
H11A—C11—H11B107.8C39—C38—H38119.5
C11—C12—C13114.9 (6)C37—C38—H38119.5
C11—C12—H12A108.6O8—C39—C38117.0 (6)
C13—C12—H12A108.6O8—C39—C40120.7 (6)
C11—C12—H12B108.6C38—C39—C40122.3 (6)
C13—C12—H12B108.6O7—C40—C39119.2 (6)
H12A—C12—H12B107.5O7—C40—C35125.1 (6)
N1—C13—C12111.7 (6)C39—C40—C35115.8 (6)
N1—C13—H13A109.3C14—N1—C13117.3 (6)
C12—C13—H13A109.3C14—N1—Cu1125.0 (5)
N1—C13—H13B109.3C13—N1—Cu1117.5 (5)
C12—C13—H13B109.3C10—N2—C11109.4 (6)
H13A—C13—H13B107.9C10—N2—Cu1110.6 (4)
N1—C14—C15127.7 (7)C11—N2—Cu1112.1 (4)
N1—C14—H14116.1C10—N2—H2A108.2
C15—C14—H14116.1C11—N2—H2A108.2
C20—C15—C16119.7 (7)Cu1—N2—H2A108.2
C20—C15—C14124.1 (7)C7—N3—C8118.8 (6)
C16—C15—C14116.2 (7)C7—N3—Cu1128.2 (5)
C17—C16—C15121.3 (8)C8—N3—Cu1113.0 (5)
C17—C16—H16119.4C27—N4—C28117.7 (6)
C15—C16—H16119.4C27—N4—Cu2125.8 (5)
C16—C17—C18120.3 (7)C28—N4—Cu2116.4 (5)
C16—C17—H17119.8C31—N5—C30108.4 (6)
C18—C17—H17119.8C31—N5—Cu2110.6 (4)
C17—C18—C19121.0 (8)C30—N5—Cu2111.6 (5)
C17—C18—H18119.5C31—N5—H5A108.7
C19—C18—H18119.5C30—N5—H5A108.7
O4—C19—C18117.3 (7)Cu2—N5—H5A108.7
O4—C19—C20122.1 (7)C34—N6—C33119.6 (6)
C18—C19—C20120.5 (8)C34—N6—Cu2127.1 (5)
O3—C20—C15124.1 (6)C33—N6—Cu2113.0 (4)
O3—C20—C19118.7 (6)C1—O1—Cu1124.8 (4)
C15—C20—C19117.2 (7)C2—O2—H2109.5
O5—C21—C26124.4 (6)C20—O3—Cu1125.0 (4)
O5—C21—C22119.7 (6)C19—O4—H4A109.5
C26—C21—C22115.9 (6)C21—O5—Cu2125.8 (4)
O6—C22—C23117.1 (7)C22—O6—H6109.5
O6—C22—C21121.3 (7)C40—O7—Cu2123.9 (4)
C23—C22—C21121.6 (7)C39—O8—H8109.5
O1—C1—C2—O21.2 (10)N4—C28—C29—C3067.5 (8)
C6—C1—C2—O2178.3 (6)C28—C29—C30—N565.0 (9)
O1—C1—C2—C3177.2 (7)N5—C31—C32—C3351.3 (9)
C6—C1—C2—C32.4 (10)C31—C32—C33—N624.4 (10)
O2—C2—C3—C4177.0 (7)N6—C34—C35—C36177.5 (7)
C1—C2—C3—C40.9 (12)N6—C34—C35—C402.5 (12)
C2—C3—C4—C51.3 (12)C40—C35—C36—C371.8 (10)
C3—C4—C5—C61.8 (11)C34—C35—C36—C37178.2 (7)
C4—C5—C6—C10.3 (10)C35—C36—C37—C380.1 (11)
C4—C5—C6—C7179.0 (7)C36—C37—C38—C390.3 (11)
O1—C1—C6—C5177.7 (6)C37—C38—C39—O8179.1 (6)
C2—C1—C6—C51.8 (9)C37—C38—C39—C401.4 (10)
O1—C1—C6—C71.5 (10)O8—C39—C40—O70.8 (9)
C2—C1—C6—C7179.0 (6)C38—C39—C40—O7176.9 (6)
C5—C6—C7—N3174.3 (7)O8—C39—C40—C35179.4 (6)
C1—C6—C7—N34.9 (11)C38—C39—C40—C353.0 (9)
N3—C8—C9—C1026.9 (8)C36—C35—C40—O7176.7 (6)
C8—C9—C10—N250.2 (8)C34—C35—C40—O73.4 (11)
N2—C11—C12—C1368.3 (9)C36—C35—C40—C393.2 (9)
C11—C12—C13—N169.7 (9)C34—C35—C40—C39176.8 (6)
N1—C14—C15—C202.6 (11)C15—C14—N1—C13178.0 (6)
N1—C14—C15—C16179.7 (7)C15—C14—N1—Cu18.0 (10)
C20—C15—C16—C172.5 (10)C12—C13—N1—C14119.7 (7)
C14—C15—C16—C17175.4 (7)C12—C13—N1—Cu165.8 (7)
C15—C16—C17—C180.5 (11)C9—C10—N2—C11169.2 (6)
C16—C17—C18—C190.9 (11)C9—C10—N2—Cu166.8 (6)
C17—C18—C19—O4177.3 (7)C12—C11—N2—C10179.7 (6)
C17—C18—C19—C200.3 (11)C12—C11—N2—Cu156.7 (7)
C16—C15—C20—O3178.6 (6)C6—C7—N3—C8174.8 (6)
C14—C15—C20—O33.7 (10)C6—C7—N3—Cu16.3 (10)
C16—C15—C20—C192.9 (9)C9—C8—N3—C796.8 (7)
C14—C15—C20—C19174.7 (6)C9—C8—N3—Cu184.1 (6)
O4—C19—C20—O32.4 (10)C26—C27—N4—C28179.8 (7)
C18—C19—C20—O3179.8 (6)C26—C27—N4—Cu24.6 (11)
O4—C19—C20—C15179.0 (6)C29—C28—N4—C27115.9 (8)
C18—C19—C20—C151.6 (10)C29—C28—N4—Cu268.4 (6)
O5—C21—C22—O62.7 (10)C32—C31—N5—C30171.7 (6)
C26—C21—C22—O6177.6 (6)C32—C31—N5—Cu265.7 (7)
O5—C21—C22—C23179.1 (7)C29—C30—N5—C31178.6 (6)
C26—C21—C22—C230.7 (10)C29—C30—N5—Cu256.5 (7)
O6—C22—C23—C24176.5 (7)C35—C34—N6—C33176.2 (7)
C21—C22—C23—C241.8 (12)C35—C34—N6—Cu210.9 (11)
C22—C23—C24—C251.5 (12)C32—C33—N6—C34105.9 (8)
C23—C24—C25—C260.1 (12)C32—C33—N6—Cu280.2 (7)
O5—C21—C26—C25179.5 (6)C2—C1—O1—Cu1168.1 (5)
C22—C21—C26—C250.8 (9)C6—C1—O1—Cu111.4 (9)
O5—C21—C26—C273.6 (10)C15—C20—O3—Cu15.4 (9)
C22—C21—C26—C27176.1 (6)C19—C20—O3—Cu1176.2 (4)
C24—C25—C26—C211.1 (11)C26—C21—O5—Cu20.7 (9)
C24—C25—C26—C27176.1 (7)C22—C21—O5—Cu2179.5 (5)
C21—C26—C27—N41.7 (12)C39—C40—O7—Cu2171.7 (4)
C25—C26—C27—N4178.8 (7)C35—C40—O7—Cu28.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.952.699 (8)147
O4—H4A···O1ii0.841.902.686 (8)156
O6—H6···O7i0.842.082.758 (8)137
O6—H6···O8i0.842.403.101 (8)142
O8—H8···O5ii0.842.052.806 (7)149
N2—H2A···O61.002.363.163 (8)137
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.952.699 (8)147
O4—H4A···O1ii0.841.902.686 (8)156
O6—H6···O7i0.842.082.758 (8)137
O6—H6···O8i0.842.403.101 (8)142
O8—H8···O5ii0.842.052.806 (7)149
N2—H2A···O61.002.363.163 (8)137
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds