Download citation
Download citation
link to html
The structures of lithium iron dimolybdate, LiFe(MoO4)2, and lithium gallium dimolybdate, LiGa(MoO4)2, are shown to be isomorphous with each other. Their structures consist of segregated layers of LiO6 bicapped trigonal bipyramids and Fe(Ga)O6 octa­hedra separated and linked by layers of isolated MoO4 tetra­hedra. The redetermined structure of trilithium gallium trimolybdate, Li3Ga(MoO4)3, shows substitional disorder on the Li/Ga site and consists of perpendicular chains of LiO6 trigonal prisms and two types of differently linked Li/GaO6 octa­hedra.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107061975/iz3035sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107061975/iz3035Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107061975/iz3035IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107061975/iz3035IIIsup4.hkl
Contains datablock III

Comment top

LiFe(MoO4)2, (I), is the fourth known compound in the quaternary Li/Fe/Mo/O system, besides two known variants of Li2Fe2(MoO4)3 (Klevtsova & Magarill, 1970; Torardi & Prince, 1986) and Li3Fe(MoO4)3 (Klevtsova & Magarill, 1970), whereas its isostructural variant LiGa(MoO4)2, (II), is the first compound in the quaternary Li/Ga/Mo/O system. The structures of (I) and (II) appear to be isostructural with LiAl(MoO4)2 (Solov'eva & Borisov, 1970). The structure of Li3Ga(MoO4)3, (III), the second member in the Li/Ga/Mo/O system, is isostructural with Li3Fe(MoO4)3 (Klevtsova & Magarill, 1970) and Li3Sc(MoO4)3 (Kolitsch & Tillmanns, 2003). It is noted that the existence of Li3Ga(MoO4)3 was previously reported by Klevtsov (1970) and Trunov & Efremov (1971), and its structure determined by Efremov & Trunov (1975), but the substitional disorder present in the structure was poorly described. The isostructural compound Li3Cr(MoO4)3 was also reported in that study [Which one?], but with the same poor description of the disorder. For a further determination of this phase, see entry 1200897 in Pearson's Crystal Data (Villars & Cenzual, 2007). These phases are of interest because of their relatively high Li ionic conductivity (Sebastian et al., 2003).

[Abstract states that (I) and (II) "are shown to be isostructural", but there does not appear to be any discussion of (I) here. Text missing?]

Fig. 1 shows the constituent polyhedra for the structure of (II). The two Mo atoms (oxidation state VI) are in close to tetrahedral coordination by O, whereas Ga (oxidation state III) is in close to octahedral coordination. Atom Li4 is surrounded by six O atoms, of which five are within 2.20 Å, and the sixth is at 2.743 (4) and 2.683 (13) Å from the central atom for LiFe(MoO4)2 and LiGa(MoO4)2, respectively. The bond-valence contribution (Wills & Brown, 1999) of this atom O9 is 0.032 and 0.037, respectively, to a total bond-valence sum (BVS) of 0.872 and 0.901, respectively, thus amounting to 3.7 and 4.1% of the total BVS for LiFe(MoO4)2 and LiGa(MoO4)2, respectively. According to the Brown criterion that a ligand should contribute at least 4% to the total sum in order to be considered being bonded (Brown, 2002), this O atom is thus on the borderline of being weakly bonded. The five short-bonded O atoms form a trigonal bipyramid, which is capped by the sixth Li atom at longer distance. This environment is not uncommon in Li-containing oxides; see, for example, Johnston & Harrison (2007) for Li(VO2)3(TeO3)2.

The constituent polyhedra in the structure of (III) are shown in Fig. 2. The tetrahedral coordination of Mo is very similar to that in the structures of (I) and (II). The fully occupied Li7 site has sixfold O coordination, with distances ranging between 2.088 (9) and 2.252 (11) Å in a close to trigonal-prismatic environment. The two remaining metal sites are found to be substitionally occupied by both Ga and Li, with occupation probabilities of 0.421 (3)/0.579 (3) and 0.2909 (17)/0.7191 (17) for the Ga1/Li2 and the Ga3/Li4 sites, respectively. The mixed Ga/Li sites have a close to octahedral coordination, with Ga/Li—O distances between 2.000 (3) and 2.078 (3) Å for the Ga1/Li2—O polyhedron, and between 2.028 (3) and 2.155 (3) Å for the Ga3/Li4—O polyhedron, somewhat larger than the Ga—O distances found in (I) and (II). This is expected because of the mixed occupancy of the sites, which also gives rise to too small artificial bond-valence sums for Ga1 and Ga3 (2.710 and 2.395, respectively) and too high sums for Li2 and Li4 (1.328 and 1.173, respectively). The higher average Li/Ga—O distance for the Ga3/Li4 polyhedron is in line with the lower proportion of Ga on that site compared with the Ga1/Li2 polyhedron.

Fig. 3 shows the resulting polyhedral connectivity of (I) and (II). All Mo tetrahedra are isolated from each other, and they are linked to adjacent polyhedra only by corner-sharing. Three corners are shared with Li-monocapped trigonal bipyramids, whereas two corners are shared with two Ga octahedra, thus giving one corner that is shared simultaneously with a Ga octahedron and a Li-monocapped trigonal bipyramid. The Li and Ga polyhedra appear solely as dimers, sharing one edge. The resulting layer structure is given in Fig. 4: the Li and Fe(Ga) polyhedra line up in layers and are clearly separated and linked by MoO4 tetrahedra.

Fig. 5 shows the resulting polyhedral connectivity of (III). Mo tetrahedra are again isolated from each other and corner-linked to Ga/Li octahedra and Li trigonal prisms. The latter form infinite chains in the a direction, where the individual trigonal prisms are joined by edge-sharing. The Ga/Li octahedra form two types of mutually perpendicular chains. The first type consists of face-shared octahedra travelling along the a axis, whereas the other type of Ga/Li octahedra form infinite parallel chains along the b axis, each chain being composed of edge-sharing octahedron dimers, which are themselves linked by corner sharing (Fig. 6). The chains are linked into parallel chains by corner sharing. Sebastian et al. (2003) reported that the Li ionic mobility in the isotypic phases Li3Fe(MoO4)3 and Li3Cr(MoO4)3 takes place in the one-dimensional trigonal prismatic chains.

Related literature top

For related literature, see: Beaurain et al. (2006); Brown (2002); Efremov & Trunov (1975); Johnston & Harrison (2007); Klevtsov (1970); Klevtsova & Magarill (1970); Kolitsch & Tillmanns (2003); Palatinus & Chapuis (2007); Petrícek et al. (2000); Sebastian et al. (2003); Solov'eva & Borisov (1970); Torardi & Prince (1986); Trunov & Efremov (1971); Villars & Cenzual (2007); Wills & Brown (1999).

Experimental top

The lithium trimolybdate starting material, Li3Mo3O10 was synthesized following the solid-state reaction described previously by Beaurain et al. (2006). GaPO4 powder compound with the α-quartz structure was obtained by dissolving 4 N Ga metal in nitric acid followed by precipitation with phosphoric acid. FePO4.nH2O used as starting material was a commercial product (LABOSI). The crystal growth experiments were carried out in air in a single temperature zone in an SiC resistance heater furnace with a Eurotherm temperature controller. Different amounts [70 and 85 wt% for (III) and (II), respectively] of Li2Mo3O10 were mixed with α-GaPO4 and homogenized in an agate mortar. The mixtures were placed in Pt crucibles covered with a lid, heated from room temperature to 1223 K at a ramp rate of 100 K h-1 and held at this temperature for 5 h for homogenization. The melted charges were then slowly cooled down at a rate of 1 K h-1 to 873 K. After 5 h at 873 K, the charges were cooled to room temperature at 200 K h-1. In order to obtain crystals of (I), 15 wt% of FePO4.nH2O was thoroughly mixed with 85 wt% of Li2Mo3O10 and charged in a Pt crucible. In order to release the water molecules, the mixture was heated at 623 K for 3 h. The temperature of the furnace was then increased at a rate of 100 K h-1 up to 973 K and kept at this temperature for 5 h for homogenization. Slow cooling (2 K h-1) down to 723 K was programmed before switching off the furnace.

Refinement top

The data for the structure of (I) were collected at 173 K by placing the crystal in a stream of nitrogen (Cryojet, Oxford Instruments). The structures of (I) and (II) were solved using default charge-flipping parameters as determined by JANA2000 (Petrícek et al., 2000). The Li atoms were found in difference Fourier maps. The refinement of these two structures proceeded without problems. The presence of the inversion centre in the structure was established using an analysis of the electron-density map before attribution of the atom types (Palatinus & Chapuis, 2007).

The structure of (III) was also solved using default parameters, and the proper space group symmetry Pnma was established on the basis of an analysis of the electron-density map before attribution of the atom types; the agreement factors for the three generators nx, my and az are 0.23, 1.89, and 0.64%, respectively, proving that the inversion centre is indeed present. It is noted that the same space group was proposed for the previously determined structure (Efremov & Trunov, 1975), and also for the isostructural compounds Li3Fe(MoO4)3 (Klevtsova & Magarill, 1970) and Li3Sc(MoO4)3 (Kolitsch & Tillmanns, 2003). The occupancy of the presumed Ga site needed to be set at 0.50 in order to have acceptable displacement parameters. Only one Li atom could be located in the difference map, which is not sufficient for the charge balance, but no accessible voids could be located in the resulting structure. Therefore, a subsititional disorder of Ga/Li was proposed, approximately in line with what was found in the structure of Li3Fe(MoO4)3 for the Fe/Li sites (Klevtsova & Magarill, 1970). There, the occupancies of the two sites were fixed at 0.3333/0.66667 for Fe and Li, respectively. In the present case, the occupancies of the Ga1/Li2 and Ga3/Li4 sites in the structure of (III) were constrained to a value of 1.00, whereas restraints with an s.u. of 0.001 were used for keeping the total number of Li atoms in the structural formula at 3.0 and the total number of Ga atoms at 1.0, i.e. 0.5 × occupancy(Ga1) + occupancy(Ga3) = 1/2, and 0.5 × occupancy(Li2) + occupancy(Li4) = 1.0. There is no indication that the third trigonal prismatic site contains a small amount of Ga.

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and DrawXtl (Finger et al., 2007); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The full coordination environment around each unique metal centre in the asymmetric unit of (II). Symmetry codes are as given in Table 1. Displacement ellipsoids are drawn at the 75% probability level. It is noted that the structure of (I) is isomorphous to that of (II).
[Figure 2] Fig. 2. The full coordination environment around each unique metal centre in the asymmetric unit of (III). Symmetry codes are as given in Table 1. Displacement ellipsoids are drawn at the 75% probability level.
[Figure 3] Fig. 3. The polyhedral connectivity of the structures of (I) and (II). Mo tetrahedra are in lime-green, Ga(Fe) octahedra in blue-violet and Li-bicapped trigonal bipyramids in orange-red.
[Figure 4] Fig. 4. The layer-type structures of (I) and (II), in which the Mo tetrahedra are segregated from the other polyhedra. The colours are as in Fig. 2
[Figure 5] Fig. 5. The polyhedral connectivity of the structure of (III). Mo tetrahedra are in lime-green, Ga/Li octahedra in blue-violet, and Li trigonal prisms in orange-red.
[Figure 6] Fig. 6. The chain network in the structure of (III). The colours are as in Fig. 5. The Mo tetrahedra have been omitted for clarity.
(I) lithium iron dimolybdate top
Crystal data top
LiFe(MoO4)2Z = 2
Mr = 382.66F(000) = 354
Triclinic, P1Dx = 4.029 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 6.7592 (2) ÅCell parameters from 4835 reflections
b = 7.1773 (2) Åθ = 3.0–32.2°
c = 7.2398 (2) ŵ = 6.19 mm1
α = 90.806 (3)°T = 173 K
β = 110.315 (3)°Prism, brown-yellow
γ = 105.3850 (15)°0.49 × 0.28 × 0.16 mm
V = 315.38 (2) Å3
Data collection top
Oxford Diffraction Xcalibur-I
diffractometer
1977 independent reflections
Radiation source: Enhance (Mo) X-ray Source1966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.4205 pixels mm-1θmax = 32.3°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
k = 1010
Tmin = 0.420, Tmax = 1.000l = 1010
5166 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.014 Method = Modified Sheldrick, w = 1/[σ2(F2) + (0.01P)2 + 0.66P],
where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.035(Δ/σ)max = 0.001
S = 1.20Δρmax = 0.46 e Å3
2007 reflectionsΔρmin = 0.66 e Å3
109 parameters
Crystal data top
LiFe(MoO4)2γ = 105.3850 (15)°
Mr = 382.66V = 315.38 (2) Å3
Triclinic, P1Z = 2
a = 6.7592 (2) ÅMo Kα radiation
b = 7.1773 (2) ŵ = 6.19 mm1
c = 7.2398 (2) ÅT = 173 K
α = 90.806 (3)°0.49 × 0.28 × 0.16 mm
β = 110.315 (3)°
Data collection top
Oxford Diffraction Xcalibur-I
diffractometer
1977 independent reflections
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
1966 reflections with I > 2σ(I)
Tmin = 0.420, Tmax = 1.000Rint = 0.020
5166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.014109 parameters
wR(F2) = 0.0350 restraints
S = 1.20Δρmax = 0.46 e Å3
2007 reflectionsΔρmin = 0.66 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.33314 (3)0.57612 (2)0.29130 (2)0.0054
Mo20.82113 (2)0.03786 (2)0.22280 (2)0.0046
Fe30.39993 (4)0.10025 (4)0.31839 (4)0.0041
Li40.7711 (6)0.4465 (6)0.2593 (6)0.0142
O50.4178 (2)0.84077 (19)0.3846 (2)0.0062
O60.2536 (3)0.5702 (2)0.0397 (2)0.0120
O70.0947 (2)0.4847 (2)0.3361 (2)0.0111
O80.4814 (2)0.3844 (2)0.3508 (2)0.0077
O90.6858 (2)0.1297 (2)0.2697 (2)0.0075
O100.7680 (2)0.0471 (2)0.0336 (2)0.0114
O110.7130 (2)0.2750 (2)0.2649 (2)0.0096
O121.1113 (2)0.0466 (2)0.3552 (2)0.0083
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00488 (7)0.00357 (7)0.00636 (7)0.00158 (5)0.00027 (5)0.00015 (5)
Mo20.00306 (7)0.00566 (7)0.00493 (7)0.00144 (5)0.00102 (5)0.00004 (5)
Fe30.00384 (11)0.00372 (10)0.00487 (11)0.00124 (8)0.00148 (9)0.00045 (8)
Li40.0099 (16)0.0157 (17)0.0186 (18)0.0055 (13)0.0055 (14)0.0029 (14)
O50.0076 (6)0.0046 (5)0.0065 (6)0.0022 (5)0.0024 (5)0.0012 (4)
O60.0130 (6)0.0130 (7)0.0079 (6)0.0047 (5)0.0007 (5)0.0005 (5)
O70.0066 (6)0.0105 (6)0.0147 (7)0.0013 (5)0.0027 (5)0.0029 (5)
O80.0080 (6)0.0048 (6)0.0098 (6)0.0028 (5)0.0020 (5)0.0010 (5)
O90.0066 (6)0.0075 (6)0.0107 (6)0.0028 (5)0.0052 (5)0.0024 (5)
O100.0084 (6)0.0183 (7)0.0067 (6)0.0030 (5)0.0023 (5)0.0002 (5)
O110.0098 (6)0.0069 (6)0.0117 (6)0.0019 (5)0.0038 (5)0.0001 (5)
O120.0046 (6)0.0111 (6)0.0089 (6)0.0020 (5)0.0025 (5)0.0009 (5)
Geometric parameters (Å, º) top
Mo1—O8i2.4291 (14)Fe3—O5i2.0444 (14)
Mo1—O11ii2.5812 (15)Fe3—O12iii1.9977 (14)
Mo1—Fe3i3.2691 (3)Fe3—Fe3iv3.0798 (5)
Mo1—Mo1i3.4759 (3)Fe3—O5v1.9537 (13)
Mo1—O51.8736 (13)Fe3—O10vi1.9514 (15)
Mo1—O61.7074 (15)Fe3—O81.9543 (14)
Mo1—O71.7148 (15)Fe3—O92.0397 (14)
Mo1—O81.8792 (13)Li4—O6vii2.112 (4)
Mo2—Fe33.5232 (3)Li4—O7viii2.001 (4)
Mo2—O91.7851 (14)Li4—O7i2.743 (4)
Mo2—O101.7608 (15)Li4—O82.217 (4)
Mo2—O111.7417 (14)Li4—O92.202 (4)
Mo2—O121.7835 (14)Li4—O11ii2.139 (4)
O8i—Mo1—O11ii88.05 (5)Fe3iv—Fe3—Mo1i70.379 (10)
O8i—Mo1—Fe3i36.49 (3)O5v—Fe3—Mo1i111.08 (4)
O11ii—Mo1—Fe3i75.97 (3)O10vi—Fe3—Mo1i147.68 (5)
O8i—Mo1—Mo1i31.16 (3)O5i—Fe3—Mo291.52 (4)
O11ii—Mo1—Mo1i79.99 (3)O12iii—Fe3—Mo2153.74 (4)
Fe3i—Mo1—Mo1i63.653 (7)Fe3iv—Fe3—Mo275.867 (10)
O8i—Mo1—O571.43 (5)O5v—Fe3—Mo265.62 (4)
O11ii—Mo1—O573.86 (5)O10vi—Fe3—Mo287.53 (4)
Fe3i—Mo1—O535.14 (4)O5i—Fe3—O879.27 (6)
Mo1i—Mo1—O598.07 (4)O12iii—Fe3—O898.59 (6)
O8i—Mo1—O6168.64 (6)Fe3iv—Fe3—O8117.49 (4)
O11ii—Mo1—O680.60 (6)O5v—Fe3—O8157.28 (6)
Fe3i—Mo1—O6137.80 (5)O10vi—Fe3—O8100.13 (6)
Mo1i—Mo1—O6144.59 (5)O5i—Fe3—O988.22 (6)
O5—Mo1—O6104.56 (7)O12iii—Fe3—O9174.86 (6)
O8i—Mo1—O785.81 (6)Fe3iv—Fe3—O986.07 (4)
O11ii—Mo1—O7173.77 (6)O5v—Fe3—O985.66 (6)
Fe3i—Mo1—O798.36 (5)O10vi—Fe3—O990.56 (6)
Mo1i—Mo1—O795.24 (5)Mo1i—Fe3—Mo2103.551 (9)
O5—Mo1—O7103.07 (7)Mo1i—Fe3—O847.66 (4)
O8i—Mo1—O873.13 (6)Mo2—Fe3—O8107.66 (4)
O11ii—Mo1—O873.88 (5)Mo1i—Fe3—O989.85 (4)
Fe3i—Mo1—O8102.61 (4)Mo2—Fe3—O921.34 (4)
Mo1i—Mo1—O841.97 (4)O8—Fe3—O986.33 (6)
O5—Mo1—O8132.18 (6)Fe3i—O5—Fe3ii100.74 (6)
O6—Mo1—O7105.52 (7)Fe3i—O5—Mo1113.03 (7)
O6—Mo1—O8103.90 (7)Fe3ii—O5—Mo1146.20 (8)
O7—Mo1—O8105.26 (7)Mo1i—O8—Fe395.85 (6)
Fe3—Mo2—O924.57 (4)Mo1i—O8—Mo1106.87 (6)
Fe3—Mo2—O10108.85 (5)Fe3—O8—Mo1136.55 (8)
O9—Mo2—O10104.70 (7)Fe3—O9—Mo2134.08 (8)
Fe3—Mo2—O1190.01 (5)Fe3vi—O10—Mo2158.81 (9)
O9—Mo2—O11114.10 (7)Mo1v—O11—Mo2127.16 (7)
O10—Mo2—O11105.95 (7)Fe3viii—O12—Mo2142.30 (8)
Fe3—Mo2—O12128.60 (5)O6vii—Li4—O7viii87.75 (16)
O9—Mo2—O12111.45 (7)O6vii—Li4—O7i166.37 (19)
O10—Mo2—O12109.19 (7)O7viii—Li4—O7i79.70 (14)
O11—Mo2—O12111.01 (7)O6vii—Li4—O8123.46 (19)
O5i—Fe3—O12iii94.15 (6)O7viii—Li4—O8148.0 (2)
O5i—Fe3—Fe3iv38.55 (4)O7i—Li4—O869.76 (12)
O12iii—Fe3—Fe3iv92.94 (4)O6vii—Li4—O995.07 (17)
O5i—Fe3—O5v79.26 (6)O7viii—Li4—O995.34 (16)
O12iii—Fe3—O5v90.29 (6)O7i—Li4—O991.39 (14)
Fe3iv—Fe3—O5v40.71 (4)O8—Li4—O976.40 (14)
O5i—Fe3—O10vi178.67 (6)O6vii—Li4—O11ii95.30 (17)
O12iii—Fe3—O10vi87.11 (6)O7viii—Li4—O11ii108.95 (19)
Fe3iv—Fe3—O10vi141.86 (5)O7i—Li4—O11ii83.91 (14)
O5v—Fe3—O10vi101.17 (6)O8—Li4—O11ii77.89 (14)
O5i—Fe3—Mo1i31.83 (4)O9—Li4—O11ii153.9 (2)
O12iii—Fe3—Mo1i94.57 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+1, y, z.
(II) lithium gallium dimolybdate top
Crystal data top
LiGa(MoO4)2Z = 2
Mr = 396.54F(000) = 364
Triclinic, P1Dx = 4.242 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 6.7232 (3) ÅCell parameters from 5267 reflections
b = 7.0982 (3) Åθ = 3.0–32.3°
c = 7.2580 (4) ŵ = 8.29 mm1
α = 90.915 (4)°T = 293 K
β = 110.648 (4)°Prism, light-pink
γ = 105.253 (4)°0.43 × 0.32 × 0.11 mm
V = 310.43 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1977 independent reflections
Radiation source: Enhance (Mo) X-ray Source1880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.4205 pixels mm-1θmax = 32.4°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
k = 1010
Tmin = 0.173, Tmax = 1.000l = 1010
5166 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.042 Method = Modified Sheldrick, w = 1/[σ2(F2) + (0.1P)2 + 8.34P],
where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.116(Δ/σ)max = 0.000266
S = 0.82Δρmax = 1.34 e Å3
1977 reflectionsΔρmin = 3.97 e Å3
109 parameters
Crystal data top
LiGa(MoO4)2γ = 105.253 (4)°
Mr = 396.54V = 310.43 (3) Å3
Triclinic, P1Z = 2
a = 6.7232 (3) ÅMo Kα radiation
b = 7.0982 (3) ŵ = 8.29 mm1
c = 7.2580 (4) ÅT = 293 K
α = 90.915 (4)°0.43 × 0.32 × 0.11 mm
β = 110.648 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1977 independent reflections
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
1880 reflections with I > 2σ(I)
Tmin = 0.173, Tmax = 1.000Rint = 0.021
5166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042109 parameters
wR(F2) = 0.1160 restraints
S = 0.82Δρmax = 1.34 e Å3
1977 reflectionsΔρmin = 3.97 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.33063 (7)0.57523 (6)0.29138 (6)0.0066
Mo20.82150 (6)0.03507 (6)0.21800 (6)0.0055
Ga30.40267 (9)0.09926 (8)0.31997 (8)0.0050
Li40.771 (2)0.448 (2)0.2679 (18)0.0223
O50.4190 (6)0.8422 (5)0.3865 (6)0.0072
O60.2492 (8)0.5715 (7)0.0399 (6)0.0168
O70.0929 (7)0.4831 (7)0.3369 (7)0.0157
O80.4794 (7)0.3815 (5)0.3496 (6)0.0098
O90.6875 (6)0.1321 (6)0.2738 (6)0.0091
O100.7610 (7)0.0413 (7)0.0394 (6)0.0150
O110.7163 (7)0.2742 (6)0.2614 (7)0.0137
O121.1128 (6)0.0500 (6)0.3484 (6)0.0100
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0064 (2)0.0035 (2)0.0082 (2)0.00214 (14)0.00038 (15)0.00054 (14)
Mo20.00429 (19)0.0061 (2)0.0059 (2)0.00210 (14)0.00137 (14)0.00033 (14)
Ga30.0059 (2)0.0038 (2)0.0055 (2)0.00177 (18)0.00191 (19)0.00095 (17)
Li40.017 (5)0.030 (6)0.016 (5)0.004 (5)0.003 (4)0.004 (4)
O50.0106 (16)0.0039 (14)0.0078 (15)0.0030 (12)0.0035 (12)0.0015 (12)
O60.0196 (19)0.021 (2)0.0069 (17)0.0063 (16)0.0009 (14)0.0009 (15)
O70.0101 (17)0.0141 (18)0.022 (2)0.0042 (15)0.0038 (15)0.0062 (16)
O80.0101 (16)0.0045 (15)0.0142 (17)0.0033 (12)0.0028 (13)0.0015 (13)
O90.0074 (15)0.0079 (15)0.0147 (17)0.0029 (12)0.0067 (13)0.0033 (13)
O100.0104 (16)0.026 (2)0.0046 (16)0.0029 (15)0.0004 (13)0.0004 (15)
O110.0156 (18)0.0082 (16)0.0182 (19)0.0025 (14)0.0078 (15)0.0016 (14)
O120.0043 (14)0.0136 (17)0.0113 (17)0.0020 (13)0.0024 (12)0.0009 (13)
Geometric parameters (Å, º) top
Mo1—O8i2.437 (4)Ga3—O12iii1.972 (4)
Mo1—O11ii2.619 (4)Ga3—O10iv1.919 (4)
Mo1—Mo1i3.4665 (8)Ga3—O5v1.916 (4)
Mo1—Ga3i3.2489 (7)Ga3—Ga3vi3.0338 (11)
Mo1—O51.870 (4)Ga3—O81.921 (4)
Mo1—O61.709 (4)Ga3—O92.014 (4)
Mo1—O71.709 (4)Li4—O6vii2.188 (13)
Mo1—O81.874 (4)Li4—O7viii1.985 (13)
Mo2—O91.786 (4)Li4—O7i2.679 (13)
Mo2—O101.763 (4)Li4—O82.183 (13)
Mo2—O111.739 (4)Li4—O92.167 (14)
Mo2—O121.775 (4)Li4—O11ii2.099 (14)
Ga3—O5i2.014 (4)
O8i—Mo1—O11ii88.42 (14)O12iii—Ga3—Mo1i94.96 (12)
O8i—Mo1—Mo1i31.26 (9)O10iv—Ga3—Mo1i148.74 (15)
O11ii—Mo1—Mo1i80.22 (10)O5v—Ga3—Mo1i110.83 (12)
O8i—Mo1—Ga3i36.04 (9)O5i—Ga3—Ga3vi38.31 (10)
O11ii—Mo1—Ga3i76.80 (10)O12iii—Ga3—Ga3vi93.83 (12)
Mo1i—Mo1—Ga3i63.451 (16)O10iv—Ga3—Ga3vi141.00 (15)
O8i—Mo1—O570.57 (14)O5v—Ga3—Ga3vi40.67 (11)
O11ii—Mo1—O573.82 (15)Mo1i—Ga3—Ga3vi70.17 (2)
Mo1i—Mo1—O597.24 (12)O5i—Ga3—O879.99 (16)
Ga3i—Mo1—O534.66 (11)O12iii—Ga3—O897.31 (17)
O8i—Mo1—O6168.27 (19)O10iv—Ga3—O8100.52 (19)
O11ii—Mo1—O679.96 (19)O5v—Ga3—O8157.94 (17)
Mo1i—Mo1—O6145.21 (17)Mo1i—Ga3—O848.27 (12)
Ga3i—Mo1—O6137.31 (16)O5i—Ga3—O988.69 (16)
O5—Mo1—O6104.3 (2)O12iii—Ga3—O9175.54 (16)
O8i—Mo1—O785.70 (18)O10iv—Ga3—O989.94 (18)
O11ii—Mo1—O7174.08 (18)O5v—Ga3—O986.88 (15)
Mo1i—Mo1—O795.03 (15)Mo1i—Ga3—O989.46 (12)
Ga3i—Mo1—O797.95 (16)Ga3vi—Ga3—O8118.03 (12)
O5—Mo1—O7103.48 (19)Ga3vi—Ga3—O987.16 (11)
O8i—Mo1—O873.69 (17)O8—Ga3—O986.03 (16)
O11ii—Mo1—O873.84 (15)Ga3i—O5—Ga3ii101.01 (17)
Mo1i—Mo1—O842.43 (13)Ga3i—O5—Mo1113.48 (18)
Ga3i—Mo1—O8102.98 (12)Ga3ii—O5—Mo1145.5 (2)
O5—Mo1—O8131.73 (17)Mo1i—O8—Ga395.69 (16)
O6—Mo1—O7105.9 (2)Mo1i—O8—Mo1106.31 (17)
O6—Mo1—O8104.2 (2)Ga3—O8—Mo1137.4 (2)
O7—Mo1—O8105.05 (19)Ga3—O9—Mo2134.1 (2)
O9—Mo2—O10105.2 (2)Ga3iv—O10—Mo2160.1 (3)
O9—Mo2—O11113.25 (19)Mo1v—O11—Mo2126.6 (2)
O10—Mo2—O11106.8 (2)Ga3viii—O12—Mo2144.0 (2)
O9—Mo2—O12110.97 (18)O6vii—Li4—O7i165.2 (6)
O10—Mo2—O12109.8 (2)O6vii—Li4—O8123.1 (6)
O11—Mo2—O12110.6 (2)O7i—Li4—O871.5 (4)
O5i—Ga3—O12iii94.78 (16)O6vii—Li4—O994.0 (5)
O5i—Ga3—O10iv178.50 (17)O7i—Li4—O992.2 (5)
O12iii—Ga3—O10iv86.56 (18)O8—Li4—O976.2 (4)
O5i—Ga3—O5v78.99 (17)O6vii—Li4—O11ii93.5 (5)
O12iii—Ga3—O5v91.04 (16)O7i—Li4—O11ii86.3 (5)
O10iv—Ga3—O5v100.34 (19)O8—Li4—O11ii80.4 (5)
O5i—Ga3—Mo1i31.86 (10)O9—Li4—O11ii155.8 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y1, z; (vi) x+1, y, z+1; (vii) x+1, y+1, z; (viii) x+1, y, z.
(III) trilithium gallium trimolybdate top
Crystal data top
Li3Ga(MoO4)3F(000) = 1048.266
Mr = 570.51Dx = 4.139 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 12240 reflections
a = 5.04022 (13) Åθ = 3.0–32.3°
b = 10.4054 (3) ŵ = 7.00 mm1
c = 17.4541 (5) ÅT = 293 K
V = 915.39 (4) Å3Prism, red-pink
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1610 independent reflections
Radiation source: Enhance (Mo) X-ray Source1353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.4205 pixels mm-1θmax = 32.4°, θmin = 3.9°
ω scansh = 77
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
k = 1415
Tmin = 0.768, Tmax = 1.000l = 2423
17688 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.031 Method = Modified Sheldrick, w = 1/[σ2(F2) + (0.05P)2 + 1.63P],
where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.085(Δ/σ)max = 0.002
S = 1.14Δρmax = 1.35 e Å3
1610 reflectionsΔρmin = 3.02 e Å3
96 parameters
Crystal data top
Li3Ga(MoO4)3V = 915.39 (4) Å3
Mr = 570.51Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 5.04022 (13) ŵ = 7.00 mm1
b = 10.4054 (3) ÅT = 293 K
c = 17.4541 (5) Å0.35 × 0.30 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1610 independent reflections
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
1353 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 1.000Rint = 0.030
17688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03196 parameters
wR(F2) = 0.0852 restraints
S = 1.14Δρmax = 1.35 e Å3
1610 reflectionsΔρmin = 3.02 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.78007 (12)0.75000.55723 (4)0.0066
Mo20.77953 (10)0.47532 (5)0.84394 (3)0.0078
Ga30.24238 (12)0.92817 (12)0.47388 (9)0.00560.2909 (17)
Li40.24238 (12)0.92817 (12)0.47388 (9)0.00560.7091 (17)
Ga51.10960 (13)0.75000.75024 (10)0.01200.421 (3)
Li61.10960 (13)0.75000.75024 (10)0.01200.579 (3)
Li70.74424 (18)0.25000.69454 (18)0.0171
O80.86190 (18)0.75000.65560 (17)0.0143
O91.05797 (18)0.75000.49290 (17)0.0155
O100.57942 (18)0.88452 (17)0.53714 (16)0.0145
O110.58087 (18)0.37806 (17)0.78722 (16)0.0173
O120.85878 (18)0.61997 (17)0.79391 (16)0.0138
O130.58027 (18)0.51281 (17)0.92573 (16)0.0142
O141.06124 (18)0.38821 (17)0.87424 (16)0.0158
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00644 (12)0.00787 (16)0.00563 (16)0.00000.00007 (15)0.0000
Mo20.00745 (11)0.00772 (15)0.00818 (15)0.00062 (13)0.00064 (13)0.00190 (13)
Ga30.00419 (9)0.00752 (13)0.00508 (13)0.00015 (13)0.00030 (13)0.00112 (13)
Li40.00419 (9)0.00752 (13)0.00508 (13)0.00013 (13)0.00030 (13)0.00113 (13)
Ga50.02661 (9)0.00408 (13)0.00537 (13)0.00000.00453 (13)0.0000
Li60.02661 (9)0.00408 (13)0.00537 (13)0.00000.00453 (13)0.0000
Li70.00965 (13)0.01213 (18)0.02948 (18)0.00000.00329 (18)0.0000
O80.01759 (13)0.01642 (18)0.00883 (18)0.00000.00166 (18)0.0000
O90.01136 (13)0.02193 (18)0.01315 (18)0.00000.00162 (18)0.0000
O100.01402 (13)0.01610 (18)0.01336 (18)0.00151 (18)0.00269 (18)0.00076 (18)
O110.01445 (13)0.01998 (18)0.01753 (18)0.00543 (18)0.00075 (18)0.00498 (18)
O120.01934 (13)0.01011 (18)0.01209 (18)0.00097 (18)0.00020 (18)0.00238 (18)
O130.01354 (13)0.01809 (18)0.01101 (18)0.00023 (18)0.00006 (18)0.00092 (18)
O140.01706 (13)0.01388 (18)0.01649 (18)0.00381 (18)0.00332 (18)0.00143 (18)
Geometric parameters (Å, º) top
Mo1—Ga3i3.3141 (12)Ga5—Ga5xi2.5201 (1)
Mo1—Ga3ii3.3141 (12)Ga5—O82.071 (3)
Mo1—O81.766 (3)Ga5—O122.0025 (18)
Mo1—O91.795 (2)Li4—O9xiii2.1002 (13)
Mo1—O101.7621 (17)Li4—O10iii2.076 (2)
Mo1—O10iii1.7621 (17)Li4—O10xiv2.155 (2)
Mo2—Ga3iv3.3453 (13)Li4—O13xv2.0315 (18)
Mo2—Ga5v3.4066 (10)Li4—O13xvi2.029 (3)
Mo2—O111.734 (2)Li4—O14xvii2.044 (3)
Mo2—O121.785 (2)Li6—Ga5v2.5201 (1)
Mo2—O131.788 (2)Li6—Ga5xi2.5201 (1)
Mo2—O141.7656 (15)Li6—Li6v2.5201 (1)
Ga3—O9vi2.1003 (13)Li6—Li6xi2.5201 (1)
Ga3—O14vii2.044 (3)Li6—O82.071 (3)
Ga3—O13viii2.0314 (18)Li6—O8xi2.078 (3)
Ga3—O13v2.029 (3)Li6—O122.0025 (18)
Ga3—O10ix2.155 (2)Li6—O12xi2.0004 (19)
Ga3—Ga3x3.0059 (19)Li6—O12iii2.0025 (18)
Ga3—Ga3ix3.1320 (18)Li6—O12xii2.0004 (19)
Ga3—O102.076 (2)Li7—O112.252 (3)
Ga5—O8xi2.078 (3)Li7—O11xviii2.1808 (16)
Ga5—O12iii2.0025 (18)Li7—O11xix2.252 (3)
Ga5—O12xii2.0004 (19)Li7—O11xii2.1808 (16)
Ga5—O12xi2.0004 (19)Li7—O14xx2.088 (3)
Ga5—Ga5v2.5201 (1)Li7—O14xvi2.088 (3)
Ga3i—Mo1—Ga3ii68.03 (4)O8xi—Ga5—O1294.89 (10)
Ga3i—Mo1—O10iii139.51 (9)O12iii—Ga5—O1285.01 (11)
Ga3ii—Mo1—O10iii82.64 (6)O12xii—Ga5—O1294.93 (9)
Ga3i—Mo1—O8105.22 (4)O12xi—Ga5—O12179.67 (9)
Ga3ii—Mo1—O8105.22 (4)Ga5v—Ga5—O1250.94 (5)
O10iii—Mo1—O8109.12 (9)Ga5xi—Ga5—Mo2xi75.34 (4)
Ga3i—Mo1—O934.60 (3)Ga5xi—Ga5—Mo2xii75.34 (4)
Ga3ii—Mo1—O934.60 (3)Mo2xi—Ga5—Mo2xii114.07 (5)
O10iii—Mo1—O9108.86 (9)Ga5xi—Ga5—O8126.89 (12)
O8—Mo1—O9115.21 (9)Mo2xi—Ga5—O876.50 (4)
Ga3i—Mo1—O1082.64 (6)Mo2xii—Ga5—O876.50 (4)
Ga3ii—Mo1—O10139.51 (9)Ga5xi—Ga5—O12129.24 (7)
O10iii—Mo1—O10105.19 (10)Mo2xi—Ga5—O12155.41 (5)
O8—Mo1—O10109.12 (9)Mo2xii—Ga5—O1277.03 (6)
O9—Mo1—O10108.86 (9)O8—Ga5—O1285.58 (8)
Ga3iv—Mo2—Ga5v129.15 (3)Ga5xvi—O8—Ga574.81 (10)
Ga3iv—Mo2—O11135.84 (7)Ga5xvi—O8—Mo1128.76 (7)
Ga5v—Mo2—O1193.95 (7)Ga5—O8—Mo1156.43 (9)
Ga3iv—Mo2—O12107.10 (6)Ga3i—O9—Ga3ii123.94 (8)
Ga5v—Mo2—O1227.49 (4)Ga3i—O9—Mo1116.37 (7)
O11—Mo2—O12109.99 (11)Ga3ii—O9—Mo1116.37 (7)
Ga3iv—Mo2—O1383.99 (6)Ga3—O10—Ga3ix95.49 (9)
Ga5v—Mo2—O1393.50 (7)Ga3—O10—Mo1138.52 (12)
O11—Mo2—O13105.00 (9)Ga3ix—O10—Mo1119.81 (6)
O12—Mo2—O13109.40 (9)Ga5—O12—Ga5xvi78.04 (7)
Ga3iv—Mo2—O1430.95 (8)Ga5—O12—Mo2153.77 (8)
Ga5v—Mo2—O14141.03 (6)Ga5xvi—O12—Mo2128.18 (6)
O11—Mo2—O14109.62 (9)Ga3xxi—O13—Ga3xi95.53 (11)
O12—Mo2—O14113.54 (7)Ga3xxi—O13—Mo2133.25 (12)
O13—Mo2—O14108.93 (11)Ga3xi—O13—Mo2121.96 (6)
O9vi—Ga3—O14vii99.74 (10)Ga3iv—O14—Mo2122.68 (12)
O9vi—Ga3—O13viii95.38 (7)O9xiii—Li4—O10iii94.88 (9)
O14vii—Ga3—O13viii97.11 (11)O9xiii—Li4—O10xiv175.61 (13)
O9vi—Ga3—O13v87.28 (10)O10iii—Li4—O10xiv84.51 (9)
O14vii—Ga3—O13v172.60 (8)O9xiii—Li4—O13xv95.38 (7)
O13viii—Ga3—O13v84.47 (11)O10iii—Li4—O13xv165.88 (11)
O9vi—Ga3—O10ix175.61 (13)O10xiv—Li4—O13xv84.52 (8)
O14vii—Ga3—O10ix84.62 (9)O9xiii—Li4—O13xvi87.28 (10)
O13viii—Ga3—O10ix84.53 (8)O10iii—Li4—O13xvi86.35 (10)
O13v—Ga3—O10ix88.35 (10)O10xiv—Li4—O13xvi88.35 (10)
O9vi—Ga3—Ga3x91.79 (5)O13xv—Li4—O13xvi84.47 (11)
O14vii—Ga3—Ga3x138.84 (10)O9xiii—Li4—O14xvii99.74 (10)
O13viii—Ga3—Ga3x42.20 (8)O10iii—Li4—O14xvii90.68 (9)
O13v—Ga3—Ga3x42.27 (6)O10xiv—Li4—O14xvii84.61 (9)
O10ix—Ga3—Ga3x85.19 (7)O13xv—Li4—O14xvii97.11 (11)
O9vi—Ga3—Mo1vi29.03 (6)O13xvi—Li4—O14xvii172.59 (8)
O14vii—Ga3—Mo1vi126.89 (7)Ga5v—Li6—Ga5xi179.62 (16)
O13viii—Ga3—Mo1vi82.03 (6)Ga5xi—Li6—Li6v179.62 (16)
O13v—Ga3—Mo1vi60.46 (5)Ga5v—Li6—Li6xi179.62 (16)
O10ix—Ga3—Mo1vi146.96 (8)Li6v—Li6—Li6xi179.62 (16)
O9vi—Ga3—Mo2vii123.74 (8)Ga5v—Li6—O852.73 (7)
O14vii—Ga3—Mo2vii26.38 (5)Ga5xi—Li6—O8126.89 (12)
O13viii—Ga3—Mo2vii103.45 (8)Li6v—Li6—O852.73 (7)
O13v—Ga3—Mo2vii146.24 (6)Li6xi—Li6—O8126.89 (12)
O10ix—Ga3—Mo2vii60.43 (6)Ga5v—Li6—O8xi127.92 (12)
O9vi—Ga3—Ga3ix137.92 (9)Ga5xi—Li6—O8xi52.46 (7)
O14vii—Ga3—Ga3ix86.75 (6)Li6v—Li6—O8xi127.92 (12)
O13viii—Ga3—Ga3ix125.26 (9)Li6xi—Li6—O8xi52.46 (7)
O13v—Ga3—Ga3ix86.45 (8)O8—Li6—O8xi179.35 (8)
O10ix—Ga3—Ga3ix41.29 (5)Ga5v—Li6—O1250.94 (5)
O9vi—Ga3—O1094.87 (9)Ga5xi—Li6—O12129.24 (7)
O14vii—Ga3—O1090.67 (9)Li6v—Li6—O1250.94 (5)
O13viii—Ga3—O10165.89 (11)Li6xi—Li6—O12129.24 (7)
O13v—Ga3—O1086.36 (10)O8—Li6—O1285.58 (8)
O10ix—Ga3—O1084.51 (9)Ga5v—Li6—O12xi128.80 (7)
Ga3x—Ga3—Mo1vi64.76 (4)Ga5xi—Li6—O12xi51.02 (5)
Ga3x—Ga3—Mo2vii135.91 (7)Li6v—Li6—O12xi128.80 (7)
Mo1vi—Ga3—Mo2vii152.39 (5)Li6xi—Li6—O12xi51.02 (5)
Ga3x—Ga3—Ga3ix110.39 (8)O8—Li6—O12xi94.09 (10)
Mo1vi—Ga3—Ga3ix136.23 (8)Ga5v—Li6—O12iii50.94 (5)
Mo2vii—Ga3—Ga3ix61.97 (4)Ga5xi—Li6—O12iii129.24 (7)
Ga3x—Ga3—O10127.77 (11)Li6v—Li6—O12iii50.94 (5)
Mo1vi—Ga3—O10102.67 (8)Li6xi—Li6—O12iii129.24 (7)
Mo2vii—Ga3—O1078.65 (7)O8—Li6—O12iii85.58 (8)
Ga3ix—Ga3—O1043.22 (5)Ga5v—Li6—O12xii128.80 (7)
O8xi—Ga5—O12iii94.89 (10)Ga5xi—Li6—O12xii51.02 (5)
O8xi—Ga5—O12xii85.44 (8)Li6v—Li6—O12xii128.80 (7)
O12iii—Ga5—O12xii179.67 (9)Li6xi—Li6—O12xii51.02 (5)
O8xi—Ga5—O12xi85.44 (8)O8—Li6—O12xii94.09 (10)
O12iii—Ga5—O12xi94.93 (9)O8xi—Li6—O1294.89 (10)
O12xii—Ga5—O12xi85.12 (11)O8xi—Li6—O12xi85.44 (8)
O8xi—Ga5—Ga5v127.92 (12)O12—Li6—O12xi179.67 (9)
O12iii—Ga5—Ga5v50.94 (5)O8xi—Li6—O12iii94.89 (10)
O12xii—Ga5—Ga5v128.80 (7)O12—Li6—O12iii85.01 (11)
O12xi—Ga5—Ga5v128.80 (7)O12xi—Li6—O12iii94.93 (9)
O8xi—Ga5—Ga5xi52.46 (7)O8xi—Li6—O12xii85.44 (8)
O12iii—Ga5—Ga5xi129.24 (7)O12—Li6—O12xii94.93 (9)
O12xii—Ga5—Ga5xi51.02 (5)O12xi—Li6—O12xii85.12 (11)
O12xi—Ga5—Ga5xi51.02 (5)O12iii—Li6—O12xii179.67 (9)
Ga5v—Ga5—Ga5xi179.62 (16)O11—Li7—O11xviii122.77 (14)
O8xi—Ga5—Mo2xi103.17 (3)O11—Li7—O11xix72.57 (14)
O12iii—Ga5—Mo2xi77.03 (6)O11xviii—Li7—O11xix79.51 (9)
O12xii—Ga5—Mo2xi102.93 (8)O11—Li7—O11xii79.51 (9)
O12xi—Ga5—Mo2xi24.33 (4)O11xviii—Li7—O11xii75.33 (9)
Ga5v—Ga5—Mo2xi104.47 (4)O11xix—Li7—O11xii122.77 (14)
O8xi—Ga5—Mo2xii103.17 (3)O11—Li7—O14xx131.23 (7)
O12iii—Ga5—Mo2xii155.41 (5)O11xviii—Li7—O14xx90.39 (7)
O12xii—Ga5—Mo2xii24.33 (4)O11xix—Li7—O14xx81.02 (9)
O12xi—Ga5—Mo2xii102.93 (8)O11xii—Li7—O14xx148.04 (15)
Ga5v—Ga5—Mo2xii104.47 (4)O11—Li7—O14xvi81.02 (9)
O8xi—Ga5—O8179.35 (8)O11xviii—Li7—O14xvi148.04 (15)
O12iii—Ga5—O885.58 (8)O11xix—Li7—O14xvi131.23 (7)
O12xii—Ga5—O894.09 (10)O11xii—Li7—O14xvi90.39 (7)
O12xi—Ga5—O894.09 (10)O14xx—Li7—O14xvi87.06 (15)
Ga5v—Ga5—O852.73 (7)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+3/2, z; (iii) x, y+3/2, z; (iv) x+3/2, y1/2, z+1/2; (v) x1/2, y+3/2, z+3/2; (vi) x1, y+3/2, z; (vii) x+3/2, y+1/2, z1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x+1, y+2, z+1; (x) x, y+2, z+1; (xi) x+1/2, y+3/2, z+3/2; (xii) x+1/2, y, z+3/2; (xiii) x1, y, z; (xiv) x+1, y1/2, z+1; (xv) x+1/2, y+1, z1/2; (xvi) x1/2, y, z+3/2; (xvii) x+3/2, y+1, z1/2; (xviii) x+1/2, y+1/2, z+3/2; (xix) x, y+1/2, z; (xx) x1/2, y+1/2, z+3/2; (xxi) x+1/2, y1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaLiFe(MoO4)2LiGa(MoO4)2Li3Ga(MoO4)3
Mr382.66396.54570.51
Crystal system, space groupTriclinic, P1Triclinic, P1Orthorhombic, Pnma
Temperature (K)173293293
a, b, c (Å)6.7592 (2), 7.1773 (2), 7.2398 (2)6.7232 (3), 7.0982 (3), 7.2580 (4)5.04022 (13), 10.4054 (3), 17.4541 (5)
α, β, γ (°)90.806 (3), 110.315 (3), 105.3850 (15)90.915 (4), 110.648 (4), 105.253 (4)90, 90, 90
V3)315.38 (2)310.43 (3)915.39 (4)
Z224
Radiation typeMo KαMo KαMo Kα
µ (mm1)6.198.297.00
Crystal size (mm)0.49 × 0.28 × 0.160.43 × 0.32 × 0.110.35 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur-I
diffractometer
Oxford Diffraction Xcalibur
diffractometer
Oxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
Multi-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
Multi-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
Tmin, Tmax0.420, 1.0000.173, 1.0000.768, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5166, 1977, 1966 5166, 1977, 1880 17688, 1610, 1353
Rint0.0200.0210.030
(sin θ/λ)max1)0.7520.7540.754
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.035, 1.20 0.042, 0.116, 0.82 0.031, 0.085, 1.14
No. of reflections200719771610
No. of parameters10910996
No. of restraints002
Δρmax, Δρmin (e Å3)0.46, 0.661.34, 3.971.35, 3.02

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SUPERFLIP (Palatinus & Chapuis, 2007), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996) and DrawXtl (Finger et al., 2007).

Selected bond lengths (Å) for (I) top
Mo1—O51.8736 (13)Fe3—O5iii1.9537 (13)
Mo1—O61.7074 (15)Fe3—O10iv1.9514 (15)
Mo1—O71.7148 (15)Fe3—O81.9543 (14)
Mo1—O81.8792 (13)Fe3—O92.0397 (14)
Mo2—O91.7851 (14)Li4—O6v2.112 (4)
Mo2—O101.7608 (15)Li4—O7vi2.001 (4)
Mo2—O111.7417 (14)Li4—O7i2.743 (4)
Mo2—O121.7835 (14)Li4—O82.217 (4)
Fe3—O5i2.0444 (14)Li4—O92.202 (4)
Fe3—O12ii1.9977 (14)Li4—O11vii2.139 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x, y+1, z.
Selected bond lengths (Å) for (II) top
Mo1—O51.870 (4)Ga3—O10iii1.919 (4)
Mo1—O61.709 (4)Ga3—O5iv1.916 (4)
Mo1—O71.709 (4)Ga3—O81.921 (4)
Mo1—O81.874 (4)Ga3—O92.014 (4)
Mo2—O91.786 (4)Li4—O6v2.188 (13)
Mo2—O101.763 (4)Li4—O7vi1.985 (13)
Mo2—O111.739 (4)Li4—O7i2.679 (13)
Mo2—O121.775 (4)Li4—O82.183 (13)
Ga3—O5i2.014 (4)Li4—O92.167 (14)
Ga3—O12ii1.972 (4)Li4—O11vii2.099 (14)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x, y+1, z.
Selected bond lengths (Å) for (III) top
Mo1—O81.766 (3)Ga3—O102.076 (2)
Mo1—O91.795 (2)Ga5—O8vii2.078 (3)
Mo1—O101.7621 (17)Ga5—O12i2.0025 (18)
Mo1—O10i1.7621 (17)Ga5—O12viii2.0004 (19)
Mo2—O111.734 (2)Ga5—O12vii2.0004 (19)
Mo2—O121.785 (2)Ga5—O82.071 (3)
Mo2—O131.788 (2)Ga5—O122.0025 (18)
Mo2—O141.7656 (15)Li7—O112.252 (3)
Ga3—O9ii2.1003 (13)Li7—O11ix2.1808 (16)
Ga3—O14iii2.044 (3)Li7—O11x2.252 (3)
Ga3—O13iv2.0314 (18)Li7—O11viii2.1808 (16)
Ga3—O13v2.029 (3)Li7—O14xi2.088 (3)
Ga3—O10vi2.155 (2)Li7—O14xii2.088 (3)
Symmetry codes: (i) x, y+3/2, z; (ii) x1, y+3/2, z; (iii) x+3/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z1/2; (v) x1/2, y+3/2, z+3/2; (vi) x+1, y+2, z+1; (vii) x+1/2, y+3/2, z+3/2; (viii) x+1/2, y, z+3/2; (ix) x+1/2, y+1/2, z+3/2; (x) x, y+1/2, z; (xi) x1/2, y+1/2, z+3/2; (xii) x1/2, y, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds