Download citation
Download citation
link to html
In the title mol­ecule, C16H13NO4S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and N atoms displaced by 0.410 (3) and 0.299 (3) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The crystal structure is stabilized by inter­molecular hydrogen bonds of the types O—H...O and C—H...O; the former result in dimers lying about inversion centers and the latter form chains of mol­ecules running along the c axis. In addition, intra­molecular O—H...O links are present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810011025/jh2140sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810011025/jh2140Isup2.hkl
Contains datablock I

CCDC reference: 774376

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.041
  • wR factor = 0.113
  • Data-to-parameter ratio = 20.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT919_ALERT_3_B Reflection(s) # Likely Affected by the Beamstop 1
Alert level C PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 32 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 6 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 54 PLAT927_ALERT_1_C Reported and Calculated wR2 * 100.0 Differ by . 0.15
Alert level G PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 200 Deg.
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Oxicam, a class of non steroidal anti-inflammatory drugs (NSAIDs) consists of benzothiazine derivatives which are found to be potent anti-inflammatory and analgesic agents, e.g., piroxicam (Lombardino et al., 1971), droxicam (Soler, 1985), ampiroxicam (Carty et al., 1993), meloxicam (Turck et al., 1995), etc. In continuation of our research on potential biologically active benzothiazine compounds (Siddiqui et al., 2007; Ahmad, Siddiqui, Zia-ur-Rehman et al., 2010), we report the synthesis and crystal structure of the title compound in this article.

In the title compound (Fig. 1), the bond distances and angles agree with the cortresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008; Ahmad, Siddiqui, Rizvi et al., 2010). The heterocyclic thiazine ring adopts half chair conformation with atoms S1 and N1 displaced by 0.410 (3) and 0.299 (3) Å on the opposite sides from the mean planes formed by the remaining ring atoms.

The structure is stabilized by intermolecular hydrogen bonds of the types O—H···O and C—H···O; the former result in dimers lying about inversion centers and the later form chains of molecules running along the c-axis (Tab. 1 and Fig. 2). In addition, intramolecular interactions of the types O—H···O and C—H···N are also present consolidating the crystal packing.

Related literature top

For 1,2-benzothiazine derivatives as anti-inflammatory drugs (NSAIDs), see: Lombardino et al. (1971); Soler (1985); Carty et al. (1993); Turck et al. (1995). For the synthesis of benzothiazine derivatives, see: Siddiqui et al. (2007); Ahmad, Siddiqui, Zia-ur-Rehman et al. (2010). For related structures, see: Siddiqui et al. (2008); Ahmad, Siddiqui, Rizvi et al. (2010).

Experimental top

An aqueous sodium hydroxide solution (1.33 g in 10 ml water) was slowly added to a solution of 3-benzoyl-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide (5.0 g, 16.6 mmole) in acetone (50 ml). Dimethylsulfate (4.03 g, 32 mmole) was added drop wise and the mixture was stirred for 30 minutes. The contents of the flask were acidified to pH 3.0 by the addition of 5% HCl. White precipitates of the title compound were formed which were collected and washed with excess distilled water. Crystals suitable for crystallographic study were grown from a solution of chloroform/methanol (4:1); yield = 3.5 g, 70%; m.p. = 420-421 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with O—H = 0.84 Å and C—H = 0.95 and 0.98 Å for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(O/C). The final difference map was essentially featurless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. A part of the unit cell showing intermolecular and intrmolecular hydrogen bonds by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.
3-Benzoyl-4-hydroxy-2-methyl-2H-1,2-benzothiazine 1,1-dioxide top
Crystal data top
C16H13NO4SZ = 2
Mr = 315.33F(000) = 328
Triclinic, P1Dx = 1.480 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8342 (3) ÅCell parameters from 3532 reflections
b = 9.9085 (3) Åθ = 1.0–30.0°
c = 10.7234 (4) ŵ = 0.25 mm1
α = 83.257 (2)°T = 173 K
β = 79.481 (2)°Block, pale-yellow
γ = 85.113 (2)°0.12 × 0.10 × 0.08 mm
V = 707.50 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
4080 independent reflections
Radiation source: fine-focus sealed tube3665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.971, Tmax = 0.981k = 1313
7177 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3608P]
where P = (Fo2 + 2Fc2)/3
4080 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H13NO4Sγ = 85.113 (2)°
Mr = 315.33V = 707.50 (5) Å3
Triclinic, P1Z = 2
a = 6.8342 (3) ÅMo Kα radiation
b = 9.9085 (3) ŵ = 0.25 mm1
c = 10.7234 (4) ÅT = 173 K
α = 83.257 (2)°0.12 × 0.10 × 0.08 mm
β = 79.481 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4080 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3665 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.981Rint = 0.022
7177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.09Δρmax = 0.42 e Å3
4080 reflectionsΔρmin = 0.34 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20282 (5)0.24470 (3)0.28051 (3)0.02305 (10)
O10.00548 (16)0.28521 (10)0.28975 (11)0.0279 (2)
O20.29460 (19)0.15793 (11)0.18540 (11)0.0339 (3)
O30.23671 (18)0.47875 (11)0.58638 (10)0.0290 (2)
H3O0.23330.56210.56040.044*
O40.24683 (18)0.68733 (10)0.42430 (10)0.0303 (2)
N10.32262 (17)0.38365 (11)0.25903 (11)0.0218 (2)
C10.2435 (2)0.17087 (13)0.43178 (14)0.0230 (3)
C20.2400 (2)0.03080 (14)0.46264 (16)0.0284 (3)
H20.22440.02680.40080.034*
C30.2596 (2)0.02341 (15)0.58521 (17)0.0321 (3)
H30.25700.11890.60780.039*
C40.2832 (2)0.06112 (16)0.67508 (16)0.0325 (3)
H40.29650.02290.75880.039*
C50.2875 (2)0.20118 (15)0.64393 (14)0.0279 (3)
H50.30350.25820.70620.033*
C60.2683 (2)0.25797 (13)0.52084 (13)0.0228 (3)
C70.2650 (2)0.40639 (13)0.48734 (13)0.0218 (2)
C80.2777 (2)0.46608 (13)0.36361 (13)0.0205 (2)
C90.2466 (2)0.61275 (13)0.33796 (13)0.0222 (2)
C100.5305 (2)0.38032 (17)0.19048 (16)0.0336 (3)
H10A0.56880.47360.16240.040*
H10B0.54190.32960.11610.040*
H10C0.61890.33560.24740.040*
C110.2056 (2)0.67762 (13)0.21160 (13)0.0227 (3)
C120.0803 (2)0.61998 (14)0.14609 (14)0.0254 (3)
H120.03300.53250.17580.030*
C130.0252 (2)0.69159 (15)0.03694 (14)0.0283 (3)
H130.06190.65350.00710.034*
C140.0968 (3)0.81858 (15)0.00811 (15)0.0304 (3)
H140.05870.86680.08280.036*
C150.2239 (3)0.87500 (15)0.05592 (15)0.0309 (3)
H150.27520.96090.02400.037*
C160.2759 (2)0.80577 (14)0.16662 (14)0.0270 (3)
H160.35950.84560.21190.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02533 (17)0.02010 (16)0.02556 (17)0.00128 (11)0.00723 (12)0.00570 (11)
O10.0246 (5)0.0277 (5)0.0338 (6)0.0033 (4)0.0113 (4)0.0022 (4)
O20.0448 (7)0.0258 (5)0.0331 (6)0.0001 (4)0.0074 (5)0.0127 (4)
O30.0404 (6)0.0251 (5)0.0231 (5)0.0006 (4)0.0084 (4)0.0063 (4)
O40.0444 (6)0.0224 (5)0.0263 (5)0.0038 (4)0.0088 (4)0.0065 (4)
N10.0218 (5)0.0210 (5)0.0224 (5)0.0014 (4)0.0020 (4)0.0053 (4)
C10.0189 (6)0.0221 (6)0.0281 (7)0.0007 (4)0.0050 (5)0.0017 (5)
C20.0218 (6)0.0220 (6)0.0412 (8)0.0019 (5)0.0061 (6)0.0017 (5)
C30.0234 (7)0.0245 (6)0.0460 (9)0.0031 (5)0.0055 (6)0.0068 (6)
C40.0278 (7)0.0326 (7)0.0337 (8)0.0019 (6)0.0045 (6)0.0093 (6)
C50.0261 (7)0.0311 (7)0.0256 (7)0.0004 (5)0.0053 (5)0.0012 (5)
C60.0194 (6)0.0230 (6)0.0254 (6)0.0004 (4)0.0040 (5)0.0010 (5)
C70.0212 (6)0.0226 (6)0.0226 (6)0.0010 (4)0.0054 (5)0.0038 (5)
C80.0209 (6)0.0202 (5)0.0211 (6)0.0011 (4)0.0041 (4)0.0042 (4)
C90.0227 (6)0.0211 (6)0.0234 (6)0.0033 (4)0.0039 (5)0.0032 (4)
C100.0259 (7)0.0364 (8)0.0373 (8)0.0034 (6)0.0036 (6)0.0123 (6)
C110.0255 (6)0.0200 (6)0.0222 (6)0.0002 (5)0.0033 (5)0.0033 (4)
C120.0278 (7)0.0232 (6)0.0258 (6)0.0021 (5)0.0054 (5)0.0036 (5)
C130.0319 (7)0.0287 (7)0.0261 (7)0.0005 (5)0.0093 (6)0.0046 (5)
C140.0391 (8)0.0266 (7)0.0249 (7)0.0036 (6)0.0077 (6)0.0012 (5)
C150.0404 (8)0.0216 (6)0.0301 (7)0.0031 (5)0.0058 (6)0.0005 (5)
C160.0312 (7)0.0217 (6)0.0294 (7)0.0034 (5)0.0070 (6)0.0036 (5)
Geometric parameters (Å, º) top
S1—O21.4329 (11)C6—C71.4716 (18)
S1—O11.4346 (11)C7—C81.3784 (19)
S1—N11.6333 (12)C8—C91.4518 (18)
S1—C11.7593 (14)C9—C111.4936 (19)
O3—C71.3265 (16)C10—H10A0.9800
O3—H3O0.8400C10—H10B0.9800
O4—C91.2509 (16)C10—H10C0.9800
N1—C81.4373 (16)C11—C121.3966 (19)
N1—C101.4753 (18)C11—C161.3969 (19)
C1—C21.3896 (19)C12—C131.391 (2)
C1—C61.4011 (19)C12—H120.9500
C2—C31.386 (2)C13—C141.390 (2)
C2—H20.9500C13—H130.9500
C3—C41.388 (2)C14—C151.389 (2)
C3—H30.9500C14—H140.9500
C4—C51.390 (2)C15—C161.388 (2)
C4—H40.9500C15—H150.9500
C5—C61.3974 (19)C16—H160.9500
C5—H50.9500
O2—S1—O1118.95 (7)C7—C8—N1120.26 (11)
O2—S1—N1108.49 (7)C7—C8—C9120.23 (12)
O1—S1—N1107.25 (6)N1—C8—C9119.51 (12)
O2—S1—C1109.77 (7)O4—C9—C8119.85 (12)
O1—S1—C1107.98 (6)O4—C9—C11118.55 (12)
N1—S1—C1103.26 (6)C8—C9—C11121.55 (12)
C7—O3—H3O109.5N1—C10—H10A109.5
C8—N1—C10116.02 (11)N1—C10—H10B109.5
C8—N1—S1114.56 (9)H10A—C10—H10B109.5
C10—N1—S1118.88 (9)N1—C10—H10C109.5
C2—C1—C6121.72 (13)H10A—C10—H10C109.5
C2—C1—S1120.23 (11)H10B—C10—H10C109.5
C6—C1—S1117.96 (10)C12—C11—C16119.90 (13)
C3—C2—C1118.87 (14)C12—C11—C9121.08 (12)
C3—C2—H2120.6C16—C11—C9118.60 (12)
C1—C2—H2120.6C13—C12—C11119.51 (13)
C2—C3—C4120.34 (14)C13—C12—H12120.2
C2—C3—H3119.8C11—C12—H12120.2
C4—C3—H3119.8C14—C13—C12120.42 (14)
C3—C4—C5120.73 (15)C14—C13—H13119.8
C3—C4—H4119.6C12—C13—H13119.8
C5—C4—H4119.6C15—C14—C13120.07 (14)
C4—C5—C6119.87 (15)C15—C14—H14120.0
C4—C5—H5120.1C13—C14—H14120.0
C6—C5—H5120.1C16—C15—C14119.93 (14)
C5—C6—C1118.46 (13)C16—C15—H15120.0
C5—C6—C7120.69 (13)C14—C15—H15120.0
C1—C6—C7120.79 (12)C15—C16—C11120.14 (14)
O3—C7—C8122.43 (12)C15—C16—H16119.9
O3—C7—C6114.62 (12)C11—C16—H16119.9
C8—C7—C6122.84 (12)
O2—S1—N1—C8166.36 (9)C1—C6—C7—C813.2 (2)
O1—S1—N1—C863.98 (11)O3—C7—C8—N1175.55 (12)
C1—S1—N1—C849.92 (11)C6—C7—C8—N18.6 (2)
O2—S1—N1—C1022.94 (13)O3—C7—C8—C94.2 (2)
O1—S1—N1—C10152.60 (11)C6—C7—C8—C9171.61 (12)
C1—S1—N1—C1093.50 (12)C10—N1—C8—C7100.95 (16)
O2—S1—C1—C237.60 (14)S1—N1—C8—C743.55 (16)
O1—S1—C1—C293.50 (12)C10—N1—C8—C978.84 (16)
N1—S1—C1—C2153.13 (11)S1—N1—C8—C9136.66 (11)
O2—S1—C1—C6145.77 (11)C7—C8—C9—O413.9 (2)
O1—S1—C1—C683.13 (12)N1—C8—C9—O4165.87 (13)
N1—S1—C1—C630.25 (12)C7—C8—C9—C11163.55 (13)
C6—C1—C2—C30.6 (2)N1—C8—C9—C1116.66 (19)
S1—C1—C2—C3175.86 (11)O4—C9—C11—C12137.23 (14)
C1—C2—C3—C40.3 (2)C8—C9—C11—C1240.27 (19)
C2—C3—C4—C50.0 (2)O4—C9—C11—C1635.29 (19)
C3—C4—C5—C60.1 (2)C8—C9—C11—C16147.21 (14)
C4—C5—C6—C10.4 (2)C16—C11—C12—C130.6 (2)
C4—C5—C6—C7177.71 (13)C9—C11—C12—C13171.87 (13)
C2—C1—C6—C50.7 (2)C11—C12—C13—C141.1 (2)
S1—C1—C6—C5175.85 (10)C12—C13—C14—C150.1 (2)
C2—C1—C6—C7178.00 (13)C13—C14—C15—C161.4 (2)
S1—C1—C6—C71.42 (18)C14—C15—C16—C112.0 (2)
C5—C6—C7—O314.30 (19)C12—C11—C16—C151.0 (2)
C1—C6—C7—O3162.91 (13)C9—C11—C16—C15173.59 (13)
C5—C6—C7—C8169.55 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.841.802.5365 (15)146
O3—H3O···O1i0.842.563.0108 (15)115
C3—H3···O1ii0.952.503.2627 (18)138
C12—H12···N10.952.593.0163 (18)107
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13NO4S
Mr315.33
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.8342 (3), 9.9085 (3), 10.7234 (4)
α, β, γ (°)83.257 (2), 79.481 (2), 85.113 (2)
V3)707.50 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.971, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
7177, 4080, 3665
Rint0.022
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.09
No. of reflections4080
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.841.802.5365 (15)146
O3—H3O···O1i0.842.563.0108 (15)115
C3—H3···O1ii0.952.503.2627 (18)138
C12—H12···N10.952.593.0163 (18)107
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds