Download citation
Download citation
link to html
In the title compound, [ZnBr2(C11H10N2)], the ZnII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from a 6-methyl-2,2′-bipyridine ligand and two terminal Br atoms. Weak inter­molecular C—H...Br hydrogen bonds and π–π stacking inter­actions between the pyridine rings [centroid–centroid distances = 3.763 (5) and 3.835 (6) Å] contribute to crystal-packing effects.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810035658/jj2041sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810035658/jj2041Isup2.hkl
Contains datablock I

CCDC reference: 797623

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.016 Å
  • R factor = 0.086
  • wR factor = 0.207
  • Data-to-parameter ratio = 24.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT341_ALERT_3_B Low Bond Precision on C-C Bonds (x 1000) Ang .. 16
Alert level C PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.99 eA-3 PLAT234_ALERT_4_C Large Hirshfeld Difference C8 -- C9 .. 0.16 Ang. PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 69
Alert level G PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 8.43 PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT380_ALERT_4_G Check Incorrectly? Oriented X(sp2)-Methyl Moiety C1
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Sterically hindered ligands such as 6-Methyl-2, 2'-bipyridine (6-mbipy) often convey unusual coordination geometries or oxidation states on transition metal centers (Beeston et al., 1998; Meyer et al. 1999). Numerous complexes with 6-mbipy have been prepared, such as that of mercury (Ahmadi, Ebadi et al., 2008), platin (Amani et al., 2009), lead (Ahmadi et al., 2009), palladium (Newkome et al., 1982), ruthenium (Onggo, Scudder et al., 2005) and iron (Onggo, Hook et al., 1990). Here, we report the synthesis and structure of the title compound, [Zn(C11H10N2)Br2].

In the title compound (Fig. 1), the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from one 6-methyl-2,2'-bipyridine and two terminal Br atoms. The Zn—N and Zn—Br bond lengths and angles are within the normal range of [ZnCl2(6-mbpy)], (Ahmadi, Kalateh et al., 2008) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.

In the crystal structure, weak intermolecular C—H···Br hydrogen bonds (Table 2) and π···π stacking interactions (Fig. 2, Table 1) between the pyridine rings,Cg1—Cg2 and Cg2—Cg3 contribute to crystal packing effects [where Cg1, Cg2 and Cg3 are centroids of the rings (Zn1/N1/C6—C7/N2), (N1/C2—C6) and (N2/C7—C11), respectively].

Related literature top

For unusual coordination geometries on transition metal centers, see: (Beeston et al. (1998), Meyer et al. (1999); For related literature, see: Ahmadi et al. (2009); Ahmadi, Ebadi, et al. (2008); Ahmadi, Kalateh, et al. (2008); Alizadeh et al. (2009); Amani et al. (2009); Newkome et al. (1982); Onggo et al. (1990, 2005).

Experimental top

For the preparation of the title compound, a solution of 6-methyl-2,2'-bipyridine (0.16 g, 0.15 ml 0.94 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.21 g, 0.94 mmol) in acetonitrile (30 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield 0.28 g, 75.3%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93Å for aromatics H, C—H = 0.96Å for methyl and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq. High values for Δρ are related to the poor quality of the crystals.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, [Zn(C11H10N2)Br2], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for [Zn(C11H10N2)Br2]. Dashed lines indicate weak C—H···Br intermolecular interactions.
Dibromido(6-methyl-2,2'-bipyridine-κ2N,N')zinc(II) top
Crystal data top
[ZnBr2(C11H10N2)]F(000) = 760
Mr = 395.40Dx = 1.991 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 985 reflections
a = 7.6445 (7) Åθ = 2.3–29.4°
b = 9.7487 (11) ŵ = 7.89 mm1
c = 17.8347 (18) ÅT = 298 K
β = 96.972 (8)°Prism, colorless
V = 1319.3 (2) Å30.46 × 0.30 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3567 independent reflections
Radiation source: fine-focus sealed tube2498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
ϕ and ω scansθmax = 29.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 810
Tmin = 0.076, Tmax = 0.310k = 1313
15389 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0565P)2 + 8.4252P]
where P = (Fo2 + 2Fc2)/3
3567 reflections(Δ/σ)max = 0.002
145 parametersΔρmax = 2.14 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[ZnBr2(C11H10N2)]V = 1319.3 (2) Å3
Mr = 395.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6445 (7) ŵ = 7.89 mm1
b = 9.7487 (11) ÅT = 298 K
c = 17.8347 (18) Å0.46 × 0.30 × 0.15 mm
β = 96.972 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3567 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2498 reflections with I > 2σ(I)
Tmin = 0.076, Tmax = 0.310Rint = 0.119
15389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.13Δρmax = 2.14 e Å3
3567 reflectionsΔρmin = 1.14 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.651 (2)0.9482 (15)0.2106 (6)0.099 (5)
H1A0.75900.90420.23020.119*
H1B0.55940.88050.20120.119*
H1C0.61831.01350.24680.119*
C20.6740 (14)1.0200 (10)0.1390 (6)0.063 (2)
C30.6519 (15)1.1604 (12)0.1292 (7)0.074 (3)
H30.62271.21530.16850.089*
C40.6738 (15)1.2162 (11)0.0608 (8)0.075 (3)
H40.65591.30970.05270.090*
C50.7221 (13)1.1355 (10)0.0041 (6)0.063 (2)
H50.74151.17390.04190.076*
C60.7415 (11)0.9971 (9)0.0160 (5)0.051 (2)
C70.7873 (11)0.8977 (10)0.0412 (5)0.0509 (19)
C80.8184 (14)0.9373 (12)0.1129 (6)0.070 (3)
H80.81681.02930.12680.084*
C90.8523 (16)0.8339 (15)0.1639 (6)0.080 (3)
H90.87350.85680.21260.096*
C100.8542 (18)0.7025 (14)0.1426 (6)0.080 (3)
H100.87360.63390.17680.097*
C110.8280 (15)0.6692 (12)0.0710 (6)0.072 (3)
H110.83440.57760.05630.087*
N10.7182 (10)0.9406 (7)0.0849 (4)0.0508 (17)
N20.7930 (10)0.7647 (8)0.0208 (4)0.0530 (17)
Br11.04853 (15)0.69883 (13)0.15998 (7)0.0756 (4)
Br20.54078 (15)0.58954 (13)0.11809 (7)0.0767 (4)
Zn10.76827 (14)0.73342 (11)0.09099 (6)0.0525 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.147 (13)0.102 (10)0.056 (6)0.016 (9)0.040 (8)0.011 (6)
C20.063 (6)0.057 (5)0.068 (6)0.004 (5)0.010 (5)0.004 (5)
C30.061 (6)0.070 (7)0.088 (8)0.006 (5)0.001 (5)0.018 (6)
C40.071 (7)0.051 (5)0.102 (9)0.003 (5)0.005 (6)0.013 (6)
C50.063 (6)0.056 (5)0.070 (6)0.003 (5)0.008 (5)0.015 (5)
C60.038 (4)0.058 (5)0.056 (5)0.005 (4)0.001 (3)0.021 (4)
C70.045 (4)0.063 (5)0.043 (4)0.006 (4)0.002 (3)0.009 (4)
C80.060 (6)0.089 (7)0.058 (6)0.018 (5)0.002 (5)0.028 (5)
C90.076 (7)0.122 (11)0.046 (5)0.016 (7)0.018 (5)0.005 (6)
C100.091 (8)0.098 (9)0.056 (6)0.006 (7)0.021 (6)0.010 (6)
C110.081 (7)0.073 (7)0.068 (6)0.007 (6)0.029 (6)0.004 (5)
N10.052 (4)0.050 (4)0.052 (4)0.004 (3)0.015 (3)0.008 (3)
N20.059 (4)0.059 (4)0.042 (3)0.001 (4)0.012 (3)0.008 (3)
Br10.0576 (6)0.0870 (8)0.0815 (7)0.0001 (5)0.0052 (5)0.0382 (6)
Br20.0673 (7)0.0768 (7)0.0878 (8)0.0131 (5)0.0173 (6)0.0197 (6)
Zn10.0560 (6)0.0509 (6)0.0528 (6)0.0038 (5)0.0149 (4)0.0129 (4)
Geometric parameters (Å, º) top
C1—C21.486 (16)C7—N21.346 (11)
C1—H1A0.9600C7—C81.383 (12)
C1—H1B0.9600C8—C91.402 (17)
C1—H1C0.9600C8—H80.9300
C2—N11.312 (12)C9—C101.335 (18)
C2—C31.388 (15)C9—H90.9300
C3—C41.364 (17)C10—C111.355 (15)
C3—H30.9300C10—H100.9300
C4—C51.368 (16)C11—N21.342 (13)
C4—H40.9300C11—H110.9300
C5—C61.370 (13)N1—Zn12.057 (7)
C5—H50.9300N2—Zn12.048 (7)
C6—N11.378 (10)Br1—Zn12.3617 (16)
C6—C71.480 (13)Br2—Zn12.3300 (15)
Cg1···Cg2i3.762 (5)Cg2···Cg3ii3.835 (6)
C2—C1—H1A109.5C7—C8—C9117.7 (10)
C2—C1—H1B109.5C7—C8—H8121.2
H1A—C1—H1B109.5C9—C8—H8121.2
C2—C1—H1C109.5C10—C9—C8120.1 (10)
H1A—C1—H1C109.5C10—C9—H9120.0
H1B—C1—H1C109.5C8—C9—H9120.0
N1—C2—C3121.8 (10)C9—C10—C11120.0 (11)
N1—C2—C1115.0 (9)C9—C10—H10120.0
C3—C2—C1123.2 (10)C11—C10—H10120.0
C4—C3—C2118.7 (11)N2—C11—C10121.8 (11)
C4—C3—H3120.7N2—C11—H11119.1
C2—C3—H3120.7C10—C11—H11119.1
C3—C4—C5120.3 (10)C2—N1—C6119.5 (8)
C3—C4—H4119.8C2—N1—Zn1127.1 (6)
C5—C4—H4119.8C6—N1—Zn1113.3 (6)
C4—C5—C6119.1 (10)C11—N2—C7119.4 (8)
C4—C5—H5120.5C11—N2—Zn1126.6 (7)
C6—C5—H5120.5C7—N2—Zn1113.8 (6)
C5—C6—N1120.5 (9)N2—Zn1—N180.9 (3)
C5—C6—C7124.6 (8)N2—Zn1—Br2116.8 (2)
N1—C6—C7114.9 (8)N1—Zn1—Br2117.6 (2)
N2—C7—C8121.0 (9)N2—Zn1—Br1110.1 (2)
N2—C7—C6116.5 (7)N1—Zn1—Br1108.6 (2)
C8—C7—C6122.4 (9)Br2—Zn1—Br1117.30 (6)
N1—C2—C3—C41.2 (17)C5—C6—N1—Zn1176.7 (7)
C1—C2—C3—C4179.0 (12)C7—C6—N1—Zn13.4 (9)
C2—C3—C4—C52.1 (18)C10—C11—N2—C71.4 (17)
C3—C4—C5—C62.5 (17)C10—C11—N2—Zn1175.1 (9)
C4—C5—C6—N12.0 (15)C8—C7—N2—C110.5 (14)
C4—C5—C6—C7177.9 (9)C6—C7—N2—C11177.8 (9)
C5—C6—C7—N2177.1 (9)C8—C7—N2—Zn1174.0 (7)
N1—C6—C7—N22.9 (11)C6—C7—N2—Zn17.7 (10)
C5—C6—C7—C81.2 (14)C11—N2—Zn1—N1178.6 (9)
N1—C6—C7—C8178.8 (8)C7—N2—Zn1—N17.4 (6)
N2—C7—C8—C91.3 (15)C11—N2—Zn1—Br262.2 (9)
C6—C7—C8—C9176.9 (9)C7—N2—Zn1—Br2123.7 (6)
C7—C8—C9—C100.1 (17)C11—N2—Zn1—Br174.8 (9)
C8—C9—C10—C112 (2)C7—N2—Zn1—Br199.2 (6)
C9—C10—C11—N23 (2)C2—N1—Zn1—N2176.6 (9)
C3—C2—N1—C60.8 (15)C6—N1—Zn1—N25.8 (6)
C1—C2—N1—C6179.5 (10)C2—N1—Zn1—Br261.0 (9)
C3—C2—N1—Zn1176.7 (8)C6—N1—Zn1—Br2121.3 (5)
C1—C2—N1—Zn13.0 (14)C2—N1—Zn1—Br175.2 (8)
C5—C6—N1—C21.2 (13)C6—N1—Zn1—Br1102.5 (6)
C7—C6—N1—C2178.7 (8)
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Br1iii0.962.863.805 (14)169
C8—H8···Br1ii0.932.933.812 (12)159
Symmetry codes: (ii) x+2, y+2, z; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnBr2(C11H10N2)]
Mr395.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.6445 (7), 9.7487 (11), 17.8347 (18)
β (°) 96.972 (8)
V3)1319.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.89
Crystal size (mm)0.46 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.076, 0.310
No. of measured, independent and
observed [I > 2σ(I)] reflections
15389, 3567, 2498
Rint0.119
(sin θ/λ)max1)0.690
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.207, 1.13
No. of reflections3567
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.14, 1.14

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Br1i0.962.863.805 (14)169
C8—H8···Br1ii0.932.933.812 (12)159
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds