


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812000104/jj2116sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536812000104/jj2116Isup2.hkl |
CCDC reference: 867965
Key indicators
- Single-crystal X-ray study
- T = 100 K
- Mean
(C-C) = 0.012 Å
- R factor = 0.039
- wR factor = 0.102
- Data-to-parameter ratio = 21.7
checkCIF/PLATON results
No syntax errors found
Alert level B PLAT601_ALERT_2_B Structure Contains Solvent Accessible VOIDS of . 136 A 3
Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.35 PLAT213_ALERT_2_C Atom C2B has ADP max/min Ratio ..... 3.8 prola PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0123 Ang PLAT480_ALERT_4_C Long H...A H-Bond Reported H1SA .. CL1B .. 2.87 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5AA .. CL1A .. 2.91 Ang. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 7 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 30 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 20 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 1 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 2.12 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 2.12 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.94 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.85 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.85 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.68 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.62 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.52 eA-3
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.01 From the CIF: _reflns_number_total 5506 Count of symmetry unique reflns 3151 Completeness (_total/calc) 174.74% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2355 Fraction of Friedel pairs measured 0.747 Are heavy atom types Z>Si present yes PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 22.72 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 2 CL1A-PD1A-TE1A-C1A -94.40 0.50 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 CL1A-PD1A-TE1A-PD1A 11.60 0.40 1.555 1.555 1.555 2.665 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 TE1A-PD1A-N1A -C9A -130.50 1.40 2.665 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 TE1A-PD1A-N1A -C8A 113.00 1.50 2.665 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 19 TE1A-PD1A-N1A -C7A -6.50 1.90 2.665 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 67 TE1B-PD1B-N1B -C9B 133.00 1.40 2.665 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 71 TE1B-PD1B-N1B -C8B -108.70 1.50 2.665 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 75 TE1B-PD1B-N1B -C7B 9.70 1.90 2.665 1.555 1.555 1.555 PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 25 PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 3 C H2 Cl2 PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ....... !
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 17 ALERT level C = Check. Ensure it is not caused by an omission or oversight 14 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 12 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 14 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check
The ligand and complex were prepared using previously reported methods (Chakraborty et al., 2011). The reaction time for the synthesis of the tellurolate complex was 2 h and it was crystallized from chloroform/hexane as reported earlier. However, when the reaction was run for 30 min following the reported procedure and crystallized from dichloromethane/hexane (2:1) at ambient temperature the complex crystallized in a different space group which is chiral.
H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 - 0.97 Å [Uiso(H) = 1.2Ueq(CH, CH2) [Uiso(H) = 1.5Ueq(CH3)].
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
[Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2 | F(000) = 1588 |
Mr = 1699.51 | Dx = 2.200 Mg m−3 |
Orthorhombic, P21212 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2 2ab | Cell parameters from 9437 reflections |
a = 14.035 (2) Å | θ = 2.7–26.9° |
b = 14.842 (2) Å | µ = 3.95 mm−1 |
c = 12.3188 (16) Å | T = 100 K |
V = 2566.0 (6) Å3 | Prism, yellow-orange |
Z = 2 | 0.32 × 0.26 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 5506 independent reflections |
Radiation source: fine-focus sealed tube | 5148 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω scans | θmax = 27.0°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −17→17 |
Tmin = 0.615, Tmax = 0.746 | k = −18→18 |
36521 measured reflections | l = −15→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0501P)2 + 22.7234P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
5506 reflections | Δρmax = 2.12 e Å−3 |
254 parameters | Δρmin = −0.90 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2355 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (4) |
[Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2 | V = 2566.0 (6) Å3 |
Mr = 1699.51 | Z = 2 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 14.035 (2) Å | µ = 3.95 mm−1 |
b = 14.842 (2) Å | T = 100 K |
c = 12.3188 (16) Å | 0.32 × 0.26 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 5506 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 5148 reflections with I > 2σ(I) |
Tmin = 0.615, Tmax = 0.746 | Rint = 0.050 |
36521 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0501P)2 + 22.7234P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | Δρmax = 2.12 e Å−3 |
5506 reflections | Δρmin = −0.90 e Å−3 |
254 parameters | Absolute structure: Flack (1983), 2355 Friedel pairs |
0 restraints | Absolute structure parameter: 0.06 (4) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1A | 0.54346 (4) | 0.37839 (4) | 0.59921 (5) | 0.01520 (13) | |
Te1A | 0.61163 (3) | 0.53491 (4) | 0.62387 (4) | 0.01511 (12) | |
Cl1A | 0.45795 (17) | 0.24470 (15) | 0.5665 (2) | 0.0284 (5) | |
N1A | 0.6857 (5) | 0.3197 (5) | 0.5763 (6) | 0.0184 (15) | |
C1A | 0.6689 (6) | 0.5129 (6) | 0.4639 (6) | 0.0177 (18) | |
C2A | 0.6399 (6) | 0.5658 (6) | 0.3784 (7) | 0.0206 (17) | |
H2AA | 0.5937 | 0.6120 | 0.3876 | 0.025* | |
C3A | 0.6813 (7) | 0.5486 (6) | 0.2777 (7) | 0.025 (2) | |
H3AA | 0.6611 | 0.5822 | 0.2163 | 0.030* | |
C4A | 0.7500 (7) | 0.4848 (6) | 0.2654 (8) | 0.028 (2) | |
H4AA | 0.7786 | 0.4756 | 0.1964 | 0.034* | |
C5A | 0.7784 (6) | 0.4330 (6) | 0.3537 (7) | 0.0226 (18) | |
H5AA | 0.8267 | 0.3886 | 0.3456 | 0.027* | |
C6A | 0.7354 (6) | 0.4470 (6) | 0.4537 (6) | 0.0169 (17) | |
C7A | 0.7615 (6) | 0.3882 (7) | 0.5500 (7) | 0.0237 (19) | |
H7AA | 0.8219 | 0.3565 | 0.5341 | 0.028* | |
H7AB | 0.7721 | 0.4270 | 0.6142 | 0.028* | |
C8A | 0.7109 (7) | 0.2750 (7) | 0.6799 (8) | 0.032 (2) | |
H8AA | 0.7769 | 0.2536 | 0.6764 | 0.047* | |
H8AB | 0.6681 | 0.2238 | 0.6921 | 0.047* | |
H8AC | 0.7044 | 0.3181 | 0.7397 | 0.047* | |
C9A | 0.6846 (7) | 0.2495 (7) | 0.4917 (8) | 0.027 (2) | |
H9AA | 0.7483 | 0.2230 | 0.4850 | 0.040* | |
H9AB | 0.6660 | 0.2763 | 0.4222 | 0.040* | |
H9AC | 0.6389 | 0.2024 | 0.5116 | 0.040* | |
Pd1B | 0.37084 (4) | 0.45871 (4) | 0.90101 (5) | 0.01594 (14) | |
Te1B | 0.53688 (4) | 0.39525 (3) | 0.87669 (4) | 0.01555 (12) | |
Cl1B | 0.22964 (17) | 0.54079 (18) | 0.9375 (2) | 0.0370 (6) | |
N1B | 0.3072 (5) | 0.3220 (5) | 0.9235 (6) | 0.0207 (15) | |
C1B | 0.5141 (6) | 0.3441 (6) | 1.0358 (6) | 0.0175 (17) | |
C2B | 0.5672 (6) | 0.3731 (6) | 1.1223 (7) | 0.0244 (19) | |
H2BA | 0.6144 | 0.4182 | 1.1127 | 0.029* | |
C3B | 0.5510 (7) | 0.3351 (7) | 1.2270 (7) | 0.026 (2) | |
H3BA | 0.5845 | 0.3568 | 1.2887 | 0.032* | |
C4B | 0.4853 (6) | 0.2656 (6) | 1.2371 (7) | 0.025 (2) | |
H4BA | 0.4775 | 0.2366 | 1.3052 | 0.030* | |
C5B | 0.4308 (7) | 0.2378 (7) | 1.1491 (8) | 0.030 (2) | |
H5BA | 0.3850 | 0.1913 | 1.1583 | 0.035* | |
C6B | 0.4430 (6) | 0.2783 (6) | 1.0454 (7) | 0.0217 (18) | |
C7B | 0.3803 (7) | 0.2521 (6) | 0.9532 (7) | 0.025 (2) | |
H7BA | 0.3471 | 0.1954 | 0.9721 | 0.030* | |
H7BB | 0.4206 | 0.2400 | 0.8889 | 0.030* | |
C8B | 0.2650 (8) | 0.2964 (7) | 0.8194 (7) | 0.029 (2) | |
H8BA | 0.2382 | 0.2356 | 0.8250 | 0.043* | |
H8BB | 0.3142 | 0.2975 | 0.7630 | 0.043* | |
H8BC | 0.2143 | 0.3391 | 0.8007 | 0.043* | |
C9B | 0.2331 (7) | 0.3257 (7) | 1.0054 (7) | 0.025 (2) | |
H9BA | 0.2028 | 0.2665 | 1.0119 | 0.038* | |
H9BB | 0.1853 | 0.3705 | 0.9844 | 0.038* | |
H9BC | 0.2612 | 0.3427 | 1.0753 | 0.038* | |
Cl1S | −0.0241 (2) | 0.5950 (2) | 1.1834 (4) | 0.0643 (10) | |
C1S | 0.0000 | 0.5000 | 1.0976 (13) | 0.044 (4) | |
H1SA | 0.0542 | 0.5111 | 1.0521 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1A | 0.0164 (3) | 0.0155 (3) | 0.0137 (3) | 0.0010 (2) | −0.0010 (2) | 0.0024 (2) |
Te1A | 0.0151 (2) | 0.0183 (2) | 0.0119 (2) | −0.00024 (19) | 0.00035 (18) | −0.0012 (2) |
Cl1A | 0.0258 (10) | 0.0191 (10) | 0.0401 (12) | −0.0044 (9) | −0.0013 (10) | −0.0009 (9) |
N1A | 0.019 (3) | 0.023 (4) | 0.013 (3) | 0.007 (3) | 0.000 (3) | 0.001 (3) |
C1A | 0.018 (4) | 0.026 (5) | 0.009 (3) | −0.007 (3) | 0.001 (3) | −0.001 (3) |
C2A | 0.023 (4) | 0.017 (4) | 0.021 (4) | −0.004 (3) | 0.007 (4) | 0.005 (3) |
C3A | 0.041 (5) | 0.014 (4) | 0.020 (4) | −0.008 (4) | 0.000 (4) | 0.007 (3) |
C4A | 0.033 (5) | 0.031 (5) | 0.021 (4) | −0.006 (4) | 0.010 (4) | −0.001 (4) |
C5A | 0.026 (4) | 0.023 (4) | 0.019 (4) | 0.005 (4) | 0.002 (4) | −0.004 (3) |
C6A | 0.017 (4) | 0.022 (5) | 0.012 (4) | −0.001 (3) | 0.000 (3) | −0.003 (3) |
C7A | 0.020 (4) | 0.031 (5) | 0.020 (4) | 0.011 (4) | 0.002 (3) | −0.001 (4) |
C8A | 0.033 (5) | 0.035 (6) | 0.027 (5) | 0.016 (4) | −0.007 (4) | 0.014 (4) |
C9A | 0.032 (5) | 0.020 (4) | 0.028 (5) | 0.008 (4) | 0.007 (4) | −0.009 (4) |
Pd1B | 0.0185 (3) | 0.0145 (3) | 0.0147 (3) | −0.0018 (2) | 0.0007 (2) | −0.0024 (2) |
Te1B | 0.0207 (2) | 0.0142 (2) | 0.0117 (2) | −0.0004 (2) | 0.0012 (2) | 0.00052 (19) |
Cl1B | 0.0274 (11) | 0.0253 (12) | 0.0584 (16) | 0.0041 (10) | 0.0144 (11) | −0.0036 (12) |
N1B | 0.029 (4) | 0.017 (4) | 0.016 (3) | −0.003 (3) | 0.004 (3) | −0.001 (3) |
C1B | 0.016 (4) | 0.028 (4) | 0.009 (3) | 0.002 (3) | 0.003 (3) | 0.005 (3) |
C2B | 0.021 (4) | 0.035 (5) | 0.017 (4) | 0.006 (4) | 0.000 (3) | 0.020 (4) |
C3B | 0.022 (4) | 0.042 (5) | 0.015 (4) | −0.001 (4) | −0.001 (4) | 0.005 (4) |
C4B | 0.025 (5) | 0.034 (5) | 0.015 (4) | 0.008 (4) | 0.006 (3) | 0.013 (4) |
C5B | 0.030 (5) | 0.031 (5) | 0.027 (5) | 0.002 (4) | 0.005 (4) | 0.012 (4) |
C6B | 0.024 (5) | 0.021 (4) | 0.020 (4) | 0.006 (4) | 0.004 (3) | 0.002 (3) |
C7B | 0.036 (5) | 0.023 (5) | 0.018 (4) | 0.004 (4) | 0.011 (4) | 0.003 (4) |
C8B | 0.042 (6) | 0.027 (5) | 0.018 (4) | −0.023 (4) | −0.002 (4) | −0.004 (4) |
C9B | 0.028 (5) | 0.028 (5) | 0.019 (4) | −0.002 (4) | 0.007 (4) | −0.002 (4) |
Cl1S | 0.0516 (19) | 0.0396 (15) | 0.102 (3) | −0.0078 (15) | 0.0240 (18) | 0.0024 (18) |
C1S | 0.034 (7) | 0.062 (10) | 0.034 (8) | 0.002 (7) | 0.000 | 0.000 |
Pd1A—N1A | 2.196 (7) | Pd1B—Te1B | 2.5313 (8) |
Pd1A—Cl1A | 2.354 (2) | Pd1B—Te1Bi | 2.5427 (8) |
Pd1A—Te1A | 2.5305 (8) | Pd1B—Te1Ai | 3.4241 (9) |
Pd1A—Te1Ai | 2.5467 (8) | Te1B—C1B | 2.126 (8) |
Pd1A—Te1B | 3.4286 (9) | Te1B—Pd1Bi | 2.5427 (8) |
Te1A—C1A | 2.154 (8) | N1B—C9B | 1.449 (11) |
Te1A—Pd1Ai | 2.5467 (8) | N1B—C8B | 1.462 (11) |
N1A—C9A | 1.474 (12) | N1B—C7B | 1.504 (12) |
N1A—C8A | 1.480 (11) | C1B—C2B | 1.370 (12) |
N1A—C7A | 1.508 (12) | C1B—C6B | 1.402 (13) |
C1A—C6A | 1.357 (13) | C2B—C3B | 1.426 (11) |
C1A—C2A | 1.375 (12) | C2B—H2BA | 0.9500 |
C2A—C3A | 1.393 (12) | C3B—C4B | 1.389 (13) |
C2A—H2AA | 0.9500 | C3B—H3BA | 0.9500 |
C3A—C4A | 1.360 (13) | C4B—C5B | 1.389 (14) |
C3A—H3AA | 0.9500 | C4B—H4BA | 0.9500 |
C4A—C5A | 1.390 (13) | C5B—C6B | 1.422 (12) |
C4A—H4AA | 0.9500 | C5B—H5BA | 0.9500 |
C5A—C6A | 1.388 (11) | C6B—C7B | 1.488 (13) |
C5A—H5AA | 0.9500 | C7B—H7BA | 0.9900 |
C6A—C7A | 1.517 (12) | C7B—H7BB | 0.9900 |
C7A—H7AA | 0.9900 | C8B—H8BA | 0.9800 |
C7A—H7AB | 0.9900 | C8B—H8BB | 0.9800 |
C8A—H8AA | 0.9800 | C8B—H8BC | 0.9800 |
C8A—H8AB | 0.9800 | C9B—H9BA | 0.9800 |
C8A—H8AC | 0.9800 | C9B—H9BB | 0.9800 |
C9A—H9AA | 0.9800 | C9B—H9BC | 0.9800 |
C9A—H9AB | 0.9800 | Cl1S—C1S | 1.794 (10) |
C9A—H9AC | 0.9800 | C1S—Cl1Sii | 1.794 (10) |
Pd1B—N1B | 2.235 (7) | C1S—H1SA | 0.9600 |
Pd1B—Cl1B | 2.369 (2) | ||
N1A—Pd1A—Cl1A | 96.1 (2) | N1B—Pd1B—Te1Bi | 172.9 (2) |
N1A—Pd1A—Te1A | 92.1 (2) | Cl1B—Pd1B—Te1Bi | 90.58 (7) |
Cl1A—Pd1A—Te1A | 170.82 (7) | Te1B—Pd1B—Te1Bi | 80.46 (3) |
N1A—Pd1A—Te1Ai | 173.0 (2) | N1B—Pd1B—Te1Ai | 100.24 (19) |
Cl1A—Pd1A—Te1Ai | 90.61 (6) | Cl1B—Pd1B—Te1Ai | 103.60 (7) |
Te1A—Pd1A—Te1Ai | 81.08 (2) | Te1B—Pd1B—Te1Ai | 79.99 (2) |
N1A—Pd1A—Te1B | 100.45 (18) | Te1Bi—Pd1B—Te1Ai | 79.77 (2) |
Cl1A—Pd1A—Te1B | 102.63 (6) | C1B—Te1B—Pd1B | 83.4 (2) |
Te1A—Pd1A—Te1B | 79.84 (2) | C1B—Te1B—Pd1Bi | 105.8 (2) |
Te1Ai—Pd1A—Te1B | 79.70 (2) | Pd1B—Te1B—Pd1Bi | 97.92 (3) |
C1A—Te1A—Pd1A | 83.8 (2) | C1B—Te1B—Pd1A | 153.8 (2) |
C1A—Te1A—Pd1Ai | 106.7 (2) | Pd1B—Te1B—Pd1A | 99.78 (2) |
Pd1A—Te1A—Pd1Ai | 97.26 (3) | Pd1Bi—Te1B—Pd1A | 99.55 (2) |
C9A—N1A—C8A | 107.2 (7) | C9B—N1B—C8B | 109.2 (8) |
C9A—N1A—C7A | 109.4 (7) | C9B—N1B—C7B | 110.3 (7) |
C8A—N1A—C7A | 108.6 (7) | C8B—N1B—C7B | 108.1 (7) |
C9A—N1A—Pd1A | 111.2 (6) | C9B—N1B—Pd1B | 109.8 (6) |
C8A—N1A—Pd1A | 106.5 (5) | C8B—N1B—Pd1B | 106.8 (5) |
C7A—N1A—Pd1A | 113.7 (5) | C7B—N1B—Pd1B | 112.5 (6) |
C6A—C1A—C2A | 123.0 (8) | C2B—C1B—C6B | 122.7 (8) |
C6A—C1A—Te1A | 116.8 (6) | C2B—C1B—Te1B | 121.6 (6) |
C2A—C1A—Te1A | 120.2 (6) | C6B—C1B—Te1B | 115.7 (6) |
C1A—C2A—C3A | 116.9 (8) | C1B—C2B—C3B | 119.5 (8) |
C1A—C2A—H2AA | 121.5 | C1B—C2B—H2BA | 120.2 |
C3A—C2A—H2AA | 121.5 | C3B—C2B—H2BA | 120.2 |
C4A—C3A—C2A | 121.5 (9) | C4B—C3B—C2B | 118.7 (9) |
C4A—C3A—H3AA | 119.2 | C4B—C3B—H3BA | 120.6 |
C2A—C3A—H3AA | 119.2 | C2B—C3B—H3BA | 120.6 |
C3A—C4A—C5A | 120.1 (9) | C5B—C4B—C3B | 121.1 (8) |
C3A—C4A—H4AA | 120.0 | C5B—C4B—H4BA | 119.4 |
C5A—C4A—H4AA | 120.0 | C3B—C4B—H4BA | 119.4 |
C6A—C5A—C4A | 119.1 (8) | C4B—C5B—C6B | 120.6 (9) |
C6A—C5A—H5AA | 120.5 | C4B—C5B—H5BA | 119.7 |
C4A—C5A—H5AA | 120.5 | C6B—C5B—H5BA | 119.7 |
C1A—C6A—C5A | 119.3 (8) | C1B—C6B—C5B | 117.2 (8) |
C1A—C6A—C7A | 120.5 (7) | C1B—C6B—C7B | 122.5 (8) |
C5A—C6A—C7A | 120.1 (8) | C5B—C6B—C7B | 120.3 (8) |
N1A—C7A—C6A | 112.7 (7) | C6B—C7B—N1B | 114.1 (7) |
N1A—C7A—H7AA | 109.0 | C6B—C7B—H7BA | 108.7 |
C6A—C7A—H7AA | 109.0 | N1B—C7B—H7BA | 108.7 |
N1A—C7A—H7AB | 109.0 | C6B—C7B—H7BB | 108.7 |
C6A—C7A—H7AB | 109.0 | N1B—C7B—H7BB | 108.7 |
H7AA—C7A—H7AB | 107.8 | H7BA—C7B—H7BB | 107.6 |
N1A—C8A—H8AA | 109.5 | N1B—C8B—H8BA | 109.5 |
N1A—C8A—H8AB | 109.5 | N1B—C8B—H8BB | 109.5 |
H8AA—C8A—H8AB | 109.5 | H8BA—C8B—H8BB | 109.5 |
N1A—C8A—H8AC | 109.5 | N1B—C8B—H8BC | 109.5 |
H8AA—C8A—H8AC | 109.5 | H8BA—C8B—H8BC | 109.5 |
H8AB—C8A—H8AC | 109.5 | H8BB—C8B—H8BC | 109.5 |
N1A—C9A—H9AA | 109.5 | N1B—C9B—H9BA | 109.5 |
N1A—C9A—H9AB | 109.5 | N1B—C9B—H9BB | 109.5 |
H9AA—C9A—H9AB | 109.5 | H9BA—C9B—H9BB | 109.5 |
N1A—C9A—H9AC | 109.5 | N1B—C9B—H9BC | 109.5 |
H9AA—C9A—H9AC | 109.5 | H9BA—C9B—H9BC | 109.5 |
H9AB—C9A—H9AC | 109.5 | H9BB—C9B—H9BC | 109.5 |
N1B—Pd1B—Cl1B | 96.3 (2) | Cl1S—C1S—Cl1Sii | 107.8 (9) |
N1B—Pd1B—Te1B | 92.6 (2) | Cl1S—C1S—H1SA | 111.0 |
Cl1B—Pd1B—Te1B | 169.67 (7) | Cl1Sii—C1S—H1SA | 109.2 |
N1A—Pd1A—Te1A—C1A | 58.9 (3) | Cl1B—Pd1B—Te1B—Pd1A | −117.7 (4) |
Cl1A—Pd1A—Te1A—C1A | −94.4 (5) | Te1Bi—Pd1B—Te1B—Pd1A | −87.59 (2) |
Te1Ai—Pd1A—Te1A—C1A | −119.8 (2) | Te1Ai—Pd1B—Te1B—Pd1A | −6.410 (18) |
Te1B—Pd1A—Te1A—C1A | 159.2 (2) | N1A—Pd1A—Te1B—C1B | −83.5 (5) |
N1A—Pd1A—Te1A—Pd1Ai | 164.97 (18) | Cl1A—Pd1A—Te1B—C1B | 15.3 (5) |
Cl1A—Pd1A—Te1A—Pd1Ai | 11.6 (4) | Te1A—Pd1A—Te1B—C1B | −173.7 (5) |
Te1Ai—Pd1A—Te1A—Pd1Ai | −13.74 (4) | Te1Ai—Pd1A—Te1B—C1B | 103.6 (5) |
Te1B—Pd1A—Te1A—Pd1Ai | −94.78 (2) | N1A—Pd1A—Te1B—Pd1B | −178.4 (2) |
Cl1A—Pd1A—N1A—C9A | 34.8 (6) | Cl1A—Pd1A—Te1B—Pd1B | −79.66 (7) |
Te1A—Pd1A—N1A—C9A | −141.0 (6) | Te1A—Pd1A—Te1B—Pd1B | 91.32 (3) |
Te1Ai—Pd1A—N1A—C9A | −130.5 (14) | Te1Ai—Pd1A—Te1B—Pd1B | 8.64 (2) |
Te1B—Pd1A—N1A—C9A | 138.9 (6) | N1A—Pd1A—Te1B—Pd1Bi | 81.7 (2) |
Cl1A—Pd1A—N1A—C8A | −81.7 (6) | Cl1A—Pd1A—Te1B—Pd1Bi | −179.49 (6) |
Te1A—Pd1A—N1A—C8A | 102.5 (6) | Te1A—Pd1A—Te1B—Pd1Bi | −8.52 (2) |
Te1Ai—Pd1A—N1A—C8A | 113.0 (15) | Te1Ai—Pd1A—Te1B—Pd1Bi | −91.20 (3) |
Te1B—Pd1A—N1A—C8A | 22.4 (6) | Cl1B—Pd1B—N1B—C9B | −32.5 (6) |
Cl1A—Pd1A—N1A—C7A | 158.8 (5) | Te1B—Pd1B—N1B—C9B | 142.1 (6) |
Te1A—Pd1A—N1A—C7A | −17.1 (5) | Te1Bi—Pd1B—N1B—C9B | 133.0 (14) |
Te1Ai—Pd1A—N1A—C7A | −6.5 (19) | Te1Ai—Pd1B—N1B—C9B | −137.6 (6) |
Te1B—Pd1A—N1A—C7A | −97.1 (5) | Cl1B—Pd1B—N1B—C8B | 85.8 (6) |
Pd1A—Te1A—C1A—C6A | −65.8 (6) | Te1B—Pd1B—N1B—C8B | −99.6 (6) |
Pd1Ai—Te1A—C1A—C6A | −161.5 (6) | Te1Bi—Pd1B—N1B—C8B | −108.7 (15) |
Pd1A—Te1A—C1A—C2A | 115.9 (7) | Te1Ai—Pd1B—N1B—C8B | −19.3 (6) |
Pd1Ai—Te1A—C1A—C2A | 20.1 (7) | Cl1B—Pd1B—N1B—C7B | −155.8 (5) |
C6A—C1A—C2A—C3A | 0.7 (13) | Te1B—Pd1B—N1B—C7B | 18.8 (5) |
Te1A—C1A—C2A—C3A | 178.9 (6) | Te1Bi—Pd1B—N1B—C7B | 9.7 (19) |
C1A—C2A—C3A—C4A | −2.5 (13) | Te1Ai—Pd1B—N1B—C7B | 99.1 (5) |
C2A—C3A—C4A—C5A | 2.0 (14) | Pd1B—Te1B—C1B—C2B | −114.6 (7) |
C3A—C4A—C5A—C6A | 0.4 (14) | Pd1Bi—Te1B—C1B—C2B | −18.2 (8) |
C2A—C1A—C6A—C5A | 1.6 (13) | Pd1A—Te1B—C1B—C2B | 146.7 (6) |
Te1A—C1A—C6A—C5A | −176.7 (6) | Pd1B—Te1B—C1B—C6B | 66.6 (6) |
C2A—C1A—C6A—C7A | −177.4 (8) | Pd1Bi—Te1B—C1B—C6B | 163.0 (6) |
Te1A—C1A—C6A—C7A | 4.3 (11) | Pd1A—Te1B—C1B—C6B | −32.2 (10) |
C4A—C5A—C6A—C1A | −2.2 (13) | C6B—C1B—C2B—C3B | 0.5 (14) |
C4A—C5A—C6A—C7A | 176.9 (8) | Te1B—C1B—C2B—C3B | −178.3 (7) |
C9A—N1A—C7A—C6A | 71.5 (9) | C1B—C2B—C3B—C4B | 3.7 (14) |
C8A—N1A—C7A—C6A | −171.9 (7) | C2B—C3B—C4B—C5B | −4.8 (14) |
Pd1A—N1A—C7A—C6A | −53.5 (8) | C3B—C4B—C5B—C6B | 1.8 (14) |
C1A—C6A—C7A—N1A | 74.3 (10) | C2B—C1B—C6B—C5B | −3.4 (13) |
C5A—C6A—C7A—N1A | −104.7 (9) | Te1B—C1B—C6B—C5B | 175.4 (7) |
N1B—Pd1B—Te1B—C1B | −60.2 (3) | C2B—C1B—C6B—C7B | 175.1 (8) |
Cl1B—Pd1B—Te1B—C1B | 88.6 (5) | Te1B—C1B—C6B—C7B | −6.1 (11) |
Te1Bi—Pd1B—Te1B—C1B | 118.7 (2) | C4B—C5B—C6B—C1B | 2.3 (13) |
Te1Ai—Pd1B—Te1B—C1B | −160.1 (2) | C4B—C5B—C6B—C7B | −176.2 (8) |
N1B—Pd1B—Te1B—Pd1Bi | −165.28 (19) | C1B—C6B—C7B—N1B | −72.2 (11) |
Cl1B—Pd1B—Te1B—Pd1Bi | −16.5 (4) | C5B—C6B—C7B—N1B | 106.3 (10) |
Te1Bi—Pd1B—Te1B—Pd1Bi | 13.59 (4) | C9B—N1B—C7B—C6B | −72.4 (10) |
Te1Ai—Pd1B—Te1B—Pd1Bi | 94.77 (2) | C8B—N1B—C7B—C6B | 168.3 (7) |
N1B—Pd1B—Te1B—Pd1A | 93.54 (19) | Pd1B—N1B—C7B—C6B | 50.6 (8) |
Symmetry codes: (i) −x+1, −y+1, z; (ii) −x, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1S—H1SA···Cl1B | 0.96 | 2.87 | 3.827 (9) | 173 |
C5A—H5AA···Cl1Aiii | 0.95 | 2.91 | 3.778 (9) | 152 |
C7A—H7AA···Cl1Aiii | 0.99 | 2.73 | 3.681 (9) | 162 |
C9A—H9AC···Cl1A | 0.98 | 2.70 | 3.313 (10) | 121 |
C7B—H7BA···Cl1Biv | 0.99 | 2.77 | 3.746 (10) | 169 |
C7B—H7BB···Cl1Siv | 0.99 | 2.75 | 3.514 (10) | 135 |
C9B—H9BB···Cl1B | 0.98 | 2.67 | 3.300 (11) | 123 |
Symmetry codes: (iii) x+1/2, −y+1/2, −z+1; (iv) −x+1/2, y−1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2 |
Mr | 1699.51 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 100 |
a, b, c (Å) | 14.035 (2), 14.842 (2), 12.3188 (16) |
V (Å3) | 2566.0 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.95 |
Crystal size (mm) | 0.32 × 0.26 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.615, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 36521, 5506, 5148 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.102, 1.06 |
No. of reflections | 5506 |
No. of parameters | 254 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0501P)2 + 22.7234P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.12, −0.90 |
Absolute structure | Flack (1983), 2355 Friedel pairs |
Absolute structure parameter | 0.06 (4) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1S—H1SA···Cl1B | 0.96 | 2.87 | 3.827 (9) | 173.4 |
C5A—H5AA···Cl1Ai | 0.95 | 2.91 | 3.778 (9) | 152.1 |
C7A—H7AA···Cl1Ai | 0.99 | 2.73 | 3.681 (9) | 162.1 |
C9A—H9AC···Cl1A | 0.98 | 2.70 | 3.313 (10) | 120.9 |
C7B—H7BA···Cl1Bii | 0.99 | 2.77 | 3.746 (10) | 169.2 |
C7B—H7BB···Cl1Sii | 0.99 | 2.75 | 3.514 (10) | 134.8 |
C9B—H9BB···Cl1B | 0.98 | 2.67 | 3.300 (11) | 122.7 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) −x+1/2, y−1/2, −z+2. |
The coordination chemistry of transition metal complexes with both organoselenato and organotellurato ligands is a rapidly growing area due to the ability of the resulting complexes to find applications in materials science (Morley et al., 2006; Ford et al., 2004), and investigations of oxidation additive to low valent transition metal centers. In addition to this, organotellurium compounds have been used in catalytic carbon-carbon formation. Bridged dimers of palladium mediated by Se (Nakata et al., 2009; Chakraborty et al., 2011; Oilunkaniemi et al., 1999; Oilunkaniemi et al., 2001; Brown & Corrigan, 2004; Dey et al., 2006,) or Te (Oilunkaniemi et al., 2000; Kaur et al., 2009; Dey et al., 2006; Chakravorty et al., 2012) have been previously reported. Such dimers involving two square planar coordination spheres can adopt either a coplanar or hinged arrangement. The arrangement of the donor ligands with respect to the bridging plane can be cis or trans. In the case of a hinged cis arrangement the possibility of chirality exists. While the majority of previously determined Se/Te bridged Pd dimeric structures are both coplanar and trans, there have been a small number which exhibit either a hinged or cis arrangement of ligands about the bridging plane (Kaur et al., 2009; Oilunkaniemi et al., 2000, Chakravorty et al., 2012). Of these, only that by Chakravorty et al., 2012, which is the Se analog of the title complex, has resulted in a chiral complex.
The title compound, bis[µ-2-tellurolatobenzyldimethylaminochloropalladium(II)], hemi(dichloromethane) solvate, C18H24Cl2N2Pd2Te2 0.5(CHCl2), crystallizes in the chiral orthorhombic space group, P21212. The asymmetric unit contains 2 half molecules, each lying on a 2-fold axis and each molecule is chiral and of the same enantiomer. This is only possible as the molecule has a hinged cis arrangement about the Pd coordination spheres. For this hinged dimeric structure the angles between the two coordination planes in each molecule are 21.59 (4) and 22.10 (4)° respectively. This hinged cis arrangement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Te of an adjoining molecule leading to a tetrameric overall structure. This hinged cis arrangement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Te of an adjoining molecule (Fig. 2) leading to a tetrameric overall structure. Apart from this the Pd—Te, Pd—Cl and Pd—N bond lengths are in the normal ranges.
A previous polymorph of the title compound has been previously published (Kaur et al., 2009). While this crystallized in the non-centrosymmetric space group, P-421c, it did not result in an enantiomerically pure compound as the symmetry of the space group generated the other enantiomer. Thus this is the first example of a chiral dimeric tellurium bridged palladium compound to be structurally characterized. In both instances, however, the asymmetric unit is chiral. We believe that it is the desire of the dimers to associate which then requries the molecule to adopt the cis hinged structure which has lead to this inherent chirality.