research papers
Frequency distributions of protein backbone dihedral angles φ and ψ have been analyzed systematically for their apparent correlation with various crystallographic parameters, including the resolution at which the protein structures had been determined, the R factor and the free R factor, and the results have been displayed in novel differential Ramachandran maps. With improved sensitivity compared with conventionally derived heuristic Ramachandran maps, such differential maps automatically reveal conformational `attractors' to which φ/ψ distributions converge as the crystallographic resolution improves, as well as conformations tied specifically to low-resolution structures. In particular, backbone angular combinations associated with residues in α-helical conformation show a pronounced consolidation with substantially narrowed φ/ψ distributions at higher (better) resolution. Convergence to distinct conformational attractors was also observed for all other secondary-structural types and random-coil conformations. Similar resolution-dependent φ/ψ evolutions were obtained for different crystallographic refinement packages, documenting the absence of any significant artificial biases in the refinement programs investigated here. A comparison of differential Ramachandran maps derived for the R factor and the free R factor as independent parameters proved the better suitability of the free R factor for structure-quality assessment. The resolution-based differential Ramachandran map is available as a reference for comparison with actual protein structural data under WebMol, a Java-based structure viewing and analysis program (http://www.cmpharm.ucsf.edu/cgi-bin/webmol.pl).