Download citation
Download citation
link to html
In bis­(1,2-ethanedi­amine-N,N')­bis­[tri­iodo(1-)-I]copper, [Cu(I3)2­(C2H8N2)2], the triiodide anions form chains parallel to [001]. The central metal ion (site symmetry 2/m) of the complex cation is coordinated to four N atoms and to two I atoms. The geometry of the square-bipyramidal complex is as expected, with d(Cu-N) = 2.006 (5) and d(Cu-I) = 3.3600 (9) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100008830/jz1410sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100008830/jz1410Isup2.hkl
Contains datablock I

CCDC reference: 150765

Computing details top

Data collection: IPDS-Programmsystem (Stoe & Cie 1996/97); cell refinement: IPDS-Programmsystem; data reduction: IPDS-Programmsystem (Stoe & Cie, 1996/97) and X-SHAPE and X-RED (Stoe & Cie, 1997)'; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST95 (Nardelli, 1995), PLATON96 (Spek, 1996) and CIFEDIT (Wieczorrek, 1999).

[Bis-1,2-Diaminoethan-kupfer]bis-triiodid top
Crystal data top
[Cu(I3)2(C2H8N2)2]Dx = 3.356 Mg m3
Mr = 945.15Melting point: 505 K
Orthorhombic, IbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2 2cCell parameters from 5000 reflections
a = 7.490 (2) Åθ = 3.2–51.3°
b = 13.400 (3) ŵ = 11.05 mm1
c = 18.639 (6) ÅT = 293 K
V = 1870.7 (9) Å3Kombination aus den Quader- und Pyramidenflächen (010), (001) und (101)., black
Z = 40.38 × 0.36 × 0.33 mm
F(000) = 1660
Data collection top
Stoe & Cie IPDS
diffractometer
927 independent reflections
Radiation source: fine-focus sealed tube740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 44.4 pixels mm-1θmax = 25.8°, θmin = 2.2°
oscillation scansh = 99
Absorption correction: analytical
Analytische Absorptionskorrektur über WINGX V1.61 (Alcock, 1970) über die Kristallflächen (010), (001) und (101).
k = 1616
Tmin = 0.051, Tmax = 0.104l = 2222
8344 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0402P)2 + 4.5689P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
927 reflectionsΔρmax = 1.25 e Å3
43 parametersΔρmin = 1.01 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.35115 (11)0.15604 (5)0.50000.0639 (3)
I20.45688 (6)0.16005 (3)0.32327 (4)0.0683 (3)
Cu0.00000.00000.50000.0461 (5)
N10.1268 (8)0.0721 (4)0.4206 (3)0.0515 (14)
H1NA0.240 (9)0.0524 (15)0.4188 (3)0.09 (2)*
H1NB0.1252 (8)0.137 (5)0.4290 (7)0.09 (2)*
C10.0392 (10)0.0511 (5)0.3516 (4)0.0544 (18)
H1A0.061 (7)0.103 (3)0.3426 (7)0.09 (2)*
H1B0.132 (6)0.0570 (7)0.310 (3)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0793 (5)0.0522 (4)0.0603 (5)0.0183 (3)0.0000.000
I20.0445 (4)0.0440 (3)0.1164 (6)0.0000 (2)0.0046 (3)0.0006 (2)
Cu0.0554 (10)0.0407 (8)0.0423 (9)0.0174 (7)0.0000.000
N10.053 (3)0.047 (3)0.054 (4)0.017 (3)0.001 (3)0.002 (2)
C10.061 (4)0.062 (4)0.040 (4)0.009 (3)0.004 (3)0.008 (3)
Geometric parameters (Å, º) top
I1—Cu3.3600 (10)Cu—N1iv2.007 (6)
I1—I23.3883 (13)Cu—N1i2.007 (6)
I1—I2i3.3883 (13)Cu—I1iv3.3600 (10)
I2—I2ii2.8068 (16)N1—C11.471 (9)
Cu—N1iii2.007 (6)C1—C1iii1.489 (14)
Cu—N12.007 (6)
Cu—I1—I2101.118 (14)N1—Cu—I1iv85.92 (18)
Cu—I1—I2i101.118 (15)N1iv—Cu—I1iv94.08 (18)
I2—I1—I2i152.91 (3)N1i—Cu—I1iv85.92 (18)
I2ii—I2—I1179.066 (15)N1iii—Cu—I185.92 (18)
N1iii—Cu—N184.9 (3)N1—Cu—I194.08 (18)
N1iii—Cu—N1iv95.1 (3)N1iv—Cu—I185.92 (18)
N1—Cu—N1iv180.0 (2)N1i—Cu—I194.08 (18)
N1iii—Cu—N1i180.0 (2)I1iv—Cu—I1180.0
N1—Cu—N1i95.1 (3)C1—N1—Cu110.0 (4)
N1iv—Cu—N1i84.9 (3)N1—C1—C1iii110.6 (4)
N1iii—Cu—I1iv94.08 (18)
Cu—I1—I2—I2ii37.8 (18)I2i—I1—Cu—N1i50.09 (17)
I2i—I1—I2—I2ii106.9 (18)I2—I1—Cu—I1iv162.248 (18)
I2—I1—Cu—N1iii34.51 (16)I2i—I1—Cu—I1iv2.171 (18)
I2i—I1—Cu—N1iii129.91 (17)N1iii—Cu—N1—C111.3 (4)
I2—I1—Cu—N150.09 (17)N1iv—Cu—N1—C1146 (57)
I2i—I1—Cu—N1145.49 (16)N1i—Cu—N1—C1168.7 (4)
I2—I1—Cu—N1iv129.91 (17)I1iv—Cu—N1—C1105.8 (5)
I2i—I1—Cu—N1iv34.51 (16)I1—Cu—N1—C174.2 (5)
I2—I1—Cu—N1i145.49 (16)Cu—N1—C1—C1iii31.6 (9)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1/2; (iii) x, y, z; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NB···I1v0.883.08 (1)3.936 (4)164 (1)
Symmetry code: (v) x1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds