Download citation
Download citation
link to html
In the title compound, [Sn(C6H5)3(C9H10NO2)], the Sn atom is coordinated by three phenyl groups and a carboxyl­ate anion in a distorted tetra­hedral geometry. An intra­molecular C—H...O inter­action forms an S(7) ring motif. The dihedral angles between the benzoate group and the other three phenyl rings are 76.94 (8), 66.82 (8) and 42.34 (9)°. The crystal structure is further stabilized by inter­molecular C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808036337/kp2195sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808036337/kp2195Isup2.hkl
Contains datablock I

CCDC reference: 712292

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.017
  • wR factor = 0.049
  • Data-to-parameter ratio = 18.6

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 100.000 Value of melting point given = 0.000 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_4_C Check Cell Rounding: # of Values Ending with 0 = 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Triorganotin(IV) complexes are well known for their biological properties as well as industrial applications (Willem et al., 1997; Novelli et al., 1999; Gielen et al., 2000; Tian et al., 2005). Generally, triphenyltin(IV) carboxylate complexes are commonly found as monomeric structures with four-coordinated distorted tetrahedral or five-coordinated trigonal bipyramid geometries (Baul et al., 2001; Yeap & Teoh, 2003; Win et al., 2007b). In a recent study, the coordination geometry of (3,5-dinitrobenzoato)triphenyltin(IV) is found to be distorted tetrahedral due to the long range interaction of the carboxylate anion coordinated to the Sn moiety in an isobidentate fashion (Win et al., 2006). In addition, triphenyltin(IV) carboxylates are also able to form polymeric structures (Tian et al., 2005; Win et al., 2007a). In the polymeric system, the carboxylate anions act as bridging bidentate ligands in the bonding to the neighbouring tin(IV) resulting in a polymeric structure with the tin atom exhibiting trigonal bipyramid geometry as shown in the complex, catena-poly[[triphenyltin(IV)–2,4-dinitrobenzoato] (Win et al., 2007a). Based on the crystallographic structural study, the title complex [3-(dimethylamino)benzoato]triphenyltin(IV) has a monomeric four-coordinated distorted tetrahedral structure which is similar to that found for [4-(diethylamino)benzoato-κO]triphenyltin(IV) (Win et al., 2007b).

The bond lengths (Allen et al., 1987) and angles in the molecule (I, Fig. 1, Table 1) are within normal ranges. The Sn atom is coordinated by the three phenyl groups and a carboxylate anion in a distorted tetrahedral geometry. An intramolecular hydrogen bond C—H···O forms a seven-membered ring, characterized as S(7) motif (Bernstein et al., 1995). The dihedral angles between the phenyl-carboxylate group and the other three phenyl rings are 76.94 (8), 66.82 (8), and 42.34 (9)°, respectively. The crystal structure (Fig. 2), is further stabilized by intermolecular C—H···π (x 2) (Table 2) interactions.

Related literature top

For hydrogen-bond motifs, see Bernstein et al. (1995). For values of bond lengths, see Allen et al. (1987). For related literature on triorganotin(IV) complexes see, for example: Willem et al. (1997); Novelli et al. (1999); Gielen et al. (2000); Tian et al. (2005); Baul et al. (2001); Win et al. (2006, 2007a,b); Yeap & Teoh (2003).

Experimental top

The complex [3-(dimethylamino)benzoato]triphenyltin(IV) was obtained by heating under reflux a 1:1 molar mixture of triphenyltin(IV) hydroxide (1.10 g, 3 mmol) and 3-(dimethylamino)benzoic acid (0.50 g, 3 mmol) in acetonitrile (50 ml) for an hour. The clear brown solution was isolated by filtration and kept in a bottle. After eight days, brown crystals (1.01 g, 65.7% yield) were collected. Melting point: 413.2–414.5 K. Analysis found for C27H25NO2Sn: C, 63.05; H, 4.91; N, 2.67; Sn, 23.00%. Calculated found for C27H25NO2Sn: C, 63.07; H, 4.90; N, 2.72; Sn, 23.08%. FTIR as KBr disc (cm-1): υ (C—H) aromatic 3065, 3051, 3026; υ (C—H) saturated 2989, 2908, 2810; υ (COO)as 1625, υ (COO)s 1322, υ (C—N) 1227, υ (Sn—O) 445. 1H-NMR: δ: phenyl protons 7.42–7.49 (9H, m); 7.79–7.81 (6H, m); benzene 6.86–6.88 (1H, dd); 7.24–7.28 (1H, t); 7.51–7.53 (2H, d); N-(CH3)2 2.95 (6H, s) p.p.m.. 13C-NMR: δ: phenyl carbons Cipso 139.01 (648.9 Hz), Cortho 137.36 (47.9 Hz), Cmeta 129.31 (63.2 Hz), Cpara 130.28; benzene 114.84, 117.18, 119.31, 129.57, 134.59, 150.85; N-(CH3)2 41.04; COO 174.05 p.p.m.. 119Sn-NMR: υ: -114.19 p.p.m..

Refinement top

All of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom lables and the 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bonds is shown as dashed lines.
[Figure 2] Fig. 2. The crystal structure of (I), viewed down the b-axis. Intermolecular C—H···π interactions were shown as dashed lines.
[3-(Dimethylamino)benzoato]triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C9H10NO2)]Z = 2
Mr = 514.17F(000) = 520
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1140 (2) ÅCell parameters from 9986 reflections
b = 10.0027 (2) Åθ = 2.5–31.2°
c = 14.5066 (4) ŵ = 1.13 mm1
α = 100.925 (1)°T = 100 K
β = 103.106 (1)°Block, colourless
γ = 110.778 (1)°0.46 × 0.42 × 0.17 mm
V = 1150.13 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5259 independent reflections
Radiation source: fine-focus sealed tube5141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.623, Tmax = 0.830k = 1212
18268 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.592P]
where P = (Fo2 + 2Fc2)/3
5259 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Sn(C6H5)3(C9H10NO2)]γ = 110.778 (1)°
Mr = 514.17V = 1150.13 (5) Å3
Triclinic, P1Z = 2
a = 9.1140 (2) ÅMo Kα radiation
b = 10.0027 (2) ŵ = 1.13 mm1
c = 14.5066 (4) ÅT = 100 K
α = 100.925 (1)°0.46 × 0.42 × 0.17 mm
β = 103.106 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5259 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5141 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.830Rint = 0.017
18268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.08Δρmax = 0.53 e Å3
5259 reflectionsΔρmin = 0.56 e Å3
282 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.091614 (11)0.100499 (9)0.838745 (6)0.01429 (4)
O10.18084 (14)0.11930 (12)0.72088 (8)0.0197 (2)
O20.11484 (14)0.31350 (12)0.73771 (8)0.0204 (2)
N10.22892 (18)0.51484 (16)0.45101 (10)0.0254 (3)
C10.22847 (18)0.28442 (15)0.96940 (10)0.0159 (3)
C20.14887 (19)0.36829 (17)1.00604 (11)0.0207 (3)
H2A0.04000.34620.97100.025*
C30.2303 (2)0.48439 (18)1.09426 (12)0.0244 (3)
H3A0.17620.53991.11770.029*
C40.3920 (2)0.51738 (17)1.14722 (12)0.0229 (3)
H4A0.44650.59481.20640.028*
C50.4729 (2)0.43461 (18)1.11195 (12)0.0232 (3)
H5A0.58160.45701.14740.028*
C60.39153 (19)0.31856 (17)1.02389 (12)0.0205 (3)
H6A0.44590.26311.00100.025*
C70.16663 (18)0.04727 (16)0.79258 (10)0.0158 (3)
C80.23183 (19)0.14256 (16)0.75791 (11)0.0194 (3)
H8A0.16150.23150.75160.023*
C90.4012 (2)0.10510 (18)0.73291 (12)0.0233 (3)
H9A0.44350.16830.70890.028*
C100.5073 (2)0.02620 (19)0.74368 (12)0.0240 (3)
H10A0.62010.05010.72800.029*
C110.4443 (2)0.12170 (18)0.77797 (12)0.0230 (3)
H11A0.51510.21000.78490.028*
C120.27509 (19)0.08543 (17)0.80205 (11)0.0188 (3)
H12A0.23380.15010.82470.023*
C130.13625 (18)0.08981 (16)0.85493 (11)0.0164 (3)
C140.2177 (2)0.09087 (18)0.94868 (12)0.0215 (3)
H14A0.25600.00661.00280.026*
C150.2422 (2)0.21653 (19)0.96204 (12)0.0251 (3)
H15A0.29650.21601.02480.030*
C160.1856 (2)0.34238 (18)0.88169 (13)0.0245 (3)
H16A0.19990.42710.89070.029*
C170.1073 (2)0.34218 (17)0.78765 (13)0.0225 (3)
H17A0.07130.42600.73360.027*
C180.08268 (18)0.21649 (17)0.77429 (11)0.0193 (3)
H18A0.03020.21690.71120.023*
C190.16464 (18)0.23129 (16)0.69218 (11)0.0168 (3)
C200.20934 (18)0.25094 (16)0.60128 (10)0.0172 (3)
C210.20685 (18)0.37521 (16)0.57167 (11)0.0184 (3)
H21A0.18140.44430.60980.022*
C220.24224 (19)0.39733 (17)0.48506 (11)0.0199 (3)
C230.2867 (2)0.29256 (19)0.43204 (11)0.0239 (3)
H23A0.31530.30640.37580.029*
C240.2888 (2)0.16944 (19)0.46203 (12)0.0246 (3)
H24A0.31710.10140.42510.030*
C250.24929 (19)0.14608 (17)0.54641 (11)0.0207 (3)
H25A0.24940.06270.56590.025*
C260.2998 (2)0.5495 (2)0.37333 (13)0.0306 (4)
H26A0.24770.46360.31570.046*
H26B0.41660.57550.39640.046*
H26C0.28170.63210.35680.046*
C270.2286 (2)0.64104 (19)0.52007 (14)0.0318 (4)
H27A0.13720.60630.54490.048*
H27B0.21770.71270.48650.048*
H27C0.33050.68730.57430.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01477 (6)0.01395 (6)0.01457 (6)0.00679 (4)0.00447 (4)0.00385 (4)
O10.0237 (5)0.0211 (5)0.0189 (5)0.0116 (4)0.0093 (4)0.0091 (4)
O20.0243 (6)0.0207 (5)0.0194 (5)0.0105 (4)0.0108 (4)0.0065 (4)
N10.0309 (7)0.0256 (7)0.0197 (6)0.0100 (6)0.0072 (6)0.0110 (5)
C10.0177 (7)0.0146 (6)0.0149 (6)0.0058 (5)0.0057 (5)0.0047 (5)
C20.0187 (7)0.0234 (7)0.0200 (7)0.0105 (6)0.0043 (6)0.0057 (6)
C30.0273 (8)0.0245 (8)0.0235 (8)0.0143 (7)0.0097 (7)0.0029 (6)
C40.0250 (8)0.0190 (7)0.0189 (7)0.0055 (6)0.0057 (6)0.0018 (6)
C50.0176 (7)0.0235 (7)0.0231 (8)0.0060 (6)0.0035 (6)0.0042 (6)
C60.0180 (7)0.0206 (7)0.0231 (7)0.0093 (6)0.0067 (6)0.0041 (6)
C70.0155 (6)0.0180 (6)0.0125 (6)0.0076 (5)0.0041 (5)0.0005 (5)
C80.0193 (7)0.0170 (6)0.0205 (7)0.0079 (6)0.0059 (6)0.0028 (5)
C90.0210 (7)0.0223 (7)0.0268 (8)0.0122 (6)0.0050 (6)0.0045 (6)
C100.0162 (7)0.0289 (8)0.0228 (8)0.0082 (6)0.0055 (6)0.0023 (6)
C110.0200 (7)0.0239 (7)0.0205 (7)0.0044 (6)0.0067 (6)0.0054 (6)
C120.0203 (7)0.0198 (7)0.0149 (7)0.0077 (6)0.0045 (6)0.0042 (5)
C130.0151 (6)0.0169 (6)0.0198 (7)0.0076 (5)0.0072 (5)0.0072 (5)
C140.0257 (8)0.0234 (7)0.0180 (7)0.0120 (6)0.0084 (6)0.0064 (6)
C150.0289 (8)0.0341 (9)0.0236 (8)0.0196 (7)0.0119 (7)0.0163 (7)
C160.0256 (8)0.0245 (8)0.0366 (9)0.0162 (6)0.0178 (7)0.0167 (7)
C170.0217 (7)0.0175 (7)0.0296 (8)0.0088 (6)0.0115 (6)0.0047 (6)
C180.0175 (7)0.0195 (7)0.0192 (7)0.0073 (6)0.0045 (6)0.0050 (6)
C190.0147 (6)0.0174 (6)0.0152 (6)0.0048 (5)0.0031 (5)0.0041 (5)
C200.0161 (7)0.0199 (7)0.0135 (6)0.0063 (5)0.0035 (5)0.0041 (5)
C210.0186 (7)0.0191 (7)0.0158 (7)0.0075 (5)0.0044 (5)0.0038 (5)
C220.0183 (7)0.0223 (7)0.0146 (7)0.0053 (6)0.0022 (5)0.0055 (6)
C230.0256 (8)0.0325 (8)0.0127 (7)0.0114 (7)0.0068 (6)0.0056 (6)
C240.0280 (8)0.0300 (8)0.0156 (7)0.0150 (7)0.0065 (6)0.0009 (6)
C250.0228 (7)0.0211 (7)0.0170 (7)0.0101 (6)0.0043 (6)0.0035 (6)
C260.0266 (8)0.0360 (9)0.0241 (8)0.0052 (7)0.0054 (7)0.0164 (7)
C270.0408 (10)0.0243 (8)0.0311 (9)0.0139 (7)0.0091 (8)0.0125 (7)
Geometric parameters (Å, º) top
Sn1—O12.0649 (11)C12—H12A0.9300
Sn1—C12.1239 (15)C13—C181.397 (2)
Sn1—C132.1260 (14)C13—C141.398 (2)
Sn1—C72.1290 (14)C14—C151.393 (2)
O1—C191.3101 (17)C14—H14A0.9300
O2—C191.2303 (19)C15—C161.385 (2)
N1—C221.391 (2)C15—H15A0.9300
N1—C271.457 (2)C16—C171.389 (2)
N1—C261.458 (2)C16—H16A0.9300
C1—C21.397 (2)C17—C181.393 (2)
C1—C61.398 (2)C17—H17A0.9300
C2—C31.390 (2)C18—H18A0.9300
C2—H2A0.9300C19—C201.493 (2)
C3—C41.384 (2)C20—C211.396 (2)
C3—H3A0.9300C20—C251.397 (2)
C4—C51.391 (2)C21—C221.404 (2)
C4—H4A0.9300C21—H21A0.9300
C5—C61.388 (2)C22—C231.411 (2)
C5—H5A0.9300C23—C241.386 (2)
C6—H6A0.9300C23—H23A0.9300
C7—C121.399 (2)C24—C251.390 (2)
C7—C81.401 (2)C24—H24A0.9300
C8—C91.393 (2)C25—H25A0.9300
C8—H8A0.9300C26—H26A0.9600
C9—C101.389 (2)C26—H26B0.9600
C9—H9A0.9300C26—H26C0.9600
C10—C111.389 (2)C27—H27A0.9600
C10—H10A0.9300C27—H27B0.9600
C11—C121.394 (2)C27—H27C0.9600
C11—H11A0.9300
O1—Sn1—C1114.69 (5)C15—C14—C13120.83 (15)
O1—Sn1—C1395.46 (5)C15—C14—H14A119.6
C1—Sn1—C13110.92 (6)C13—C14—H14A119.6
O1—Sn1—C7109.89 (5)C16—C15—C14119.87 (15)
C1—Sn1—C7113.28 (6)C16—C15—H15A120.1
C13—Sn1—C7111.31 (5)C14—C15—H15A120.1
C19—O1—Sn1109.13 (9)C15—C16—C17120.07 (14)
C22—N1—C27118.52 (13)C15—C16—H16A120.0
C22—N1—C26118.12 (15)C17—C16—H16A120.0
C27—N1—C26115.85 (14)C16—C17—C18120.06 (15)
C2—C1—C6118.61 (14)C16—C17—H17A120.0
C2—C1—Sn1118.67 (11)C18—C17—H17A120.0
C6—C1—Sn1122.57 (11)C17—C18—C13120.51 (14)
C3—C2—C1120.82 (14)C17—C18—H18A119.7
C3—C2—H2A119.6C13—C18—H18A119.7
C1—C2—H2A119.6O2—C19—O1121.43 (13)
C4—C3—C2119.94 (15)O2—C19—C20122.89 (13)
C4—C3—H3A120.0O1—C19—C20115.68 (13)
C2—C3—H3A120.0C21—C20—C25121.04 (14)
C3—C4—C5119.97 (15)C21—C20—C19118.15 (13)
C3—C4—H4A120.0C25—C20—C19120.80 (13)
C5—C4—H4A120.0C20—C21—C22120.90 (14)
C6—C5—C4120.12 (15)C20—C21—H21A119.6
C6—C5—H5A119.9C22—C21—H21A119.6
C4—C5—H5A119.9N1—C22—C21121.46 (15)
C5—C6—C1120.54 (14)N1—C22—C23121.24 (14)
C5—C6—H6A119.7C21—C22—C23117.27 (14)
C1—C6—H6A119.7C24—C23—C22121.36 (14)
C12—C7—C8118.59 (13)C24—C23—H23A119.3
C12—C7—Sn1118.36 (10)C22—C23—H23A119.3
C8—C7—Sn1122.97 (11)C23—C24—C25121.01 (15)
C9—C8—C7120.51 (14)C23—C24—H24A119.5
C9—C8—H8A119.7C25—C24—H24A119.5
C7—C8—H8A119.7C24—C25—C20118.36 (14)
C10—C9—C8120.31 (15)C24—C25—H25A120.8
C10—C9—H9A119.8C20—C25—H25A120.8
C8—C9—H9A119.8N1—C26—H26A109.5
C9—C10—C11119.76 (15)N1—C26—H26B109.5
C9—C10—H10A120.1H26A—C26—H26B109.5
C11—C10—H10A120.1N1—C26—H26C109.5
C10—C11—C12120.11 (15)H26A—C26—H26C109.5
C10—C11—H11A119.9H26B—C26—H26C109.5
C12—C11—H11A119.9N1—C27—H27A109.5
C11—C12—C7120.71 (14)N1—C27—H27B109.5
C11—C12—H12A119.6H27A—C27—H27B109.5
C7—C12—H12A119.6N1—C27—H27C109.5
C18—C13—C14118.64 (13)H27A—C27—H27C109.5
C18—C13—Sn1121.68 (11)H27B—C27—H27C109.5
C14—C13—Sn1119.66 (11)
C1—Sn1—O1—C1965.43 (10)C7—Sn1—C13—C1863.64 (13)
C13—Sn1—O1—C19178.55 (10)O1—Sn1—C13—C14131.33 (12)
C7—Sn1—O1—C1963.54 (10)C1—Sn1—C13—C1412.27 (13)
O1—Sn1—C1—C2118.11 (11)C7—Sn1—C13—C14114.83 (12)
C13—Sn1—C1—C2135.17 (11)C18—C13—C14—C151.3 (2)
C7—Sn1—C1—C29.16 (13)Sn1—C13—C14—C15177.23 (12)
O1—Sn1—C1—C666.39 (13)C13—C14—C15—C160.1 (2)
C13—Sn1—C1—C640.33 (13)C14—C15—C16—C171.2 (2)
C7—Sn1—C1—C6166.35 (11)C15—C16—C17—C181.3 (2)
C6—C1—C2—C30.7 (2)C16—C17—C18—C130.0 (2)
Sn1—C1—C2—C3176.37 (12)C14—C13—C18—C171.3 (2)
C1—C2—C3—C40.4 (2)Sn1—C13—C18—C17177.23 (11)
C2—C3—C4—C50.2 (2)Sn1—O1—C19—O25.06 (17)
C3—C4—C5—C60.2 (2)Sn1—O1—C19—C20174.58 (10)
C4—C5—C6—C10.5 (2)O2—C19—C20—C215.3 (2)
C2—C1—C6—C50.7 (2)O1—C19—C20—C21175.11 (13)
Sn1—C1—C6—C5176.25 (11)O2—C19—C20—C25173.49 (14)
O1—Sn1—C7—C12120.58 (11)O1—C19—C20—C256.1 (2)
C1—Sn1—C7—C12109.69 (11)C25—C20—C21—C220.9 (2)
C13—Sn1—C7—C1216.12 (13)C19—C20—C21—C22177.86 (13)
O1—Sn1—C7—C862.74 (13)C27—N1—C22—C2118.9 (2)
C1—Sn1—C7—C867.00 (13)C26—N1—C22—C21167.49 (15)
C13—Sn1—C7—C8167.20 (12)C27—N1—C22—C23163.14 (16)
C12—C7—C8—C90.4 (2)C26—N1—C22—C2314.6 (2)
Sn1—C7—C8—C9177.08 (12)C20—C21—C22—N1175.44 (14)
C7—C8—C9—C101.1 (2)C20—C21—C22—C232.5 (2)
C8—C9—C10—C111.1 (2)N1—C22—C23—C24175.42 (15)
C9—C10—C11—C120.4 (2)C21—C22—C23—C242.6 (2)
C10—C11—C12—C70.3 (2)C22—C23—C24—C250.9 (3)
C8—C7—C12—C110.3 (2)C23—C24—C25—C200.8 (2)
Sn1—C7—C12—C11176.53 (11)C21—C20—C25—C240.9 (2)
O1—Sn1—C13—C1850.20 (12)C19—C20—C25—C24179.56 (14)
C1—Sn1—C13—C18169.26 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O20.932.433.126 (2)132
C24—H24A···Cg1i0.932.883.6772 (19)144
C26—H26B···Cg2ii0.962.743.672 (2)164
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C9H10NO2)]
Mr514.17
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1140 (2), 10.0027 (2), 14.5066 (4)
α, β, γ (°)100.925 (1), 103.106 (1), 110.778 (1)
V3)1150.13 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.46 × 0.42 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.623, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
18268, 5259, 5141
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.049, 1.08
No. of reflections5259
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.56

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Sn1—O12.0649 (11)Sn1—C132.1260 (14)
Sn1—C12.1239 (15)Sn1—C72.1290 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O20.93002.43003.126 (2)132.00
C24—H24A···Cg1i0.93002.88003.6772 (19)144.00
C26—H26B···Cg2ii0.96002.74003.672 (2)164.00
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds