Download citation
Download citation
link to html
In the title compound, {[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O}n, the ZnII ion is square-pyramidally coordinated, and bridged by 2-nitro-terephthalate ligands, forming a chain running along [1\overline{1}0]. Intra­molecular hydrogen bonds are formed between the coordinated water mol­ecules and the nitro O atoms. Adjacent chains are linked by hydrogen bonds between the coordinated water mol­ecules and the O atoms of the monodentate carboxyl groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810023615/kp2266sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810023615/kp2266Isup2.hkl
Contains datablock I

CCDC reference: 788258

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.119
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 107 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 446
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4 PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 100 Deg.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Benzne polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal syntheses. (Huang et al., 2008; Ma et al., 2005; Song et al., 2006; Wang et al., 2005; Yang et al., 2002; Yang et al., 2003a,b,c; Zhang et al., 2007; Zhang et al., 2003; Zhou et al., 2009a) In some of the researches, the substituents on the benzne polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers (Prajapati et al., 2009; Zhou et al., 2009b) In this paper, we would like to report a coordination polymer, {[Zn(ntp)(H2O)(2,2'-bpy)](H2O)}n, 1 (ntp = 2-nitro-terephthalate, 2,2'-bpy = 2,2'-bipyridine) synthesized by hydrothermal reaction.

In the structure of I, the asymmetric unit contains one ZnII ion, one ntp ligand, one coordinated water molecule, one 2,2'-bpy and one solvent water molecule. (Fig. 1, Table 1) The ZnII ion is in a distorted square pyramidal geometry, coordinated by two carboxylate oxygen atoms from two ntp briding ligands, one oxygen atom from water molecule and two nitrogen atoms from 2,2'-bpy. In ntp, the carboxyl in the ortho position of nitro substituent adopts monodentate coordination mode, and the dihedral angle between it and the benzene ring is 45.96 °; the other carboxyl adopts semi-chelating mode, the dihedral angle is 11.35 °. In the semi-chelating mode, one of the coordination bond is very long and weak and is almost neglectable. (Zn1-O3i = 2.859 Å, i x - 1, y + 1, z) The ZnII ion is bridged by ntp ligands to form a one dimensional chain running along [1 -1 0] direction (Fig. 2). Intramolecular hydrogen bonds are formed between the coordinated water molecules and the nitro oxygen atoms. Adjacent chains also form intermolecular hydrogen bonds between the coordinated water molecules and the oxygen atoms of the monodentate carboxyl groups (Table 2).

Related literature top

Benzene polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal synthesis, see: Huang et al. (2008); Ma et al. (2005); Song et al. (2006); Wang et al. (2005); Yang et al. (2002, 2003a,b,c); Zhang et al. (2003, 2007); Zhou et al. (2009a) The substituents on the benzene polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers, see: Prajapati et al. (2009); Zhou et al. (2009b).

Experimental top

The suspension of 2-nitro-terephthalic acid (0.042 g, 0.20 mmol) and 2,2'-bipyridine (0.033 g, 0.20 mmol) in H2O (10 mL) was vigorously stirred, aqueous solution of sodium hydroxide (2 mol/L) was slowly added until the pH value was adjusted to 7, and then ZnCl2 (0.027 g, 0.20 mmol) was added. The solution was placed in a 20 mL Teflon-lined vessel, heated to 453 K at the rate of 0.2 K/min, and kept at 453 K for 3 days, and then slowly cooled down to room temperature at the rate of 0.1 K/min. Yellow block crystals (0.035 g, yield 38%) were separated by filtration, washed with deionized water and dried in air. Elemental Analysis: C18H15N3O8Zn, found (calc.) C 47.23 (46.32), H 3.30 (3.24), N 9.18 (9.00).

Refinement top

The position of the water H atom were refined with O–H distance restrained to 0.85 Å, with their temperature factors set to 1.2 times those of the parent atoms. The aromatic H atoms were generated geometrically (C–H 0.93 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms.

Structure description top

Benzne polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal syntheses. (Huang et al., 2008; Ma et al., 2005; Song et al., 2006; Wang et al., 2005; Yang et al., 2002; Yang et al., 2003a,b,c; Zhang et al., 2007; Zhang et al., 2003; Zhou et al., 2009a) In some of the researches, the substituents on the benzne polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers (Prajapati et al., 2009; Zhou et al., 2009b) In this paper, we would like to report a coordination polymer, {[Zn(ntp)(H2O)(2,2'-bpy)](H2O)}n, 1 (ntp = 2-nitro-terephthalate, 2,2'-bpy = 2,2'-bipyridine) synthesized by hydrothermal reaction.

In the structure of I, the asymmetric unit contains one ZnII ion, one ntp ligand, one coordinated water molecule, one 2,2'-bpy and one solvent water molecule. (Fig. 1, Table 1) The ZnII ion is in a distorted square pyramidal geometry, coordinated by two carboxylate oxygen atoms from two ntp briding ligands, one oxygen atom from water molecule and two nitrogen atoms from 2,2'-bpy. In ntp, the carboxyl in the ortho position of nitro substituent adopts monodentate coordination mode, and the dihedral angle between it and the benzene ring is 45.96 °; the other carboxyl adopts semi-chelating mode, the dihedral angle is 11.35 °. In the semi-chelating mode, one of the coordination bond is very long and weak and is almost neglectable. (Zn1-O3i = 2.859 Å, i x - 1, y + 1, z) The ZnII ion is bridged by ntp ligands to form a one dimensional chain running along [1 -1 0] direction (Fig. 2). Intramolecular hydrogen bonds are formed between the coordinated water molecules and the nitro oxygen atoms. Adjacent chains also form intermolecular hydrogen bonds between the coordinated water molecules and the oxygen atoms of the monodentate carboxyl groups (Table 2).

Benzene polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal synthesis, see: Huang et al. (2008); Ma et al. (2005); Song et al. (2006); Wang et al. (2005); Yang et al. (2002, 2003a,b,c); Zhang et al. (2003, 2007); Zhou et al. (2009a) The substituents on the benzene polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers, see: Prajapati et al. (2009); Zhou et al. (2009b).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of zinc ion in I with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. Hydrogen bonds are showm in green dashed line. Symmetry codes: (i) x - 1, y + 1, z.
[Figure 2] Fig. 2. A perspective view of the one-dimensional chain of I.
Poly[[[aqua(2,2'-bipyridine-κ2N,N')zinc(II)]-µ- 2-nitroterephthalato-κ2O1:O4] monohydrate] top
Crystal data top
[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2OZ = 2
Mr = 466.70F(000) = 476
Triclinic, P1Dx = 1.744 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5570 (5) ÅCell parameters from 4213 reflections
b = 9.1074 (5) Åθ = 2.3–28.5°
c = 12.2060 (7) ŵ = 1.44 mm1
α = 84.558 (1)°T = 297 K
β = 76.863 (1)°Block, yellow
γ = 73.692 (1)°0.41 × 0.36 × 0.33 mm
V = 888.58 (9) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
3915 independent reflections
Radiation source: fine-focus sealed tube3739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scanθmax = 28.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.590, Tmax = 0.648k = 1111
5326 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.302P]
where P = (Fo2 + 2Fc2)/3
3915 reflections(Δ/σ)max = 0.001
285 parametersΔρmax = 0.65 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2Oγ = 73.692 (1)°
Mr = 466.70V = 888.58 (9) Å3
Triclinic, P1Z = 2
a = 8.5570 (5) ÅMo Kα radiation
b = 9.1074 (5) ŵ = 1.44 mm1
c = 12.2060 (7) ÅT = 297 K
α = 84.558 (1)°0.41 × 0.36 × 0.33 mm
β = 76.863 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
3915 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3739 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 0.648Rint = 0.028
5326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.65 e Å3
3915 reflectionsΔρmin = 0.39 e Å3
285 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.10197 (3)0.50965 (3)0.27688 (2)0.02770 (12)
O10.3177 (2)0.3927 (2)0.31591 (17)0.0375 (4)
O1W0.0424 (3)0.4071 (2)0.40216 (18)0.0373 (4)
H1A0.131 (3)0.463 (3)0.440 (3)0.043 (10)*
H1B0.003 (4)0.340 (3)0.448 (2)0.043 (10)*
O20.3290 (3)0.4075 (3)0.49422 (19)0.0493 (6)
O2W0.4501 (5)0.3808 (4)0.6976 (2)0.0700 (8)
H2A0.425 (6)0.386 (6)0.634 (2)0.084*
H2B0.547 (3)0.392 (6)0.673 (4)0.084*
O31.0362 (3)0.2228 (3)0.4031 (2)0.0547 (6)
O40.9149 (3)0.3030 (2)0.2882 (2)0.0460 (5)
O50.2308 (3)0.1110 (3)0.3586 (2)0.0519 (6)
O60.3909 (4)0.0225 (4)0.2029 (3)0.0690 (8)
N10.2312 (3)0.6052 (2)0.12874 (19)0.0302 (4)
N20.0999 (3)0.3715 (2)0.15004 (19)0.0306 (5)
N30.3663 (3)0.0691 (3)0.2970 (2)0.0368 (5)
C10.5136 (3)0.2006 (3)0.3915 (2)0.0258 (5)
C20.5128 (3)0.0739 (3)0.3376 (2)0.0274 (5)
C30.6443 (3)0.0554 (3)0.3223 (2)0.0317 (5)
H3A0.63960.13780.28470.038*
C40.7833 (3)0.0609 (3)0.3636 (2)0.0304 (5)
C50.7895 (3)0.0643 (3)0.4159 (2)0.0343 (6)
H5A0.88400.06190.44220.041*
C60.6559 (3)0.1934 (3)0.4294 (2)0.0318 (5)
H6A0.66210.27710.46480.038*
C70.3725 (3)0.3455 (3)0.4030 (2)0.0283 (5)
C80.9233 (4)0.2058 (3)0.3517 (2)0.0376 (6)
C90.2869 (4)0.7290 (3)0.1244 (3)0.0378 (6)
H9A0.27100.77950.19040.045*
C100.3665 (4)0.7837 (3)0.0258 (3)0.0440 (7)
H10A0.40410.87030.02480.053*
C110.3905 (4)0.7090 (4)0.0723 (3)0.0448 (7)
H11A0.44570.74380.14020.054*
C120.3314 (4)0.5822 (3)0.0682 (2)0.0395 (6)
H12A0.34540.53030.13330.047*
C130.2514 (3)0.5336 (3)0.0338 (2)0.0302 (5)
C140.1825 (3)0.3991 (3)0.0464 (2)0.0306 (5)
C150.1997 (4)0.3087 (4)0.0424 (3)0.0438 (7)
H15A0.25590.33040.11400.053*
C160.1324 (5)0.1859 (4)0.0232 (3)0.0510 (8)
H16A0.14400.12250.08160.061*
C170.0489 (4)0.1579 (4)0.0818 (3)0.0464 (7)
H17A0.00200.07570.09600.056*
C180.0344 (4)0.2527 (3)0.1669 (3)0.0389 (6)
H18A0.02310.23320.23870.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02659 (18)0.02438 (17)0.02802 (18)0.00097 (12)0.00622 (12)0.00332 (11)
O10.0309 (10)0.0370 (10)0.0351 (10)0.0057 (8)0.0081 (8)0.0037 (8)
O1W0.0307 (10)0.0347 (10)0.0358 (11)0.0018 (8)0.0006 (8)0.0006 (8)
O20.0432 (12)0.0515 (12)0.0397 (12)0.0159 (10)0.0096 (10)0.0196 (10)
O2W0.096 (2)0.088 (2)0.0453 (15)0.0528 (19)0.0214 (15)0.0056 (14)
O30.0361 (12)0.0516 (13)0.0633 (16)0.0094 (10)0.0150 (11)0.0090 (11)
O40.0421 (12)0.0311 (10)0.0485 (13)0.0097 (9)0.0000 (10)0.0035 (9)
O50.0312 (11)0.0619 (14)0.0611 (15)0.0123 (10)0.0113 (10)0.0092 (12)
O60.0621 (17)0.0779 (18)0.0722 (18)0.0005 (14)0.0334 (15)0.0364 (15)
N10.0317 (11)0.0271 (10)0.0298 (11)0.0043 (8)0.0068 (9)0.0017 (8)
N20.0302 (11)0.0288 (10)0.0323 (11)0.0032 (8)0.0101 (9)0.0032 (8)
N30.0367 (13)0.0285 (11)0.0477 (14)0.0062 (9)0.0173 (11)0.0000 (10)
C10.0237 (11)0.0238 (10)0.0248 (11)0.0002 (9)0.0033 (9)0.0002 (9)
C20.0265 (12)0.0262 (11)0.0287 (12)0.0051 (9)0.0073 (9)0.0015 (9)
C30.0350 (14)0.0240 (11)0.0329 (13)0.0027 (10)0.0055 (11)0.0049 (9)
C40.0285 (12)0.0254 (11)0.0293 (12)0.0010 (9)0.0016 (10)0.0027 (9)
C50.0259 (12)0.0378 (13)0.0365 (14)0.0012 (10)0.0106 (11)0.0001 (11)
C60.0300 (13)0.0291 (12)0.0356 (14)0.0027 (10)0.0103 (11)0.0057 (10)
C70.0232 (11)0.0246 (11)0.0319 (13)0.0003 (9)0.0028 (10)0.0009 (9)
C80.0333 (14)0.0281 (12)0.0368 (15)0.0039 (11)0.0036 (11)0.0064 (11)
C90.0405 (15)0.0309 (13)0.0417 (16)0.0078 (11)0.0087 (12)0.0047 (11)
C100.0459 (17)0.0334 (14)0.0508 (18)0.0131 (13)0.0053 (14)0.0033 (12)
C110.0468 (17)0.0478 (17)0.0371 (16)0.0145 (14)0.0038 (13)0.0054 (13)
C120.0451 (16)0.0413 (15)0.0301 (14)0.0093 (12)0.0055 (12)0.0035 (11)
C130.0278 (12)0.0287 (11)0.0310 (13)0.0008 (10)0.0074 (10)0.0037 (10)
C140.0297 (12)0.0288 (11)0.0317 (13)0.0017 (10)0.0096 (10)0.0039 (10)
C150.0501 (18)0.0452 (16)0.0371 (15)0.0095 (14)0.0110 (13)0.0125 (13)
C160.063 (2)0.0447 (17)0.053 (2)0.0159 (16)0.0197 (17)0.0158 (14)
C170.0522 (19)0.0402 (15)0.0542 (19)0.0177 (14)0.0179 (15)0.0055 (14)
C180.0406 (15)0.0386 (14)0.0385 (15)0.0108 (12)0.0105 (12)0.0001 (12)
Geometric parameters (Å, º) top
Zn1—O11.9922 (19)C3—C41.381 (4)
Zn1—O1W2.063 (2)C3—H3A0.9300
Zn1—O4i1.976 (2)C4—C51.377 (4)
Zn1—N12.141 (2)C4—C81.506 (3)
Zn1—N22.091 (2)C5—C61.383 (4)
O1—C71.249 (3)C5—H5A0.9300
O1W—H1A0.85 (3)C6—H6A0.9300
O1W—H1B0.84 (3)C9—C101.366 (4)
O2—C71.230 (3)C9—H9A0.9300
O2W—H2A0.85 (3)C10—C111.379 (5)
O2W—H2B0.85 (3)C10—H10A0.9300
O3—C81.234 (4)C11—C121.377 (4)
O4—C81.257 (4)C11—H11A0.9300
O4—Zn1ii1.976 (2)C12—C131.376 (4)
O5—N31.210 (3)C12—H12A0.9300
O6—N31.215 (3)C13—C141.483 (4)
N1—C91.334 (4)C14—C151.380 (4)
N1—C131.337 (3)C15—C161.374 (5)
N2—C181.332 (4)C15—H15A0.9300
N2—C141.340 (4)C16—C171.357 (5)
N3—C21.461 (3)C16—H16A0.9300
C1—C61.381 (4)C17—C181.375 (4)
C1—C21.384 (3)C17—H17A0.9300
C1—C71.510 (3)C18—H18A0.9300
C2—C31.375 (3)
O1—Zn1—O1W95.05 (8)C1—C6—C5121.3 (2)
O1—Zn1—N190.59 (8)C1—C6—H6A119.3
O1—Zn1—N298.69 (9)C5—C6—H6A119.3
O1W—Zn1—N1170.66 (9)O2—C7—O1127.0 (2)
O1W—Zn1—N294.61 (9)O2—C7—C1117.3 (2)
O4i—Zn1—O1149.63 (10)O1—C7—C1115.6 (2)
O4i—Zn1—O1W89.11 (9)O3—C8—O4124.5 (3)
O4i—Zn1—N189.79 (9)O3—C8—C4119.8 (3)
O4i—Zn1—N2110.97 (10)O4—C8—C4115.8 (3)
N1—Zn1—N277.14 (9)N1—C9—C10121.9 (3)
C7—O1—Zn1137.57 (18)N1—C9—H9A119.1
Zn1—O1W—H1A118 (2)C10—C9—H9A119.1
Zn1—O1W—H1B124 (2)C9—C10—C11119.2 (3)
H1A—O1W—H1B106 (3)C9—C10—H10A120.4
H2A—O2W—H2B96 (5)C11—C10—H10A120.4
C8—O4—Zn1ii113.6 (2)C12—C11—C10119.0 (3)
C9—N1—C13119.3 (2)C12—C11—H11A120.5
C9—N1—Zn1125.6 (2)C10—C11—H11A120.5
C13—N1—Zn1115.06 (17)C13—C12—C11118.9 (3)
C18—N2—C14118.6 (2)C13—C12—H12A120.6
C18—N2—Zn1124.7 (2)C11—C12—H12A120.6
C14—N2—Zn1116.48 (18)N1—C13—C12121.7 (3)
O5—N3—O6124.9 (3)N1—C13—C14115.5 (2)
O5—N3—C2118.3 (3)C12—C13—C14122.8 (2)
O6—N3—C2116.7 (3)N2—C14—C15121.7 (3)
C6—C1—C2116.8 (2)N2—C14—C13115.6 (2)
C6—C1—C7120.2 (2)C15—C14—C13122.7 (3)
C2—C1—C7122.9 (2)C16—C15—C14118.9 (3)
C3—C2—C1123.1 (2)C16—C15—H15A120.5
C3—C2—N3116.1 (2)C14—C15—H15A120.5
C1—C2—N3120.8 (2)C17—C16—C15119.4 (3)
C2—C3—C4118.9 (2)C17—C16—H16A120.3
C2—C3—H3A120.6C15—C16—H16A120.3
C4—C3—H3A120.6C16—C17—C18119.2 (3)
C5—C4—C3119.6 (2)C16—C17—H17A120.4
C5—C4—C8121.8 (3)C18—C17—H17A120.4
C3—C4—C8118.6 (3)N2—C18—C17122.3 (3)
C4—C5—C6120.4 (3)N2—C18—H18A118.9
C4—C5—H5A119.8C17—C18—H18A118.9
C6—C5—H5A119.8
O4i—Zn1—O1—C758.0 (4)C6—C1—C7—O246.1 (4)
O1W—Zn1—O1—C738.9 (3)C2—C1—C7—O2137.9 (3)
N2—Zn1—O1—C7134.3 (3)C6—C1—C7—O1130.8 (3)
N1—Zn1—O1—C7148.6 (3)C2—C1—C7—O145.1 (3)
O4i—Zn1—N1—C964.9 (2)Zn1ii—O4—C8—O30.0 (4)
O1—Zn1—N1—C984.8 (2)Zn1ii—O4—C8—C4179.80 (17)
N2—Zn1—N1—C9176.5 (2)C5—C4—C8—O310.4 (4)
O4i—Zn1—N1—C13113.31 (19)C3—C4—C8—O3168.5 (3)
O1—Zn1—N1—C1397.06 (19)C5—C4—C8—O4169.8 (3)
N2—Zn1—N1—C131.72 (18)C3—C4—C8—O411.3 (4)
O4i—Zn1—N2—C1896.8 (2)C13—N1—C9—C101.0 (4)
O1—Zn1—N2—C1889.8 (2)Zn1—N1—C9—C10179.1 (2)
O1W—Zn1—N2—C186.0 (2)N1—C9—C10—C110.1 (5)
N1—Zn1—N2—C18178.4 (2)C9—C10—C11—C120.8 (5)
O4i—Zn1—N2—C1488.66 (19)C10—C11—C12—C130.4 (5)
O1—Zn1—N2—C1484.70 (19)C9—N1—C13—C121.4 (4)
O1W—Zn1—N2—C14179.47 (18)Zn1—N1—C13—C12179.7 (2)
N1—Zn1—N2—C143.91 (18)C9—N1—C13—C14178.8 (2)
C6—C1—C2—C30.8 (4)Zn1—N1—C13—C140.5 (3)
C7—C1—C2—C3176.8 (2)C11—C12—C13—N10.7 (4)
C6—C1—C2—N3178.4 (2)C11—C12—C13—C14179.5 (3)
C7—C1—C2—N35.5 (4)C18—N2—C14—C150.5 (4)
O5—N3—C2—C3132.7 (3)Zn1—N2—C14—C15175.4 (2)
O6—N3—C2—C347.2 (4)C18—N2—C14—C13179.7 (2)
O5—N3—C2—C145.1 (3)Zn1—N2—C14—C135.4 (3)
O6—N3—C2—C1135.0 (3)N1—C13—C14—N23.8 (3)
C1—C2—C3—C40.8 (4)C12—C13—C14—N2176.4 (2)
N3—C2—C3—C4176.9 (2)N1—C13—C14—C15176.9 (3)
C2—C3—C4—C52.0 (4)C12—C13—C14—C152.9 (4)
C2—C3—C4—C8177.0 (2)N2—C14—C15—C161.0 (5)
C3—C4—C5—C61.5 (4)C13—C14—C15—C16179.8 (3)
C8—C4—C5—C6177.4 (2)C14—C15—C16—C170.9 (5)
C2—C1—C6—C51.2 (4)C15—C16—C17—C180.4 (5)
C7—C1—C6—C5177.4 (2)C14—N2—C18—C170.1 (4)
C4—C5—C6—C10.1 (4)Zn1—N2—C18—C17174.4 (2)
Zn1—O1—C7—O233.2 (5)C16—C17—C18—N20.1 (5)
Zn1—O1—C7—C1150.2 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2iii0.85 (3)1.83 (3)2.670 (3)174 (4)
O1W—H1B···O3iv0.84 (3)2.02 (2)2.779 (3)150 (3)
O1W—H1B···O50.84 (3)2.58 (3)3.031 (3)115 (3)
O2W—H2A···O20.85 (3)2.03 (3)2.865 (4)171 (5)
O2W—H2B···O1v0.85 (3)2.57 (4)3.213 (4)134 (4)
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O
Mr466.70
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)8.5570 (5), 9.1074 (5), 12.2060 (7)
α, β, γ (°)84.558 (1), 76.863 (1), 73.692 (1)
V3)888.58 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.41 × 0.36 × 0.33
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.590, 0.648
No. of measured, independent and
observed [I > 2σ(I)] reflections
5326, 3915, 3739
Rint0.028
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.10
No. of reflections3915
No. of parameters285
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.39

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Zn1—O11.9922 (19)Zn1—N12.141 (2)
Zn1—O1W2.063 (2)Zn1—N22.091 (2)
Zn1—O4i1.976 (2)
O1—Zn1—O1W95.05 (8)O4i—Zn1—O1149.63 (10)
O1—Zn1—N190.59 (8)O4i—Zn1—O1W89.11 (9)
O1—Zn1—N298.69 (9)O4i—Zn1—N189.79 (9)
O1W—Zn1—N1170.66 (9)O4i—Zn1—N2110.97 (10)
O1W—Zn1—N294.61 (9)N1—Zn1—N277.14 (9)
Symmetry code: (i) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2ii0.85 (3)1.83 (3)2.670 (3)174 (4)
O1W—H1B···O3iii0.84 (3)2.02 (2)2.779 (3)150 (3)
O1W—H1B···O50.84 (3)2.58 (3)3.031 (3)115 (3)
O2W—H2A···O20.85 (3)2.03 (3)2.865 (4)171 (5)
O2W—H2B···O1iv0.85 (3)2.57 (4)3.213 (4)134 (4)
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds