Download citation
Download citation
link to html
In the title compound, C16H11NO2·C5H9NO, the dihedral angles between the male­imide and phenyl rings are 34.7 (2) and 64.8 (2)°. In the crystal, the 2,3-di­phenyl­male­imide and 1-methyl­pyrrolidin-2-one mol­ecules form centrosymmetrical dimers via pairs of strong N—H...O hydrogen bonds and π–π stacking inter­actions between the two neighboring male­imide rings [centroid–centroid distance = 3.495 (2) Å]. The dimers are further linked by weak C—H...O and C—H...π hydrogen bonds into a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814002372/kq2011sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814002372/kq2011Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536814002372/kq2011Isup3.cml
Supplementary material

CCDC reference: 978501

Key indicators

  • Single-crystal X-ray study
  • T = 170 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.064
  • wR factor = 0.204
  • Data-to-parameter ratio = 37.4

checkCIF/PLATON results

No syntax errors found



Alert level C DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 0.633 Test value = 0.600 DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.08 PLAT097_ALERT_2_C Large Reported Max. (Positive) Residual Density 0.63 eA-3 PLAT480_ALERT_4_C Long H...A H-Bond Reported H21B .. O1 .. 2.73 Ang. PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 5.139 Check PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 6 Why ? PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 1 Why ? PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 406
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 8 ALERT level C = Check. Ensure it is not caused by an omission or oversight 3 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Maleimide derivatives can be used as building blocks in the synthesis of a wide range of biologically active compounds (Parsons et al., 2013), polymeric materials (Billiet et al., 2011), nanoparticles (Zhu et al., 2012), etc.

The present work describes the synthesis and crystal structure of 2,3-diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate, C16H11NO2.C5H9NO (Fig. 1). The bond lengths and angles within the 2,3-diphenylmaleimide molecule (Table 1) are in a good agreement with those found in the related compounds (Zhang et al. (2004); Mitzi et al. (2007)). The dihedral angles between the maleimide and phenyl rings are 34.7 (2)° and 64.8 (2)°. In the crystal, the 2,3-diphenylmaleimide and 1-methylpyrrolidin-2-one molecules form centrosymmetrical dimeric associates via strong N—H···O hydrogen bonds (Table 2) and π-π stacking interactions between the two neighboring maleimide rings (the centroid-centroid distance is 3.495 (2) Å). Further the associates are linked by weak C—H···O (Table 2) and C—H···π hydrogen bonds into three-dimensional framework (Fig. 2).

Related literature top

For general background to maleimides, see: Yeh et al. (2004); Billiet et al. (2011); Zhu et al. (2012); Parsons & Du Bois (2013). For the crystal structures of related compounds, see: Zhang et al. (2004); Mitzi & Afzali (2007).

Experimental top

3,4-Diphenylpyrrol-2,5-diimine (0.810 mmol, 0.20 g) was hydrolyzed in 80% aqueous methanol (10 mL) for 24 h at room temperature. The yellow solid was obtained from the reaction mixture. The crystals of the title compound suitable for single crystal X-ray diffraction were obtained by recrystallization from 1-methylpyrrolidin-2-one.

Refinement top

Structural refinement was carried out using SHELXTL (Sheldrick, 2008) with the Olex2 (Dolomanov et al., 2009) and SHELXLE (Hübschle et al., 2011) graphical user interfaces. All hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å, N—H = 0.88 Å and Uiso = 1.2–1.5 Ueq (parent atom).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2011); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and SHELXLE (Hübschle et al., 2011).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing along the crystallographic a axis. All hydrogen atoms have been omitted for clarity.
2,3-Diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate top
Crystal data top
C16H11NO2·C5H9NOF(000) = 736
Mr = 348.39Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.1962 (3) ÅCell parameters from 5604 reflections
b = 10.0002 (2) Åθ = 3.7–36.7°
c = 13.5600 (3) ŵ = 0.09 mm1
β = 100.469 (3)°T = 170 K
V = 1759.65 (7) Å3Block, colourless
Z = 40.54 × 0.40 × 0.24 mm
Data collection top
Agilent SuperNova (Single source at offset, Eos)
diffractometer
8818 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5708 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 16.0107 pixels mm-1θmax = 37.5°, θmin = 3.1°
φ scans and ω scans with κ offseth = 2222
Absorption correction: multi-scan
(CrysAlis PRO, Agilent, 2013)
k = 1316
Tmin = 0.815, Tmax = 1.000l = 2223
22206 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.0916P)2 + 0.4242P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
8818 reflectionsΔρmax = 0.63 e Å3
236 parametersΔρmin = 0.30 e Å3
Crystal data top
C16H11NO2·C5H9NOV = 1759.65 (7) Å3
Mr = 348.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1962 (3) ŵ = 0.09 mm1
b = 10.0002 (2) ÅT = 170 K
c = 13.5600 (3) Å0.54 × 0.40 × 0.24 mm
β = 100.469 (3)°
Data collection top
Agilent SuperNova (Single source at offset, Eos)
diffractometer
8818 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO, Agilent, 2013)
5708 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 1.000Rint = 0.028
22206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.03Δρmax = 0.63 e Å3
8818 reflectionsΔρmin = 0.30 e Å3
236 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2013); Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06128 (8)0.79304 (9)0.09092 (7)0.0333 (2)
O20.16449 (8)0.38928 (10)0.01022 (8)0.0365 (2)
N10.10893 (8)0.60420 (10)0.01257 (7)0.0272 (2)
H10.11270.63830.04650.033*
C10.13055 (9)0.47257 (12)0.04002 (9)0.0260 (2)
C20.10664 (8)0.45632 (11)0.14421 (8)0.0230 (2)
C30.12077 (8)0.33036 (11)0.20052 (9)0.0240 (2)
C40.09962 (10)0.20708 (12)0.15227 (10)0.0300 (2)
H40.07640.20420.08180.036*
C50.11244 (11)0.08926 (13)0.20683 (12)0.0366 (3)
H50.09820.00590.17360.044*
C60.14610 (11)0.09271 (14)0.31006 (12)0.0370 (3)
H60.15400.01180.34730.044*
C70.16818 (10)0.21392 (14)0.35876 (11)0.0334 (3)
H70.19180.21600.42920.040*
C80.15569 (9)0.33222 (13)0.30448 (9)0.0275 (2)
H80.17090.41520.33810.033*
C90.07716 (8)0.57673 (11)0.17357 (8)0.02304 (19)
C100.04640 (8)0.61711 (11)0.26815 (8)0.0232 (2)
C110.04123 (10)0.56355 (15)0.29686 (10)0.0324 (3)
H110.08290.50130.25470.039*
C120.06732 (11)0.60162 (19)0.38744 (12)0.0418 (3)
H120.12760.56620.40670.050*
C130.00602 (12)0.69086 (17)0.44990 (11)0.0406 (3)
H130.02410.71580.51210.049*
C140.08136 (12)0.74379 (15)0.42201 (10)0.0362 (3)
H140.12370.80420.46530.043*
C150.10711 (10)0.70841 (13)0.33056 (9)0.0290 (2)
H150.16610.74650.31050.035*
C160.08056 (9)0.67456 (12)0.09100 (9)0.0254 (2)
O30.67483 (9)0.76077 (11)0.35649 (9)0.0429 (3)
N20.65279 (9)0.53588 (12)0.32844 (9)0.0348 (2)
C170.66039 (10)0.66246 (14)0.30065 (11)0.0333 (3)
C180.64860 (19)0.66600 (18)0.18720 (12)0.0554 (5)
H18A0.59150.72630.15800.066*
H18B0.71290.69830.16720.066*
C190.62610 (16)0.52685 (18)0.15209 (12)0.0483 (4)
H19A0.67670.49660.11120.058*
H19B0.55620.52080.11090.058*
C200.63358 (14)0.44090 (16)0.24659 (13)0.0447 (4)
H20A0.56850.39170.24670.054*
H20B0.69080.37580.25140.054*
C210.65804 (14)0.4951 (2)0.43134 (12)0.0479 (4)
H21A0.59060.46130.44040.072*
H21B0.67730.57190.47570.072*
H21C0.70980.42440.44780.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0447 (5)0.0228 (4)0.0320 (4)0.0014 (4)0.0059 (4)0.0003 (3)
O20.0443 (5)0.0350 (5)0.0337 (5)0.0028 (4)0.0161 (4)0.0076 (4)
N10.0337 (5)0.0265 (5)0.0219 (4)0.0021 (4)0.0062 (4)0.0016 (4)
C10.0263 (5)0.0271 (5)0.0247 (5)0.0012 (4)0.0050 (4)0.0041 (4)
C20.0235 (4)0.0221 (5)0.0232 (4)0.0005 (3)0.0039 (4)0.0028 (4)
C30.0219 (4)0.0218 (4)0.0283 (5)0.0014 (4)0.0046 (4)0.0026 (4)
C40.0304 (5)0.0230 (5)0.0355 (6)0.0006 (4)0.0028 (5)0.0054 (4)
C50.0329 (6)0.0221 (5)0.0536 (8)0.0002 (4)0.0049 (6)0.0022 (5)
C60.0316 (6)0.0278 (6)0.0515 (8)0.0042 (5)0.0074 (6)0.0094 (6)
C70.0300 (5)0.0358 (6)0.0341 (6)0.0071 (5)0.0047 (5)0.0060 (5)
C80.0277 (5)0.0254 (5)0.0292 (5)0.0035 (4)0.0040 (4)0.0002 (4)
C90.0242 (4)0.0219 (4)0.0230 (4)0.0008 (4)0.0043 (4)0.0018 (4)
C100.0249 (4)0.0219 (4)0.0234 (4)0.0016 (4)0.0054 (4)0.0007 (4)
C110.0268 (5)0.0382 (7)0.0331 (6)0.0036 (5)0.0077 (4)0.0008 (5)
C120.0332 (6)0.0589 (10)0.0371 (7)0.0004 (6)0.0163 (5)0.0034 (7)
C130.0460 (8)0.0513 (9)0.0275 (6)0.0078 (6)0.0148 (6)0.0004 (6)
C140.0479 (7)0.0354 (7)0.0258 (5)0.0018 (6)0.0083 (5)0.0061 (5)
C150.0345 (6)0.0270 (5)0.0264 (5)0.0047 (4)0.0081 (4)0.0038 (4)
C160.0275 (5)0.0244 (5)0.0239 (5)0.0018 (4)0.0036 (4)0.0020 (4)
O30.0568 (6)0.0368 (5)0.0397 (5)0.0118 (5)0.0214 (5)0.0127 (4)
N20.0366 (5)0.0342 (6)0.0347 (6)0.0033 (4)0.0091 (4)0.0007 (5)
C170.0317 (5)0.0324 (6)0.0368 (6)0.0018 (5)0.0085 (5)0.0040 (5)
C180.0896 (14)0.0413 (9)0.0326 (7)0.0106 (9)0.0043 (8)0.0021 (6)
C190.0630 (10)0.0473 (9)0.0359 (7)0.0088 (8)0.0126 (7)0.0103 (7)
C200.0566 (9)0.0310 (7)0.0478 (8)0.0027 (6)0.0134 (7)0.0093 (6)
C210.0487 (8)0.0598 (10)0.0359 (7)0.0088 (8)0.0098 (6)0.0105 (7)
Geometric parameters (Å, º) top
O1—C161.2118 (15)C11—H110.9500
O2—C11.2121 (15)C12—C131.385 (2)
N1—C161.3824 (15)C12—H120.9500
N1—C11.3835 (16)C13—C141.383 (2)
N1—H10.8800C13—H130.9500
C1—C21.5113 (16)C14—C151.3898 (18)
C2—C91.3476 (16)C14—H140.9500
C2—C31.4672 (16)C15—H150.9500
C3—C41.3998 (16)O3—C171.2344 (17)
C3—C81.4013 (17)N2—C171.3296 (19)
C4—C51.3851 (19)N2—C211.4433 (19)
C4—H40.9500N2—C201.448 (2)
C5—C61.390 (2)C17—C181.518 (2)
C5—H50.9500C18—C191.483 (2)
C6—C71.386 (2)C18—H18A0.9900
C6—H60.9500C18—H18B0.9900
C7—C81.3872 (18)C19—C201.531 (2)
C7—H70.9500C19—H19A0.9900
C8—H80.9500C19—H19B0.9900
C9—C101.4703 (15)C20—H20A0.9900
C9—C161.4936 (16)C20—H20B0.9900
C10—C111.3926 (17)C21—H21A0.9800
C10—C151.3947 (16)C21—H21B0.9800
C11—C121.388 (2)C21—H21C0.9800
C16—N1—C1110.41 (10)C12—C13—H13119.9
C16—N1—H1124.8C13—C14—C15119.86 (13)
C1—N1—H1124.8C13—C14—H14120.1
O2—C1—N1125.57 (12)C15—C14—H14120.1
O2—C1—C2127.79 (12)C14—C15—C10120.10 (12)
N1—C1—C2106.62 (10)C14—C15—H15120.0
C9—C2—C3129.02 (11)C10—C15—H15120.0
C9—C2—C1107.49 (10)O1—C16—N1125.67 (12)
C3—C2—C1123.40 (10)O1—C16—C9127.31 (11)
C4—C3—C8118.88 (11)N1—C16—C9107.01 (10)
C4—C3—C2121.14 (11)C17—N2—C21123.38 (14)
C8—C3—C2119.97 (10)C17—N2—C20114.78 (13)
C5—C4—C3120.32 (13)C21—N2—C20121.78 (14)
C5—C4—H4119.8O3—C17—N2126.55 (14)
C3—C4—H4119.8O3—C17—C18125.38 (14)
C4—C5—C6120.16 (13)N2—C17—C18108.07 (13)
C4—C5—H5119.9C19—C18—C17106.32 (14)
C6—C5—H5119.9C19—C18—H18A110.5
C7—C6—C5120.18 (13)C17—C18—H18A110.5
C7—C6—H6119.9C19—C18—H18B110.5
C5—C6—H6119.9C17—C18—H18B110.5
C6—C7—C8119.91 (13)H18A—C18—H18B108.7
C6—C7—H7120.0C18—C19—C20106.22 (13)
C8—C7—H7120.0C18—C19—H19A110.5
C7—C8—C3120.54 (12)C20—C19—H19A110.5
C7—C8—H8119.7C18—C19—H19B110.5
C3—C8—H8119.7C20—C19—H19B110.5
C2—C9—C10130.04 (11)H19A—C19—H19B108.7
C2—C9—C16108.31 (10)N2—C20—C19104.41 (13)
C10—C9—C16121.64 (10)N2—C20—H20A110.9
C11—C10—C15119.78 (11)C19—C20—H20A110.9
C11—C10—C9120.87 (11)N2—C20—H20B110.9
C15—C10—C9119.33 (10)C19—C20—H20B110.9
C12—C11—C10119.61 (13)H20A—C20—H20B108.9
C12—C11—H11120.2N2—C21—H21A109.5
C10—C11—H11120.2N2—C21—H21B109.5
C13—C12—C11120.44 (13)H21A—C21—H21B109.5
C13—C12—H12119.8N2—C21—H21C109.5
C11—C12—H12119.8H21A—C21—H21C109.5
C14—C13—C12120.19 (13)H21B—C21—H21C109.5
C14—C13—H13119.9
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C3–C8 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.881.952.7800 (15)156
C5—H5···O1ii0.952.413.3639 (17)179
C21—H21A···O1iii0.982.593.498 (2)154
C21—H21B···O1iv0.982.733.436 (2)129
C15—H15···Cg2v0.952.963.8081 (14)149
C20—H20A···Cg3iii0.992.913.6508 (18)133
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C3–C8 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.881.952.7800 (15)156.0
C5—H5···O1ii0.952.413.3639 (17)179.3
C21—H21A···O1iii0.982.593.498 (2)153.6
C21—H21B···O1iv0.982.733.436 (2)128.9
C15—H15···Cg2v0.952.963.8081 (14)149
C20—H20A···Cg3iii0.992.913.6508 (18)133
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds