Download citation
Download citation
link to html
The structure of a coumarin ester stabilized by C—H...O hydrogen bonds and C=O...π and π–π stacking inter­actions has been studied by X-ray diffraction, Hirshfeld surface analysis and quantum chemical calculations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205698901800614X/kq2021sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205698901800614X/kq2021Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S205698901800614X/kq2021Isup3.cml
Supplementary material

CCDC reference: 1834035

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.035
  • wR factor = 0.098
  • Data-to-parameter ratio = 11.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) ........ 6.67 Note PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.005 Ang. PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers .... 1 Check
Alert level G PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still 90% Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 2 Note PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 2 Note PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 1 Info
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

2-Oxo-2H-chromen-7-yl 4-fluorobenzoate top
Crystal data top
C16H9FO4F(000) = 292
Mr = 284.23Dx = 1.489 Mg m3
Monoclinic, P21Melting point = 467–468 K
Hall symbol: P2ybCu Kα radiation, λ = 1.54184 Å
a = 4.0181 (2) ÅCell parameters from 4751 reflections
b = 5.7296 (3) Åθ = 4.8–67.5°
c = 27.5566 (14) ŵ = 1.00 mm1
β = 91.660 (4)°T = 298 K
V = 634.14 (6) Å3Prism, pale yellow
Z = 20.40 × 0.12 × 0.05 mm
Data collection top
Rigaku SuperNova, Dual, Cu at zero, Atlas S2
diffractometer
2228 independent reflections
Radiation source: micro-focus sealed X-ray tube2149 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 5.3048 pixels mm-1θmax = 67.9°, θmin = 4.8°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 66
Tmin = 0.683, Tmax = 1.000l = 3232
8239 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.1688P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2228 reflectionsΔρmax = 0.13 e Å3
190 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack x determined using 875 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
36 constraintsAbsolute structure parameter: 0.03 (8)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6427 (6)0.3343 (4)0.88096 (8)0.0524 (6)
O30.0412 (6)0.4724 (4)0.73539 (8)0.0615 (6)
C70.1548 (8)0.5614 (6)0.78012 (11)0.0497 (7)
C100.1085 (8)0.5845 (6)0.69372 (12)0.0530 (8)
C50.4431 (7)0.4840 (5)0.85424 (11)0.0441 (6)
O20.9356 (7)0.2473 (5)0.94698 (9)0.0754 (8)
C60.3531 (8)0.4146 (6)0.80778 (11)0.0478 (7)
H60.42460.27260.79550.057*
C90.1406 (8)0.8388 (6)0.84388 (12)0.0521 (7)
H90.06670.98060.85600.062*
C40.3401 (8)0.6973 (5)0.87346 (11)0.0460 (7)
C110.0314 (8)0.4585 (6)0.65121 (11)0.0503 (7)
C160.1991 (9)0.2483 (7)0.65592 (12)0.0573 (8)
H160.22890.18530.68660.069*
F10.3952 (7)0.1157 (6)0.53091 (9)0.1069 (10)
O40.2703 (7)0.7609 (5)0.69274 (9)0.0745 (8)
C30.4468 (8)0.7532 (6)0.92219 (11)0.0535 (8)
H30.37840.89230.93610.064*
C120.0095 (8)0.5513 (7)0.60524 (13)0.0613 (9)
H120.12100.69230.60180.074*
C10.7538 (8)0.3880 (6)0.92768 (12)0.0536 (8)
C80.0489 (8)0.7757 (6)0.79730 (12)0.0546 (8)
H80.08100.87430.77780.066*
C140.2763 (10)0.2274 (9)0.57115 (14)0.0705 (11)
C20.6429 (9)0.6080 (7)0.94771 (12)0.0570 (8)
H20.71030.64860.97920.068*
C150.3218 (10)0.1325 (7)0.61538 (14)0.0679 (10)
H150.43390.00850.61840.081*
C130.1144 (10)0.4358 (9)0.56453 (13)0.0735 (11)
H130.08890.49720.53360.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0609 (13)0.0430 (13)0.0528 (12)0.0028 (10)0.0050 (10)0.0037 (10)
O30.0801 (15)0.0560 (15)0.0479 (12)0.0166 (13)0.0091 (10)0.0029 (11)
C70.0542 (16)0.0476 (19)0.0470 (16)0.0114 (15)0.0026 (13)0.0003 (14)
C100.0528 (17)0.052 (2)0.0542 (18)0.0026 (16)0.0010 (13)0.0049 (15)
C50.0439 (14)0.0383 (16)0.0501 (15)0.0058 (12)0.0007 (11)0.0008 (12)
O20.0877 (19)0.0643 (18)0.0726 (16)0.0051 (16)0.0235 (14)0.0052 (14)
C60.0553 (16)0.0396 (17)0.0486 (16)0.0033 (13)0.0039 (12)0.0033 (13)
C90.0527 (17)0.0378 (17)0.0660 (19)0.0015 (13)0.0063 (14)0.0016 (14)
C40.0484 (16)0.0366 (17)0.0532 (16)0.0052 (13)0.0058 (12)0.0037 (12)
C110.0503 (16)0.0493 (19)0.0511 (16)0.0079 (14)0.0034 (12)0.0015 (14)
C160.0611 (19)0.054 (2)0.0567 (18)0.0012 (17)0.0044 (14)0.0021 (16)
F10.116 (2)0.129 (3)0.0749 (15)0.0067 (19)0.0203 (14)0.0386 (16)
O40.097 (2)0.0636 (17)0.0629 (15)0.0291 (16)0.0016 (13)0.0011 (13)
C30.0615 (19)0.0438 (18)0.0556 (18)0.0076 (16)0.0066 (14)0.0096 (15)
C120.0592 (19)0.064 (2)0.060 (2)0.0040 (18)0.0001 (15)0.0055 (17)
C10.0577 (18)0.050 (2)0.0527 (17)0.0078 (16)0.0050 (14)0.0021 (15)
C80.0580 (19)0.0442 (18)0.0613 (19)0.0014 (15)0.0029 (14)0.0062 (14)
C140.067 (2)0.081 (3)0.063 (2)0.004 (2)0.0124 (17)0.022 (2)
C20.065 (2)0.056 (2)0.0498 (17)0.0123 (16)0.0016 (14)0.0059 (15)
C150.070 (2)0.061 (2)0.072 (2)0.0016 (19)0.0067 (17)0.0090 (18)
C130.077 (2)0.095 (3)0.0480 (18)0.011 (2)0.0041 (16)0.002 (2)
Geometric parameters (Å, º) top
O1—C51.374 (3)C11—C161.388 (5)
O1—C11.385 (4)C11—C121.388 (5)
O3—C101.350 (4)C16—C151.378 (5)
O3—C71.398 (4)C16—H160.9300
C7—C61.374 (4)F1—C141.355 (4)
C7—C81.387 (5)C3—C21.332 (5)
C10—O41.202 (4)C3—H30.9300
C10—C111.473 (4)C12—C131.383 (5)
C5—C61.379 (4)C12—H120.9300
C5—C41.399 (4)C1—C21.451 (5)
O2—C11.202 (4)C8—H80.9300
C6—H60.9300C14—C151.352 (6)
C9—C81.373 (5)C14—C131.374 (7)
C9—C41.388 (4)C2—H20.9300
C9—H90.9300C15—H150.9300
C4—C31.434 (4)C13—H130.9300
C5—O1—C1121.8 (2)C11—C16—H16119.8
C10—O3—C7120.5 (3)C2—C3—C4120.7 (3)
C6—C7—C8122.1 (3)C2—C3—H3119.6
C6—C7—O3115.8 (3)C4—C3—H3119.6
C8—C7—O3121.9 (3)C13—C12—C11120.5 (4)
O4—C10—O3122.7 (3)C13—C12—H12119.7
O4—C10—C11126.0 (3)C11—C12—H12119.7
O3—C10—C11111.2 (3)O2—C1—O1116.0 (3)
O1—C5—C6116.8 (3)O2—C1—C2127.1 (3)
O1—C5—C4121.1 (3)O1—C1—C2116.9 (3)
C6—C5—C4122.1 (3)C9—C8—C7118.4 (3)
C7—C6—C5118.1 (3)C9—C8—H8120.8
C7—C6—H6121.0C7—C8—H8120.8
C5—C6—H6121.0C15—C14—F1119.6 (4)
C8—C9—C4122.0 (3)C15—C14—C13123.1 (4)
C8—C9—H9119.0F1—C14—C13117.3 (4)
C4—C9—H9119.0C3—C2—C1121.7 (3)
C9—C4—C5117.4 (3)C3—C2—H2119.2
C9—C4—C3124.9 (3)C1—C2—H2119.2
C5—C4—C3117.8 (3)C14—C15—C16118.9 (4)
C16—C11—C12119.2 (3)C14—C15—H15120.6
C16—C11—C10121.7 (3)C16—C15—H15120.6
C12—C11—C10119.0 (3)C14—C13—C12118.0 (4)
C15—C16—C11120.4 (3)C14—C13—H13121.0
C15—C16—H16119.8C12—C13—H13121.0
C10—O3—C7—C6122.3 (3)C12—C11—C16—C150.4 (5)
C10—O3—C7—C863.4 (4)C10—C11—C16—C15178.8 (3)
C7—O3—C10—O41.1 (5)C9—C4—C3—C2179.0 (3)
C7—O3—C10—C11179.3 (3)C5—C4—C3—C21.3 (5)
C1—O1—C5—C6178.7 (3)C16—C11—C12—C130.2 (5)
C1—O1—C5—C40.7 (4)C10—C11—C12—C13179.0 (3)
C8—C7—C6—C51.0 (4)C5—O1—C1—O2177.7 (3)
O3—C7—C6—C5173.3 (3)C5—O1—C1—C21.5 (4)
O1—C5—C6—C7179.7 (3)C4—C9—C8—C71.4 (5)
C4—C5—C6—C70.3 (4)C6—C7—C8—C91.5 (5)
C8—C9—C4—C50.8 (5)O3—C7—C8—C9172.5 (3)
C8—C9—C4—C3179.5 (3)C4—C3—C2—C10.5 (5)
O1—C5—C4—C9179.6 (3)O2—C1—C2—C3178.2 (4)
C6—C5—C4—C90.2 (4)O1—C1—C2—C30.9 (5)
O1—C5—C4—C30.7 (4)F1—C14—C15—C16180.0 (3)
C6—C5—C4—C3179.9 (3)C13—C14—C15—C160.4 (6)
O4—C10—C11—C16176.2 (3)C11—C16—C15—C140.1 (5)
O3—C10—C11—C161.9 (4)C15—C14—C13—C120.6 (6)
O4—C10—C11—C123.0 (5)F1—C14—C13—C12179.7 (3)
O3—C10—C11—C12178.9 (3)C11—C12—C13—C140.3 (6)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C4–C9 benzene ring and the coumarin ring system, respectively.
D—H···AD—HH···AD···AD—H···A
C16—H16···O30.932.372.693 (4)100
C2—H2···O2i0.932.513.412 (4)163
C1—O2···Cg2ii1.20 (1)3.27 (1)3.403 (3)86 (1)
C1—O2···Cg4ii1.20 (1)3.57 (1)3.368 (3)71 (1)
Symmetry codes: (i) x+2, y+1/2, z+2; (ii) x1, y, z.
Analysis of short ring interactions (Å) top
Cg(I)Cg(J)Symmetry Cg(J)Cg(I)···Cg(J)CgI_PerpCgJ_PerpSlippage
Cg1Cg2-1 + x, y, z3.5758 (18)3.3139 (13)-3.3124 (13)1.347
Cg1Cg4-1 + x, y, z3.6116 (16)3.3133 (13)-3.3044 (10)1.458
Cg2Cg11 + x, y, z3.5758 (18)-3.3123 (13)3.3140 (13)1.343
Cg2Cg41 + x, y, z3.6047 (16)-3.3109 (13)3.3195 (10)1.405
Cg4Cg11 + x, y, z3.6115 (16)-3.3043 (10)3.3134(131.437
Cg4Cg2-1 + x, y, z3.6049 (16)3.3196 (10)-3.3110 (13)1.426
Cg(I) and Cg(J) are centroids of rings I and J; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is distance between Cg(I) and the perpendicular projection of Cg(J) on ring I.
Table S1 top
Experimental and calculated bond lengths (Å)
BondX-ray6-311++G(d,p)
O1—C51.374 (3)1.348
O1—C11.385 (4)1.354
O3—C101.350 (4)1.342
O3—C71.398 (4)1.375
C7—C61.374 (4)1.373
C7—C81.387 (5)1.3889
C10—O41.202 (4)1.180
C10—C111.473 (4)1.486
C5—C61.379 (4)1.385
C5—C41.399 (4)1.385
O2—C11.202 (4)1.178
C9—C81.373 (5)1.374
C9—C41.388 (4)1.395
C4—C31.434 (4)1.452
C11—C161.388 (5)1.390
C11—C121.388 (5)1.391
C16—C151.378 (5)1.383
F1—C141.355 (4)1.321
C3—C21.332 (5)1.329
C12—C131.383 (5)1.380
C1—C21.451 (5)1.468
C14—C151.352 (6)1.378
C14—C131.374 (7)1.379
Table S2 top
Experimental and calculated bond angles (°)
Bond angleX-ray6-311++G(d,p)
C5—O1—C1121.8 (2)123.7
C10—O3—C7120.5 (3)119.9
C6—C7—C8122.1 (3)122.0
C6—C7—O3115.8 (3)117.7
C8—C7—O3121.9 (3)120.1
O4—C10—O3122.7 (3)123.1
O4—C10—C11126.0 (3)124.8
O3—C10—C11111.2 (3)112.1
O1—C5—C6116.8 (3)117.1
O1—C5—C4121.1 (3)121.4
C6—C5—C4122.1 (3)121.5
C7—C6—C5118.1 (3)118.2
C8—C9—C4122.0 (3)121.0
C9—C4—C5117.4 (3)118.6
C9—C4—C3124.9 (3)124.2
C5—C4—C3117.8 (3)117.2
C16—C11—C12119.2 (3)119.7
C16—C11—C10121.7 (3)122.4
C12—C11—C10119.0 (3)117.8
C15—C16—C11120.4 (3)120.3
C2—C3—C4120.7 (3)120.5
C13—C12—C11120.5 (4)120.5
O2—C1—O1116.0 (3)118.7
O2—C1—C2127.1 (3)124.9
O1—C1—C2116.9 (3)116.3
C9—C8—C7118.4 (3)118.7
C15—C14—F1119.6 (4)118.7
C15—C14—C13123.1 (4)122.6
F1—C14—C13117.3 (4)118.7
C3—C2—C1121.7 (3)121.0
C14—C15—C16118.9 (4)118.5
C14—C13—C12118.0 (4)118.3
Table S3 top
Experimental and calculated torsion angles (°)
Torsion angleX-ray6-311++G(d,p)
C10—O3—C7—C6-122.3 (3)-109.7
C10—O3—C7—C863.4 (4)73.7
C7—O3—C10—O41.1 (5)-0.1
C7—O3—C10—C11179.3 (3)179.9
C1—O1—C5—C6178.7 (3)-180.0
C1—O1—C5—C4-0.7 (4)-0.1
C8—C7—C6—C51.0 (4)-0.2
O3—C7—C6—C5-173.3 (3)-176.7
O1—C5—C6—C7-179.7 (3)179.9
C4—C5—C6—C7-0.3 (4)-0.0
C8—C9—C4—C5-0.8 (5)0.0
C8—C9—C4—C3179.5 (3)-179.9
O1—C5—C4—C9179.6 (3)-179.7
C6—C5—C4—C90.2 (4)0.1
O1—C5—C4—C3-0.7 (4)0.2
C6—C5—C4—C3179.9 (3)-179.9
O4—C10—C11—C16176.2 (3)-179.7
O3—C10—C11—C16-1.9 (4)0.3
O4—C10—C11—C12-3.0 (5)0.4
O3—C10—C11—C12178.9 (3)-179.6
C12—C11—C16—C150.4 (5)-0.1
C10—C11—C16—C15-178.8 (3)179.9
C9—C4—C3—C2-179.0 (3)179.8
C5—C4—C3—C21.3 (5)-0.2
C16—C11—C12—C13-0.2 (5)0.0
C10—C11—C12—C13179.0 (3)-180.0
C5—O1—C1—O2-177.7 (3)180.0
C5—O1—C1—C21.5 (4)-0.1
C4—C9—C8—C71.4 (5)-0.3
C6—C7—C8—C9-1.5 (5)0.4
O3—C7—C8—C9172.5 (3)176.8
C4—C3—C2—C1-0.5 (5)-0.0
O2—C1—C2—C3178.2 (4)-179.8
O1—C1—C2—C3-0.9 (5)0.1
F1—C14—C15—C16180.0 (3)180.0
C13—C14—C15—C16-0.4 (6)-0.0
C11—C16—C15—C14-0.1 (5)0.1
C15—C14—C13—C120.6 (6)-0.0
F1—C14—C13—C12-179.7 (3)180.0
C11—C12—C13—C14-0.3 (6)0.0

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds