Download citation
Download citation
link to html
Dinickel ditin zinc, Ni2Sn2Zn, crystallizes in the cubic space group Pm\overline{3}m, with a lattice parameter of a = 8.845 (1) Å and with all atoms occupying special positions. The crystal structure exhibits pronounced similarities with that of the quaternary compound Ni5.20Sn8.7Zn4.16Cu1.04. It shares structural features with other compounds in the Ni-Sn-Zn system, such as Ni5Sn4Zn and Ni3Sn2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112035627/ku3074sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112035627/ku3074Isup2.hkl
Contains datablock I

Comment top

The title compound, with the simplified composition Ni2Sn2Zn, crystallizes in the cubic system in space group Pm3m [a = 8.845 (1) Å]. This compound was found during an investigation of the phase equilibria of the ternary Ni—Sn—Zn phase diagram in samples quenched from 973 K (Schmetterer et al., 2011). Yuan et al. (2011) and Liang et al. (2011) also noticed the existence of compounds with similar compositions at 873 and 773 K, respectively.

As is common in intermetallic compounds, the title compound exhibits a considerable homogeneity range. According to Schmetterer et al. (2011) this is Ni35–38Sn35–43Zn26 at 973 K; they used the designation Ni7Sn9Zn5 based on their experiments. In the present work, a crystal was isolated from a sample from the work of Yuan et al. (2011) which had been quenched from 873 K. The stoichiometry obtained from the refinement, Ni36.6Sn41.9Zn21.5, is in good agreement with energy-dispersive X-ray spectroscopy (EDX) results for this compound [Ni36Sn42.5Zn21.5, sample 27 in Table 1 of Yuan et al. (2011)]. In the end, Ni2Sn2Zn was chosen to denote this compound, because this composition lies in the middle of the reported homogeneity range [Fig. 1 of Yuan et al. (2011)] and also approximates the composition of the investigated crystal.

Of course, the distribution of the elements on the crystallographic sites cannot be established using conventional X-ray diffraction techniques alone, due to the similar scattering power of Ni and Zn. Crystal-chemical considerations (e.g. interatomic distances) and EDX results (see above) were therefore used to guide the distribution of the atoms on the various sites. The final refinement and the chosen allocation of the elements are in good agreement with the EDX results.

Fig. 1 shows the unit cell when viewed along the cubic axis and the environments of atoms Ni1 and Ni2. The crystal structure consists of Ni atoms forming a body-centred cubic (b.c.c.) sublattice (sites Ni1 and Ni2), while the Ni3 atoms form squares in (xy1/2). These three positions are most probably fully occupied, at least predominantly, by Ni atoms. Only for the Ni2 site does a partial admixture with Zn and/or Sn seem possible: the highest residual electron density in the final difference Fourier map of 1.17 e Å-3 is found at this site. However, the introduction of a mixed occupation did not result in any improvement of the structural refinement. The Sn atoms were allocated to three sites. Whereas the Sn1 site is fully occupied by Sn atoms, the Sn2/Zn2 and Sn3/Zn3 positions have mixed occupations. Moreover, the necessity of avoiding large anisotropies in the displacement parameters and obtaining improved results for the refinement required the introduction of split positions in these last two cases. The distances between the Sn and Zn atoms are 0.214 and 0.475 Å, respectively, accounting for the different volume requirements of Sn and Zn atoms. Simultaneous occupation of both Sn2 and Zn2 and Sn3 and Zn3 is impossible. The Sn1 atoms form a regular octahedron around the Ni1 atoms. The Ni2 atoms are coordinated by eight Zn2 sites and four additional Sn2 sites, whereas the Ni3 atoms are surrounded by four Zn3, four Sn3, two Sn2 and two Sn1 sites. It must be considered that the Sn2, Zn2, Sn3 and Zn3 sites are only partially occupied; the sum of the occupancies Sn2+Zn2 and Sn3+Zn3 was constrained to 1.0 in the refinement. Therefore, the maximum coordination number of atoms Ni2 and Ni3 is 8.

High residual electron densities encountered during the refinement led to the consideration of two further positions, designated M4 and M5. However, these positions are only marginally occupied and their occupation varies between the various single-crystal refinements investigated in this work. Nevertheless, they were found in all refinements of the investigated samples. Experimental allocation of any of the three elements Ni, Zn or Sn failed in the refinement. Due to the fact that these sites are surrounded by Zn and Sn atoms, similar to the Ni1, Ni2 and Ni3 sites, occupation by Ni atoms seems reasonable. Consequently, for the final refinements the scattering power of Ni was considered. Simultaneous occupation of neighbouring Sn3 sites is impossible [distance 2.330 (3) Å], as is that of neighbouring M4 and Sn2 sites [2.200 (7) Å] or neighbouring M5 and Sn3 sites [2.34 (4) Å].

Larsson et al. (1994) reported the existence of the quaternary compound Ni5.20Sn8.7Zn4.16Cu1.04 having cubic P43m symmetry and being related to the γ-brass structure. It is topologically related to the CsCl type, exhibiting a tripled cell parameter, vacancies and extensive distortions. A comparison of the crystal structures found for the Ni2Sn2Zn and Ni5.20Sn8.7Zn4.16Cu1.04 compounds reveals many similarities. The atomic arrangement is practically identical, including the mixed and split Sn/Zn positions. It must be noted that Larsson et al. (1994) could not assign Ni, Cu or Zn to these positions, due to the similar scattering power of these atoms and the somewhat less accurate refinement compared with the present work; hence, we have here denoted these positions as M.

The main difference between the two crystal structure refinements is the space-group symmetry used for the final structure refinement. Whereas Larsson et al. (1994) refined Ni5.20Sn8.7Zn4.16Cu1.04 in the acentric space group P43m, the present investigation is based on the centrosymmetric space group Pm3m. Any trials to verify acentric symmetry during the present work did not improve the refinement. It must be mentioned that, although Larsson et al. (1994) reduced the space-group symmetry, they could not give an ordered structure model. Larsson et al. (1994) used the atom labels Sn1*/Sn2*/M*, Sn3*, M1*, M2*, M3* and Sn4*/M4*, which are allocated here as Zn2, Sn1, Ni1, Ni2, Ni3 and Sn3/Zn3, respectively [throughout this paper, atom labels referring to those given by Larsson et al. (1994) are marked by an asterisk]. Furthermore, the two marginally occupied positions M4 and M5 in Ni2Sn2Zn are completely missing in Ni5.20Sn8.7Zn4.16Cu1.04.

The description of Ni5.20Sn8.7Zn4.16Cu1.04 in the acentric space group P43m by Larsson et al. (1994) causes a minor deviation of the z coordinates of sites xxz from 0.0 and 0.5 for the positions M3*, Sn4* and M4*. In the centrosymmetric space group Pm3m used for the description of Ni3Sn3Zn2 in the present work, the analogous positions Ni3, Sn3 and Zn3 have special positions 1/2yy and 0yy with one variable atomic coordinate only, but the site multiplicities are maintained. The two sites Sn1* and Sn2/M* in Ni5.20Sn8.7Zn4.16Cu1.04 verify centrosymmetry within the limits of error of the atomic coordinates; only occupation by Sn and Sn+M atoms, respectively, causes violation of the inversion centre. In Ni3Sn3Zn2, the two analogous sites have doubled site multiplicity; neighbouring sites cannot be simultaneously occupied, which again causes a total of eight atoms per unit cell. A more detailed discussion of this issue, including a new refinement of Ni5.20Sn8.7Zn4.16Cu1.04 in a centrosymmetric space group, is given by Effenberger et al. (2012).

In Ni2Sn2Zn and Ni5.20Sn8.7Zn4.16Cu1.04 the Ni atoms, allocated according to crystal chemical considerations, are coordinated by an Sn6 octahedron (Ni1, M1*) and by an Sn8 cube (Ni2, M2*), respectively (see Fig. 1). The coordination polyhedron around atom Ni1 is capped by the minor occupied M4 site in Ni2Sn2Zn. The Ni3/M3* site is surrounded in a nearly planar [4] coordination by Zn3/Sn3 sites, and completed by further Sn2 and Sn1 sites. As has already been pointed out, other compounds with quite similar compositions exist in the Ni–Sn–Zn system. The Ni5-δSn4Zn structure (δ ~0.25) was reported by Schmetterer et al. (2012). It was compared extensively with the Ni3Sn2 high-temperature phase, which crystallizes in the NiAs type and is considered the parent phase. In both structures, the Ni (and Zn) atoms are also coordinated by more or less distorted Sn6 octahedra. Again, a number of faces of these octahedra are capped by Ni atoms. In Ni5-δSn4Zn, several variations to the capping were found, while in Ni3Sn2 all faces are formally capped. Six of these are Ni2 atoms exhibiting only partial occupancy.

The octahedron around the Ni atoms, formed by six Sn atoms, is a common building unit of various structures in these classes of compounds. While this octahedral coordination is basically common, the different ways of capping are the varying feature, and a more detailed study appears to be worthwhile based on further structural investigations.

Related literature top

For related literature, see: Effenberger et al. (2012); Larsson et al. (1994); Liang et al. (2011); Schmetterer et al. (2011, 2012); Yuan et al. (2011).

Experimental top

For the present investigation of the atomic arrangement of the title compound, a large number of single crystals were checked for their suitability for data collection. These single crystals were isolated from bulk samples wherein the presence of the title compound had been confirmed by powder X-ray diffraction (Bruker D8 powder diffractometer, Bragg–Brentano geometry, Cu Kα radiation). Finally, a crystal isolated from a sample provided by Yuan et al. (2011) and quenched from 873 K was selected because it showed the best quality for data collection.

The authors are aware of the similar scattering power of the atoms Ni and Zn using a conventional X-ray source. The final crystal-chemical considerations are in agreement with results from other Ni–Zn–Sn compounds, and furthermore correspond to the experimentally found composition range determined by scanning electron microscope analyses.

Computing details top

Data collection: COLLECT (Nonius, 2003); cell refinement: COLLECT (Nonius, 2003); data reduction: COLLECT (Nonius, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Atoms (Dowty, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. (Right) The topology of the atomic arrangement in Ni2Zn2Sn, based on the linkage of the building blocks, in a projection parallel to [001], and (left) the body-centred coordination of atoms Ni1 and Ni2. For the split sites Sn2/Zn2 and Sn3/Zn3, only the area in the projection is indicated. The minor occupation factor of the sites Ni4 (0.113) and Ni5 (0.022) should be considered.
Dinickel ditin zinc top
Crystal data top
Ni2Sn2ZnDx = 8.40 Mg m3
Mr = 437.62Mo Kα radiation, λ = 0.71073 Å
Cubic, Pm3mCell parameters from 1030 reflections
Hall symbol: -P 4 2 3θ = 2.3–34.9°
a = 8.845 (1) ŵ = 32.6 mm1
V = 691.98 (14) Å3T = 293 K
Z = 8Irregular crystal chip, black
F(000) = 15460.09 × 0.07 × 0.06 mm
Data collection top
Nonius Kappa CCD area-detector
diffractometer
360 independent reflections
Radiation source: fine-focus sealed tube347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ scan at 10 ω anglesθmax = 34.9°, θmin = 2.3°
Absorption correction: multi-scan
120 s, Δ = 2°, dx = 30 mm
h = 1414
Tmin = 0.06, Tmax = 0.14k = 1010
1030 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.017P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max < 0.001
S = 1.40Δρmax = 1.17 e Å3
360 reflectionsΔρmin = 1.38 e Å3
36 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0173 (6)
Crystal data top
Ni2Sn2ZnZ = 8
Mr = 437.62Mo Kα radiation
Cubic, Pm3mµ = 32.6 mm1
a = 8.845 (1) ÅT = 293 K
V = 691.98 (14) Å30.09 × 0.07 × 0.06 mm
Data collection top
Nonius Kappa CCD area-detector
diffractometer
360 independent reflections
Absorption correction: multi-scan
120 s, Δ = 2°, dx = 30 mm
347 reflections with I > 2σ(I)
Tmin = 0.06, Tmax = 0.14Rint = 0.011
1030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01736 parameters
wR(F2) = 0.0411 restraint
S = 1.40Δρmax = 1.17 e Å3
360 reflectionsΔρmin = 1.38 e Å3
Special details top

Experimental. Single-crystal X-ray diffraction measurements were performed at room temperature on a Nonius KappaCCD diffractometer equipped with a monocapillary optics collimator (graphite-monochromated Mo Ka radiation). The measured intensities were corrected for Lorentz, background and polarization effects, and for absorption by evaluation of multi-scans. The crystal structure was solved using SHELXS97 (Sheldrick, 2008), and refined by full-matrix least-squares techniques on F2 using SHELXL97 (Sheldrick, 2008).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.20948 (4)0.50000.50000.01300 (13)
Sn20.1744 (2)0.1744 (2)0.1744 (2)0.01202 (19)0.846 (6)
Zn20.1604 (15)0.1604 (15)0.1604 (15)0.021 (5)0.154 (6)
Sn30.50000.13169 (18)0.13169 (18)0.0124 (3)0.368 (6)
Zn30.50000.1697 (3)0.1697 (3)0.0213 (3)0.632 (6)
Ni10.00000.00000.00000.0094 (3)
Ni20.50000.50000.50000.0065 (2)
Ni30.00000.34686 (4)0.34686 (4)0.00917 (12)
Ni40.3180 (4)0.3180 (4)0.3180 (4)0.0123 (13)0.123 (4)
Ni50.311 (7)0.00000.00000.014 (13)*0.015 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.00700 (19)0.01600 (14)0.01600 (14)0.0000.0000.000
Sn20.01202 (19)0.01202 (19)0.01202 (19)0.0003 (3)0.0003 (3)0.0003 (3)
Zn20.021 (5)0.021 (5)0.021 (5)0.0062 (16)0.0062 (16)0.0062 (16)
Sn30.0146 (3)0.0113 (4)0.0113 (4)0.0000.0000.0041 (3)
Zn30.0113 (4)0.0263 (5)0.0263 (5)0.0000.0000.0181 (7)
Ni10.0094 (3)0.0094 (3)0.0094 (3)0.0000.0000.000
Ni20.0065 (2)0.0065 (2)0.0065 (2)0.0000.0000.000
Ni30.0094 (2)0.00907 (15)0.00907 (15)0.0000.0000.00077 (14)
Ni40.0123 (13)0.0123 (13)0.0123 (13)0.0002 (9)0.0002 (9)0.0002 (9)
Geometric parameters (Å, º) top
Sn1—Ni4i2.471 (3)Zn3—Ni3vii2.5580 (3)
Sn1—Ni42.471 (3)Zn3—Sn3xi2.687 (5)
Sn1—Ni4ii2.471 (3)Zn3—Sn3xii2.687 (5)
Sn1—Ni4iii2.471 (3)Zn3—Ni52.70 (4)
Sn1—Ni22.5697 (5)Zn3—Ni5xiii2.70 (4)
Sn1—Ni32.6651 (5)Zn3—Sn2xvi2.8808 (18)
Sn1—Ni3iv2.6651 (5)Ni1—Zn2xvii2.46 (2)
Sn1—Ni3iii2.6651 (5)Ni1—Zn2ix2.46 (2)
Sn1—Ni3v2.6651 (5)Ni1—Zn2x2.46 (2)
Sn1—Zn3vi2.943 (3)Ni1—Zn2xi2.46 (2)
Sn1—Zn3vii2.943 (3)Ni1—Zn2xviii2.46 (2)
Sn1—Zn3viii2.943 (3)Ni1—Zn2xix2.46 (2)
Sn2—Ni42.200 (7)Ni1—Zn2xx2.46 (2)
Sn2—Ni5vi2.49 (3)Ni1—Sn2xvii2.671 (3)
Sn2—Ni5vii2.49 (3)Ni1—Sn2xviii2.671 (3)
Sn2—Ni52.49 (3)Ni1—Sn2xix2.671 (3)
Sn2—Ni3vi2.6521 (11)Ni2—Sn1xxi2.5697 (5)
Sn2—Ni3vii2.6521 (11)Ni2—Sn1xxii2.5697 (5)
Sn2—Ni32.6521 (11)Ni2—Sn1xxiii2.5697 (5)
Sn2—Ni12.671 (3)Ni2—Sn1vii2.5697 (5)
Sn2—Zn32.8808 (18)Ni2—Sn1vi2.5697 (5)
Sn2—Zn3vi2.8808 (18)Ni2—Ni4xxiii2.789 (6)
Sn2—Zn3vii2.8808 (18)Ni2—Ni42.789 (6)
Sn2—Sn3vi2.9292 (14)Ni2—Ni4xvi2.789 (6)
Zn2—Ni5vi2.41 (3)Ni2—Ni4xxiv2.789 (6)
Zn2—Ni5vii2.41 (3)Ni2—Ni4iii2.789 (6)
Zn2—Ni52.41 (3)Ni2—Ni4xxv2.789 (6)
Zn2—Ni42.41 (2)Ni3—Zn3xxvi2.5580 (3)
Zn2—Ni12.46 (2)Ni3—Zn3xxvii2.5580 (3)
Zn2—Ni3vi2.730 (9)Ni3—Zn3vi2.5580 (3)
Zn2—Ni3vii2.730 (9)Ni3—Zn3vii2.5580 (3)
Zn2—Ni32.730 (9)Ni3—Sn3xxvi2.6103 (5)
Zn2—Zn2ix2.84 (3)Ni3—Sn3xxvii2.6103 (5)
Zn2—Zn2x2.84 (3)Ni3—Sn3vi2.6103 (5)
Zn2—Zn2xi2.84 (3)Ni3—Sn3vii2.6103 (5)
Zn2—Sn2x2.966 (11)Ni3—Sn2ix2.6521 (11)
Sn3—Sn3xi2.330 (3)Ni3—Sn1iv2.6651 (5)
Sn3—Sn3xii2.330 (3)Ni4—Zn3vi2.456 (3)
Sn3—Ni52.35 (4)Ni4—Zn3vii2.456 (3)
Sn3—Ni5xiii2.35 (4)Ni4—Sn1vi2.471 (3)
Sn3—Ni3xiv2.6103 (5)Ni4—Sn1vii2.471 (3)
Sn3—Ni3xv2.6103 (5)Ni4—Sn3vi2.832 (3)
Sn3—Ni3vi2.6103 (5)Ni4—Sn3vii2.832 (3)
Sn3—Ni3vii2.6103 (5)Ni5—Sn3xi2.35 (4)
Sn3—Zn3xi2.687 (5)Ni5—Sn3xii2.35 (4)
Sn3—Zn3xii2.687 (5)Ni5—Sn3xiii2.35 (4)
Sn3—Ni4xvi2.832 (3)Ni5—Zn2xviii2.41 (3)
Sn3—Ni42.832 (3)Ni5—Zn2x2.41 (3)
Zn3—Ni4xvi2.456 (3)Ni5—Zn2xi2.41 (3)
Zn3—Ni42.456 (3)Ni5—Sn2xviii2.49 (3)
Zn3—Ni3xiv2.5580 (3)Ni5—Sn2xi2.49 (3)
Zn3—Ni3xv2.5580 (3)Ni5—Sn2x2.49 (3)
Zn3—Ni3vi2.5580 (3)
Ni4i—Sn1—Ni4134.3 (2)Zn2—Ni1—Zn2xvii180.0 (10)
Ni4i—Sn1—Ni4ii81.33 (8)Zn2—Ni1—Zn2ix70.529 (1)
Ni4—Sn1—Ni4ii81.33 (8)Zn2xvii—Ni1—Zn2ix109.471 (1)
Ni4i—Sn1—Ni4iii81.33 (8)Zn2—Ni1—Zn2x70.529 (1)
Ni4—Sn1—Ni4iii81.33 (8)Zn2xvii—Ni1—Zn2x109.471 (1)
Ni4ii—Sn1—Ni4iii134.3 (2)Zn2ix—Ni1—Zn2x109.5
Ni4i—Sn1—Ni267.15 (12)Zn2—Ni1—Zn2xi70.5
Ni4—Sn1—Ni267.15 (12)Zn2xvii—Ni1—Zn2xi109.5
Ni4ii—Sn1—Ni267.15 (12)Zn2ix—Ni1—Zn2xi109.471 (1)
Ni4iii—Sn1—Ni267.15 (12)Zn2x—Ni1—Zn2xi109.5
Ni4i—Sn1—Ni3158.81 (12)Zn2—Ni1—Zn2xviii109.471 (1)
Ni4—Sn1—Ni366.90 (11)Zn2xvii—Ni1—Zn2xviii70.529 (1)
Ni4ii—Sn1—Ni3105.66 (8)Zn2ix—Ni1—Zn2xviii180.0 (10)
Ni4iii—Sn1—Ni3105.66 (8)Zn2x—Ni1—Zn2xviii70.5
Ni2—Sn1—Ni3134.045 (11)Zn2xi—Ni1—Zn2xviii70.5
Ni4i—Sn1—Ni3iv66.90 (11)Zn2—Ni1—Zn2xix109.5
Ni4—Sn1—Ni3iv158.81 (12)Zn2xvii—Ni1—Zn2xix70.5
Ni4ii—Sn1—Ni3iv105.66 (8)Zn2ix—Ni1—Zn2xix70.5
Ni4iii—Sn1—Ni3iv105.66 (8)Zn2x—Ni1—Zn2xix180.0 (15)
Ni2—Sn1—Ni3iv134.045 (11)Zn2xi—Ni1—Zn2xix70.5
Ni3—Sn1—Ni3iv91.91 (2)Zn2xviii—Ni1—Zn2xix109.5
Ni4i—Sn1—Ni3iii105.66 (8)Zn2—Ni1—Zn2xx109.5
Ni4—Sn1—Ni3iii105.66 (8)Zn2xvii—Ni1—Zn2xx70.5
Ni4ii—Sn1—Ni3iii158.81 (12)Zn2ix—Ni1—Zn2xx70.5
Ni4iii—Sn1—Ni3iii66.90 (11)Zn2x—Ni1—Zn2xx70.5
Ni2—Sn1—Ni3iii134.045 (11)Zn2xi—Ni1—Zn2xx180.0 (10)
Ni3—Sn1—Ni3iii61.096 (13)Zn2xviii—Ni1—Zn2xx109.5
Ni3iv—Sn1—Ni3iii61.096 (13)Zn2xix—Ni1—Zn2xx109.5
Ni4i—Sn1—Ni3v105.66 (8)Zn2—Ni1—Sn2xvii180.00 (18)
Ni4—Sn1—Ni3v105.66 (8)Zn2xvii—Ni1—Sn2xvii0.0 (3)
Ni4ii—Sn1—Ni3v66.90 (11)Zn2ix—Ni1—Sn2xvii109.5
Ni4iii—Sn1—Ni3v158.81 (12)Zn2x—Ni1—Sn2xvii109.5
Ni2—Sn1—Ni3v134.045 (11)Zn2xi—Ni1—Sn2xvii109.5
Ni3—Sn1—Ni3v61.096 (13)Zn2xviii—Ni1—Sn2xvii70.5
Ni3iv—Sn1—Ni3v61.096 (13)Zn2xix—Ni1—Sn2xvii70.5
Ni3iii—Sn1—Ni3v91.91 (2)Zn2xx—Ni1—Sn2xvii70.529 (1)
Ni4i—Sn1—Zn3vi133.90 (4)Zn2—Ni1—Sn20.0 (3)
Ni4—Sn1—Zn3vi53.10 (6)Zn2xvii—Ni1—Sn2180.0 (3)
Ni4ii—Sn1—Zn3vi133.90 (4)Zn2ix—Ni1—Sn270.5
Ni4iii—Sn1—Zn3vi53.10 (6)Zn2x—Ni1—Sn270.5
Ni2—Sn1—Zn3vi96.87 (5)Zn2xi—Ni1—Sn270.529 (1)
Ni3—Sn1—Zn3vi54.00 (4)Zn2xviii—Ni1—Sn2109.5
Ni3iv—Sn1—Zn3vi114.93 (5)Zn2xix—Ni1—Sn2109.5
Ni3iii—Sn1—Zn3vi54.00 (4)Zn2xx—Ni1—Sn2109.471 (1)
Ni3v—Sn1—Zn3vi114.93 (5)Sn2xvii—Ni1—Sn2180.00 (12)
Ni4i—Sn1—Zn3vii133.90 (4)Zn2—Ni1—Sn2xviii109.471 (1)
Ni4—Sn1—Zn3vii53.10 (6)Zn2xvii—Ni1—Sn2xviii70.529 (1)
Ni4ii—Sn1—Zn3vii53.10 (6)Zn2ix—Ni1—Sn2xviii180.0 (2)
Ni4iii—Sn1—Zn3vii133.90 (4)Zn2x—Ni1—Sn2xviii70.5
Ni2—Sn1—Zn3vii96.87 (5)Zn2xi—Ni1—Sn2xviii70.5
Ni3—Sn1—Zn3vii54.00 (4)Zn2xviii—Ni1—Sn2xviii0.00 (18)
Ni3iv—Sn1—Zn3vii114.93 (5)Zn2xix—Ni1—Sn2xviii109.5
Ni3iii—Sn1—Zn3vii114.93 (5)Zn2xx—Ni1—Sn2xviii109.5
Ni3v—Sn1—Zn3vii54.00 (4)Sn2xvii—Ni1—Sn2xviii70.5
Zn3vi—Sn1—Zn3vii89.180 (13)Sn2—Ni1—Sn2xviii109.5
Ni4i—Sn1—Zn3viii53.10 (6)Zn2—Ni1—Sn2xix109.5
Ni4—Sn1—Zn3viii133.90 (4)Zn2xvii—Ni1—Sn2xix70.5
Ni4ii—Sn1—Zn3viii133.90 (4)Zn2ix—Ni1—Sn2xix70.5
Ni4iii—Sn1—Zn3viii53.10 (6)Zn2x—Ni1—Sn2xix180.0 (3)
Ni2—Sn1—Zn3viii96.87 (5)Zn2xi—Ni1—Sn2xix70.5
Ni3—Sn1—Zn3viii114.93 (5)Zn2xviii—Ni1—Sn2xix109.5
Ni3iv—Sn1—Zn3viii54.00 (4)Zn2xix—Ni1—Sn2xix0.0 (2)
Ni3iii—Sn1—Zn3viii54.00 (4)Zn2xx—Ni1—Sn2xix109.5
Ni3v—Sn1—Zn3viii114.93 (5)Sn2xvii—Ni1—Sn2xix70.5
Zn3vi—Sn1—Zn3viii89.180 (13)Sn2—Ni1—Sn2xix109.5
Zn3vii—Sn1—Zn3viii166.26 (11)Sn2xviii—Ni1—Sn2xix109.5
Ni4—Sn2—Ni5vi115.8 (12)Sn1xxi—Ni2—Sn1xxii90.0
Ni4—Sn2—Ni5vii115.8 (12)Sn1xxi—Ni2—Sn1xxiii90.0
Ni5vi—Sn2—Ni5vii102.4 (15)Sn1xxii—Ni2—Sn1xxiii90.0
Ni4—Sn2—Ni5115.8 (12)Sn1xxi—Ni2—Sn190.0
Ni5vi—Sn2—Ni5102.4 (15)Sn1xxii—Ni2—Sn190.0
Ni5vii—Sn2—Ni5102.4 (15)Sn1xxiii—Ni2—Sn1180.0
Ni4—Sn2—Ni3vi70.82 (6)Sn1xxi—Ni2—Sn1vii90.0
Ni5vi—Sn2—Ni3vi173.4 (12)Sn1xxii—Ni2—Sn1vii180.0
Ni5vii—Sn2—Ni3vi73.6 (6)Sn1xxiii—Ni2—Sn1vii90.0
Ni5—Sn2—Ni3vi73.6 (6)Sn1—Ni2—Sn1vii90.0
Ni4—Sn2—Ni3vii70.82 (6)Sn1xxi—Ni2—Sn1vi180.0
Ni5vi—Sn2—Ni3vii73.6 (6)Sn1xxii—Ni2—Sn1vi90.0
Ni5vii—Sn2—Ni3vii173.4 (12)Sn1xxiii—Ni2—Sn1vi90.0
Ni5—Sn2—Ni3vii73.6 (6)Sn1—Ni2—Sn1vi90.0
Ni3vi—Sn2—Ni3vii109.76 (6)Sn1vii—Ni2—Sn1vi90.0
Ni4—Sn2—Ni370.82 (6)Sn1xxi—Ni2—Ni4xxiii54.7
Ni5vi—Sn2—Ni373.6 (6)Sn1xxii—Ni2—Ni4xxiii54.7
Ni5vii—Sn2—Ni373.6 (6)Sn1xxiii—Ni2—Ni4xxiii54.7
Ni5—Sn2—Ni3173.4 (12)Sn1—Ni2—Ni4xxiii125.3
Ni3vi—Sn2—Ni3109.76 (6)Sn1vii—Ni2—Ni4xxiii125.3
Ni3vii—Sn2—Ni3109.76 (6)Sn1vi—Ni2—Ni4xxiii125.3
Ni4—Sn2—Ni1180.00 (10)Sn1xxi—Ni2—Ni4125.3
Ni5vi—Sn2—Ni164.2 (12)Sn1xxii—Ni2—Ni4125.3
Ni5vii—Sn2—Ni164.2 (12)Sn1xxiii—Ni2—Ni4125.3
Ni5—Sn2—Ni164.2 (12)Sn1—Ni2—Ni454.7
Ni3vi—Sn2—Ni1109.18 (6)Sn1vii—Ni2—Ni454.7
Ni3vii—Sn2—Ni1109.18 (6)Sn1vi—Ni2—Ni454.7
Ni3—Sn2—Ni1109.18 (6)Ni4xxiii—Ni2—Ni4180.00 (11)
Ni4—Sn2—Zn355.91 (10)Sn1xxi—Ni2—Ni4xvi125.3
Ni5vi—Sn2—Zn3128.1 (5)Sn1xxii—Ni2—Ni4xvi125.3
Ni5vii—Sn2—Zn3128.1 (5)Sn1xxiii—Ni2—Ni4xvi54.7
Ni5—Sn2—Zn359.9 (12)Sn1—Ni2—Ni4xvi125.3
Ni3vi—Sn2—Zn354.89 (3)Sn1vii—Ni2—Ni4xvi54.7
Ni3vii—Sn2—Zn354.89 (3)Sn1vi—Ni2—Ni4xvi54.7
Ni3—Sn2—Zn3126.73 (15)Ni4xxiii—Ni2—Ni4xvi109.471 (1)
Ni1—Sn2—Zn3124.09 (10)Ni4—Ni2—Ni4xvi70.5
Ni4—Sn2—Zn3vi55.91 (10)Sn1xxi—Ni2—Ni4xxiv125.3
Ni5vi—Sn2—Zn3vi59.9 (12)Sn1xxii—Ni2—Ni4xxiv54.7
Ni5vii—Sn2—Zn3vi128.1 (5)Sn1xxiii—Ni2—Ni4xxiv54.7
Ni5—Sn2—Zn3vi128.1 (5)Sn1—Ni2—Ni4xxiv125.3
Ni3vi—Sn2—Zn3vi126.73 (15)Sn1vii—Ni2—Ni4xxiv125.3
Ni3vii—Sn2—Zn3vi54.89 (3)Sn1vi—Ni2—Ni4xxiv54.7
Ni3—Sn2—Zn3vi54.89 (3)Ni4xxiii—Ni2—Ni4xxiv70.5
Ni1—Sn2—Zn3vi124.09 (10)Ni4—Ni2—Ni4xxiv109.5
Zn3—Sn2—Zn3vi91.64 (14)Ni4xvi—Ni2—Ni4xxiv70.5
Ni4—Sn2—Zn3vii55.91 (10)Sn1xxi—Ni2—Ni4iii54.7
Ni5vi—Sn2—Zn3vii128.1 (5)Sn1xxii—Ni2—Ni4iii125.3
Ni5vii—Sn2—Zn3vii59.9 (12)Sn1xxiii—Ni2—Ni4iii125.3
Ni5—Sn2—Zn3vii128.1 (5)Sn1—Ni2—Ni4iii54.7
Ni3vi—Sn2—Zn3vii54.89 (3)Sn1vii—Ni2—Ni4iii54.7
Ni3vii—Sn2—Zn3vii126.73 (15)Sn1vi—Ni2—Ni4iii125.3
Ni3—Sn2—Zn3vii54.89 (3)Ni4xxiii—Ni2—Ni4iii109.5
Ni1—Sn2—Zn3vii124.09 (10)Ni4—Ni2—Ni4iii70.529 (1)
Zn3—Sn2—Zn3vii91.64 (14)Ni4xvi—Ni2—Ni4iii109.5
Zn3vi—Sn2—Zn3vii91.64 (14)Ni4xxiv—Ni2—Ni4iii180.00 (11)
Ni4—Sn2—Sn3vi65.24 (7)Sn1xxi—Ni2—Ni4xxv54.7
Ni5vi—Sn2—Sn3vi50.6 (12)Sn1xxii—Ni2—Ni4xxv125.3
Ni5vii—Sn2—Sn3vi126.2 (3)Sn1xxiii—Ni2—Ni4xxv54.7
Ni5—Sn2—Sn3vi126.2 (3)Sn1—Ni2—Ni4xxv125.3
Ni3vi—Sn2—Sn3vi136.06 (13)Sn1vii—Ni2—Ni4xxv54.7
Ni3vii—Sn2—Sn3vi55.50 (3)Sn1vi—Ni2—Ni4xxv125.3
Ni3—Sn2—Sn3vi55.50 (3)Ni4xxiii—Ni2—Ni4xxv70.5
Ni1—Sn2—Sn3vi114.76 (7)Ni4—Ni2—Ni4xxv109.5
Zn3—Sn2—Sn3vi98.12 (11)Ni4xvi—Ni2—Ni4xxv70.5
Zn3vi—Sn2—Sn3vi9.33 (5)Ni4xxiv—Ni2—Ni4xxv109.471 (1)
Zn3vii—Sn2—Sn3vi98.12 (11)Ni4iii—Ni2—Ni4xxv70.5
Ni5vi—Zn2—Ni5vii107.7 (14)Zn3xxvi—Ni3—Zn3xxvii107.74 (16)
Ni5vi—Zn2—Ni5107.7 (14)Zn3xxvi—Ni3—Zn3vi71.85 (17)
Ni5vii—Zn2—Ni5107.7 (14)Zn3xxvii—Ni3—Zn3vi173.26 (10)
Ni5vi—Zn2—Ni4111.2 (13)Zn3xxvi—Ni3—Zn3vii173.26 (10)
Ni5vii—Zn2—Ni4111.2 (13)Zn3xxvii—Ni3—Zn3vii71.85 (17)
Ni5—Zn2—Ni4111.2 (13)Zn3vi—Ni3—Zn3vii107.74 (16)
Ni5vi—Zn2—Ni168.8 (13)Zn3xxvi—Ni3—Sn3xxvi10.49 (6)
Ni5vii—Zn2—Ni168.8 (13)Zn3xxvii—Ni3—Sn3xxvi116.25 (11)
Ni5—Zn2—Ni168.8 (13)Zn3vi—Ni3—Sn3xxvi62.63 (13)
Ni4—Zn2—Ni1180.0 (5)Zn3vii—Ni3—Sn3xxvi164.98 (4)
Ni5vi—Zn2—Ni3vi177.8 (16)Zn3xxvi—Ni3—Sn3xxvii116.25 (11)
Ni5vii—Zn2—Ni3vi73.5 (7)Zn3xxvii—Ni3—Sn3xxvii10.49 (6)
Ni5—Zn2—Ni3vi73.5 (7)Zn3vi—Ni3—Sn3xxvii164.98 (4)
Ni4—Zn2—Ni3vi66.6 (4)Zn3vii—Ni3—Sn3xxvii62.63 (13)
Ni1—Zn2—Ni3vi113.4 (4)Sn3xxvi—Ni3—Sn3xxvii123.89 (7)
Ni5vi—Zn2—Ni3vii73.5 (7)Zn3xxvi—Ni3—Sn3vi62.63 (13)
Ni5vii—Zn2—Ni3vii177.8 (16)Zn3xxvii—Ni3—Sn3vi164.98 (4)
Ni5—Zn2—Ni3vii73.5 (7)Zn3vi—Ni3—Sn3vi10.49 (6)
Ni4—Zn2—Ni3vii66.6 (4)Zn3vii—Ni3—Sn3vi116.25 (11)
Ni1—Zn2—Ni3vii113.4 (4)Sn3xxvi—Ni3—Sn3vi53.00 (9)
Ni3vi—Zn2—Ni3vii105.2 (5)Sn3xxvii—Ni3—Sn3vi162.91 (5)
Ni5vi—Zn2—Ni373.5 (7)Zn3xxvi—Ni3—Sn3vii164.98 (4)
Ni5vii—Zn2—Ni373.5 (7)Zn3xxvii—Ni3—Sn3vii62.63 (13)
Ni5—Zn2—Ni3177.8 (16)Zn3vi—Ni3—Sn3vii116.25 (11)
Ni4—Zn2—Ni366.6 (4)Zn3vii—Ni3—Sn3vii10.49 (6)
Ni1—Zn2—Ni3113.4 (4)Sn3xxvi—Ni3—Sn3vii162.91 (5)
Ni3vi—Zn2—Ni3105.2 (5)Sn3xxvii—Ni3—Sn3vii53.00 (9)
Ni3vii—Zn2—Ni3105.2 (5)Sn3vi—Ni3—Sn3vii123.89 (7)
Ni5vi—Zn2—Zn2ix53.9 (6)Zn3xxvi—Ni3—Sn2ix67.11 (3)
Ni5vii—Zn2—Zn2ix53.9 (6)Zn3xxvii—Ni3—Sn2ix67.11 (3)
Ni5—Zn2—Zn2ix123.5 (13)Zn3vi—Ni3—Sn2ix107.06 (9)
Ni4—Zn2—Zn2ix125.3Zn3vii—Ni3—Sn2ix107.06 (9)
Ni1—Zn2—Zn2ix54.736 (1)Sn3xxvi—Ni3—Sn2ix67.64 (2)
Ni3vi—Zn2—Zn2ix127.2 (2)Sn3xxvii—Ni3—Sn2ix67.64 (2)
Ni3vii—Zn2—Zn2ix127.2 (2)Sn3vi—Ni3—Sn2ix97.97 (5)
Ni3—Zn2—Zn2ix58.7 (4)Sn3vii—Ni3—Sn2ix97.97 (5)
Ni5vi—Zn2—Zn2x53.9 (6)Zn3xxvi—Ni3—Sn2107.06 (9)
Ni5vii—Zn2—Zn2x123.5 (13)Zn3xxvii—Ni3—Sn2107.06 (9)
Ni5—Zn2—Zn2x53.9 (6)Zn3vi—Ni3—Sn267.11 (3)
Ni4—Zn2—Zn2x125.3Zn3vii—Ni3—Sn267.11 (3)
Ni1—Zn2—Zn2x54.7Sn3xxvi—Ni3—Sn297.97 (5)
Ni3vi—Zn2—Zn2x127.2 (2)Sn3xxvii—Ni3—Sn297.97 (5)
Ni3vii—Zn2—Zn2x58.7 (4)Sn3vi—Ni3—Sn267.64 (2)
Ni3—Zn2—Zn2x127.2 (2)Sn3vii—Ni3—Sn267.64 (2)
Zn2ix—Zn2—Zn2x90.000 (1)Sn2ix—Ni3—Sn271.12 (13)
Ni5vi—Zn2—Zn2xi123.5 (13)Zn3xxvi—Ni3—Sn1116.75 (2)
Ni5vii—Zn2—Zn2xi53.9 (6)Zn3xxvii—Ni3—Sn1116.75 (2)
Ni5—Zn2—Zn2xi53.9 (6)Zn3vi—Ni3—Sn168.55 (9)
Ni4—Zn2—Zn2xi125.3Zn3vii—Ni3—Sn168.55 (9)
Ni1—Zn2—Zn2xi54.7Sn3xxvi—Ni3—Sn1114.649 (16)
Ni3vi—Zn2—Zn2xi58.7 (4)Sn3xxvii—Ni3—Sn1114.649 (16)
Ni3vii—Zn2—Zn2xi127.2 (2)Sn3vi—Ni3—Sn178.26 (4)
Ni3—Zn2—Zn2xi127.2 (2)Sn3vii—Ni3—Sn178.26 (4)
Zn2ix—Zn2—Zn2xi90.0Sn2ix—Ni3—Sn1171.51 (7)
Zn2x—Zn2—Zn2xi90.0Sn2—Ni3—Sn1100.40 (6)
Ni5vi—Zn2—Sn2x54.1 (6)Zn3xxvi—Ni3—Sn1iv68.55 (9)
Ni5vii—Zn2—Sn2x126.9 (16)Zn3xxvii—Ni3—Sn1iv68.55 (9)
Ni5—Zn2—Sn2x54.1 (6)Zn3vi—Ni3—Sn1iv116.75 (2)
Ni4—Zn2—Sn2x121.9 (4)Zn3vii—Ni3—Sn1iv116.75 (2)
Ni1—Zn2—Sn2x58.1 (4)Sn3xxvi—Ni3—Sn1iv78.26 (4)
Ni3vi—Zn2—Sn2x126.84 (13)Sn3xxvii—Ni3—Sn1iv78.26 (4)
Ni3vii—Zn2—Sn2x55.31 (4)Sn3vi—Ni3—Sn1iv114.649 (16)
Ni3—Zn2—Sn2x126.84 (13)Sn3vii—Ni3—Sn1iv114.649 (16)
Zn2ix—Zn2—Sn2x92.4 (3)Sn2ix—Ni3—Sn1iv100.40 (6)
Zn2x—Zn2—Sn2x3.4 (4)Sn2—Ni3—Sn1iv171.51 (7)
Zn2xi—Zn2—Sn2x92.4 (3)Sn1—Ni3—Sn1iv88.09 (2)
Sn3xi—Sn3—Sn3xii90.0Sn2—Ni4—Zn20.00 (17)
Sn3xi—Sn3—Ni560.3 (6)Sn2—Ni4—Zn3vi76.22 (14)
Sn3xii—Sn3—Ni560.3 (6)Zn2—Ni4—Zn3vi76.22 (14)
Sn3xi—Sn3—Ni5xiii60.3 (6)Sn2—Ni4—Zn3vii76.22 (14)
Sn3xii—Sn3—Ni5xiii60.3 (6)Zn2—Ni4—Zn3vii76.22 (14)
Ni5—Sn3—Ni5xiii91 (2)Zn3vi—Ni4—Zn3vii114.51 (11)
Sn3xi—Sn3—Ni3xiv63.50 (4)Sn2—Ni4—Zn376.22 (14)
Sn3xii—Sn3—Ni3xiv136.81 (4)Zn2—Ni4—Zn376.22 (14)
Ni5—Sn3—Ni3xiv120.7 (3)Zn3vi—Ni4—Zn3114.51 (11)
Ni5xiii—Sn3—Ni3xiv76.7 (5)Zn3vii—Ni4—Zn3114.51 (11)
Sn3xi—Sn3—Ni3xv136.81 (4)Sn2—Ni4—Sn1121.88 (12)
Sn3xii—Sn3—Ni3xv63.50 (4)Zn2—Ni4—Sn1121.88 (12)
Ni5—Sn3—Ni3xv120.7 (3)Zn3vi—Ni4—Sn173.35 (5)
Ni5xiii—Sn3—Ni3xv76.7 (5)Zn3vii—Ni4—Sn173.35 (5)
Ni3xiv—Sn3—Ni3xv112.42 (3)Zn3—Ni4—Sn1161.9 (3)
Sn3xi—Sn3—Ni3vi63.50 (4)Sn2—Ni4—Sn1vi121.88 (12)
Sn3xii—Sn3—Ni3vi136.81 (4)Zn2—Ni4—Sn1vi121.88 (12)
Ni5—Sn3—Ni3vi76.7 (5)Zn3vi—Ni4—Sn1vi161.9 (3)
Ni5xiii—Sn3—Ni3vi120.7 (3)Zn3vii—Ni4—Sn1vi73.35 (5)
Ni3xiv—Sn3—Ni3vi62.52 (2)Zn3—Ni4—Sn1vi73.35 (5)
Ni3xv—Sn3—Ni3vi156.92 (10)Sn1—Ni4—Sn1vi94.67 (16)
Sn3xi—Sn3—Ni3vii136.81 (4)Sn2—Ni4—Sn1vii121.88 (12)
Sn3xii—Sn3—Ni3vii63.50 (4)Zn2—Ni4—Sn1vii121.88 (12)
Ni5—Sn3—Ni3vii76.7 (5)Zn3vi—Ni4—Sn1vii73.35 (5)
Ni5xiii—Sn3—Ni3vii120.7 (3)Zn3vii—Ni4—Sn1vii161.9 (3)
Ni3xiv—Sn3—Ni3vii156.92 (10)Zn3—Ni4—Sn1vii73.35 (5)
Ni3xv—Sn3—Ni3vii62.52 (2)Sn1—Ni4—Sn1vii94.67 (16)
Ni3vi—Sn3—Ni3vii112.42 (3)Sn1vi—Ni4—Sn1vii94.67 (16)
Sn3xi—Sn3—Zn3xi7.18 (3)Sn2—Ni4—Ni2180.00 (13)
Sn3xii—Sn3—Zn3xi97.18 (3)Zn2—Ni4—Ni2180.0 (3)
Ni5—Sn3—Zn3xi64.5 (5)Zn3vi—Ni4—Ni2103.78 (14)
Ni5xiii—Sn3—Zn3xi64.5 (5)Zn3vii—Ni4—Ni2103.78 (14)
Ni3xiv—Sn3—Zn3xi57.73 (6)Zn3—Ni4—Ni2103.78 (14)
Ni3xv—Sn3—Zn3xi141.18 (3)Sn1—Ni4—Ni258.12 (12)
Ni3vi—Sn3—Zn3xi57.73 (6)Sn1vi—Ni4—Ni258.12 (12)
Ni3vii—Sn3—Zn3xi141.18 (3)Sn1vii—Ni4—Ni258.12 (12)
Sn3xi—Sn3—Zn3xii97.18 (3)Sn2—Ni4—Sn3vi69.91 (11)
Sn3xii—Sn3—Zn3xii7.18 (3)Zn2—Ni4—Sn3vi69.91 (11)
Ni5—Sn3—Zn3xii64.5 (5)Zn3vi—Ni4—Sn3vi6.31 (5)
Ni5xiii—Sn3—Zn3xii64.5 (5)Zn3vii—Ni4—Sn3vi111.98 (11)
Ni3xiv—Sn3—Zn3xii141.18 (3)Zn3—Ni4—Sn3vi111.98 (11)
Ni3xv—Sn3—Zn3xii57.73 (6)Sn1—Ni4—Sn3vi77.451 (19)
Ni3vi—Sn3—Zn3xii141.18 (3)Sn1vi—Ni4—Sn3vi168.2 (2)
Ni3vii—Sn3—Zn3xii57.73 (6)Sn1vii—Ni4—Sn3vi77.451 (19)
Zn3xi—Sn3—Zn3xii104.37 (5)Ni2—Ni4—Sn3vi110.09 (11)
Sn3xi—Sn3—Ni4xvi125.57 (5)Sn2—Ni4—Sn3vii69.91 (11)
Sn3xii—Sn3—Ni4xvi125.57 (5)Zn2—Ni4—Sn3vii69.91 (11)
Ni5—Sn3—Ni4xvi169.2 (10)Zn3vi—Ni4—Sn3vii111.98 (11)
Ni5xiii—Sn3—Ni4xvi99.9 (11)Zn3vii—Ni4—Sn3vii6.31 (5)
Ni3xiv—Sn3—Ni4xvi62.64 (5)Zn3—Ni4—Sn3vii111.98 (11)
Ni3xv—Sn3—Ni4xvi62.64 (5)Sn1—Ni4—Sn3vii77.451 (19)
Ni3vi—Sn3—Ni4xvi97.50 (8)Sn1vi—Ni4—Sn3vii77.451 (19)
Ni3vii—Sn3—Ni4xvi97.50 (8)Sn1vii—Ni4—Sn3vii168.2 (2)
Zn3xi—Sn3—Ni4xvi120.29 (5)Ni2—Ni4—Sn3vii110.09 (11)
Zn3xii—Sn3—Ni4xvi120.29 (5)Sn3vi—Ni4—Sn3vii108.84 (11)
Sn3xi—Sn3—Ni4125.57 (5)Sn2—Ni4—Sn369.91 (11)
Sn3xii—Sn3—Ni4125.57 (5)Zn2—Ni4—Sn369.91 (11)
Ni5—Sn3—Ni499.9 (11)Zn3vi—Ni4—Sn3111.98 (11)
Ni5xiii—Sn3—Ni4169.2 (10)Zn3vii—Ni4—Sn3111.98 (11)
Ni3xiv—Sn3—Ni497.50 (8)Zn3—Ni4—Sn36.31 (5)
Ni3xv—Sn3—Ni497.50 (8)Sn1—Ni4—Sn3168.2 (2)
Ni3vi—Sn3—Ni462.64 (5)Sn1vi—Ni4—Sn377.451 (19)
Ni3vii—Sn3—Ni462.64 (5)Sn1vii—Ni4—Sn377.451 (19)
Zn3xi—Sn3—Ni4120.29 (5)Ni2—Ni4—Sn3110.09 (11)
Zn3xii—Sn3—Ni4120.29 (5)Sn3vi—Ni4—Sn3108.84 (11)
Ni4xvi—Sn3—Ni469.3 (2)Sn3vii—Ni4—Sn3108.84 (11)
Ni4xvi—Zn3—Ni481.9 (3)Sn3—Ni5—Sn3xi59.4 (12)
Ni4xvi—Zn3—Ni3xiv68.84 (8)Sn3—Ni5—Sn3xii59.4 (12)
Ni4—Zn3—Ni3xiv109.47 (12)Sn3xi—Ni5—Sn3xii89 (2)
Ni4xvi—Zn3—Ni3xv68.84 (8)Sn3—Ni5—Sn3xiii89 (2)
Ni4—Zn3—Ni3xv109.47 (12)Sn3xi—Ni5—Sn3xiii59.4 (12)
Ni3xiv—Zn3—Ni3xv116.01 (2)Sn3xii—Ni5—Sn3xiii59.4 (12)
Ni4xvi—Zn3—Ni3vi109.47 (12)Sn3—Ni5—Zn2xviii168 (2)
Ni4—Zn3—Ni3vi68.84 (8)Sn3xi—Ni5—Zn2xviii113.2 (5)
Ni3xiv—Zn3—Ni3vi63.95 (2)Sn3xii—Ni5—Zn2xviii113.2 (5)
Ni3xv—Zn3—Ni3vi177.9 (2)Sn3xiii—Ni5—Zn2xviii79.0 (5)
Ni4xvi—Zn3—Ni3vii109.47 (12)Sn3—Ni5—Zn279.0 (5)
Ni4—Zn3—Ni3vii68.84 (8)Sn3xi—Ni5—Zn2113.2 (5)
Ni3xiv—Zn3—Ni3vii177.9 (2)Sn3xii—Ni5—Zn2113.2 (5)
Ni3xv—Zn3—Ni3vii63.95 (2)Sn3xiii—Ni5—Zn2168 (2)
Ni3vi—Zn3—Ni3vii116.01 (2)Zn2xviii—Ni5—Zn2113 (3)
Ni4xvi—Zn3—Sn3xi126.63 (9)Sn3—Ni5—Zn2x113.2 (5)
Ni4—Zn3—Sn3xi126.63 (9)Sn3xi—Ni5—Zn2x168 (2)
Ni3xiv—Zn3—Sn3xi59.64 (7)Sn3xii—Ni5—Zn2x79.0 (5)
Ni3xv—Zn3—Sn3xi122.31 (11)Sn3xiii—Ni5—Zn2x113.2 (5)
Ni3vi—Zn3—Sn3xi59.64 (7)Zn2xviii—Ni5—Zn2x72.3 (13)
Ni3vii—Zn3—Sn3xi122.31 (11)Zn2—Ni5—Zn2x72.3 (13)
Ni4xvi—Zn3—Sn3xii126.63 (9)Sn3—Ni5—Zn2xi113.2 (5)
Ni4—Zn3—Sn3xii126.63 (9)Sn3xi—Ni5—Zn2xi79.0 (5)
Ni3xiv—Zn3—Sn3xii122.31 (11)Sn3xii—Ni5—Zn2xi168 (2)
Ni3xv—Zn3—Sn3xii59.64 (7)Sn3xiii—Ni5—Zn2xi113.2 (5)
Ni3vi—Zn3—Sn3xii122.31 (11)Zn2xviii—Ni5—Zn2xi72.3 (13)
Ni3vii—Zn3—Sn3xii59.64 (7)Zn2—Ni5—Zn2xi72.3 (13)
Sn3xi—Zn3—Sn3xii75.63 (5)Zn2x—Ni5—Zn2xi113 (3)
Ni4xvi—Zn3—Ni5177.3 (10)Sn3—Ni5—Sn2xviii163 (2)
Ni4—Zn3—Ni5100.8 (11)Sn3xi—Ni5—Sn2xviii110.2 (4)
Ni3xiv—Zn3—Ni5110.0 (5)Sn3xii—Ni5—Sn2xviii110.2 (4)
Ni3xv—Zn3—Ni5110.0 (5)Sn3xiii—Ni5—Sn2xviii74.4 (2)
Ni3vi—Zn3—Ni571.7 (5)Zn2xviii—Ni5—Sn2xviii4.6 (6)
Ni3vii—Zn3—Ni571.7 (5)Zn2—Ni5—Sn2xviii118 (3)
Sn3xi—Zn3—Ni551.7 (6)Zn2x—Ni5—Sn2xviii74.5 (12)
Sn3xii—Zn3—Ni551.7 (6)Zn2xi—Ni5—Sn2xviii74.5 (12)
Ni4xvi—Zn3—Ni5xiii100.8 (11)Sn3—Ni5—Sn2xi110.2 (4)
Ni4—Zn3—Ni5xiii177.3 (10)Sn3xi—Ni5—Sn2xi74.4 (2)
Ni3xiv—Zn3—Ni5xiii71.7 (5)Sn3xii—Ni5—Sn2xi163 (2)
Ni3xv—Zn3—Ni5xiii71.7 (5)Sn3xiii—Ni5—Sn2xi110.2 (4)
Ni3vi—Zn3—Ni5xiii110.0 (5)Zn2xviii—Ni5—Sn2xi74.5 (12)
Ni3vii—Zn3—Ni5xiii110.0 (5)Zn2—Ni5—Sn2xi74.5 (12)
Sn3xi—Zn3—Ni5xiii51.7 (6)Zn2x—Ni5—Sn2xi118 (3)
Sn3xii—Zn3—Ni5xiii51.7 (6)Zn2xi—Ni5—Sn2xi4.6 (6)
Ni5—Zn3—Ni5xiii77 (2)Sn2xviii—Ni5—Sn2xi76.5 (11)
Ni4xvi—Zn3—Sn2129.8 (2)Sn3—Ni5—Sn2x110.2 (4)
Ni4—Zn3—Sn247.87 (15)Sn3xi—Ni5—Sn2x163 (2)
Ni3xiv—Zn3—Sn2121.942 (12)Sn3xii—Ni5—Sn2x74.4 (2)
Ni3xv—Zn3—Sn2121.942 (12)Sn3xiii—Ni5—Sn2x110.2 (4)
Ni3vi—Zn3—Sn258.007 (11)Zn2xviii—Ni5—Sn2x74.5 (12)
Ni3vii—Zn3—Sn258.007 (11)Zn2—Ni5—Sn2x74.5 (12)
Sn3xi—Zn3—Sn290.92 (8)Zn2x—Ni5—Sn2x4.6 (6)
Sn3xii—Zn3—Sn290.92 (8)Zn2xi—Ni5—Sn2x118 (3)
Ni5—Zn3—Sn252.9 (10)Sn2xviii—Ni5—Sn2x76.5 (11)
Ni5xiii—Zn3—Sn2129.5 (10)Sn2xi—Ni5—Sn2x122 (2)
Ni4xvi—Zn3—Sn2xvi47.87 (15)Sn3—Ni5—Sn274.4 (2)
Ni4—Zn3—Sn2xvi129.8 (2)Sn3xi—Ni5—Sn2110.2 (4)
Ni3xiv—Zn3—Sn2xvi58.007 (11)Sn3xii—Ni5—Sn2110.2 (4)
Ni3xv—Zn3—Sn2xvi58.007 (11)Sn3xiii—Ni5—Sn2163 (2)
Ni3vi—Zn3—Sn2xvi121.942 (12)Zn2xviii—Ni5—Sn2118 (3)
Ni3vii—Zn3—Sn2xvi121.942 (12)Zn2—Ni5—Sn24.6 (6)
Sn3xi—Zn3—Sn2xvi90.92 (8)Zn2x—Ni5—Sn274.5 (12)
Sn3xii—Zn3—Sn2xvi90.92 (8)Zn2xi—Ni5—Sn274.5 (12)
Ni5—Zn3—Sn2xvi129.5 (10)Sn2xviii—Ni5—Sn2122 (2)
Ni5xiii—Zn3—Sn2xvi52.9 (10)Sn2xi—Ni5—Sn276.5 (11)
Sn2—Zn3—Sn2xvi177.7 (2)Sn2x—Ni5—Sn276.5 (11)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x, y, z+1; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) y, z, x; (vii) z, x, y; (viii) z, x+1, y+1; (ix) x, y, z; (x) x, y, z; (xi) x, y, z; (xii) x+1, y, z; (xiii) x+1, y, z; (xiv) y+1, z, x; (xv) z+1, x, y; (xvi) x+1, y, z; (xvii) x, y, z; (xviii) x, y, z; (xix) x, y, z; (xx) x, y, z; (xxi) y+1, z+1, x+1; (xxii) z+1, x+1, y+1; (xxiii) x+1, y+1, z+1; (xxiv) x+1, y+1, z; (xxv) x+1, y, z+1; (xxvi) y, z, x+1; (xxvii) z, x, y.

Experimental details

Crystal data
Chemical formulaNi2Sn2Zn
Mr437.62
Crystal system, space groupCubic, Pm3m
Temperature (K)293
a (Å)8.845 (1)
V3)691.98 (14)
Z8
Radiation typeMo Kα
µ (mm1)32.6
Crystal size (mm)0.09 × 0.07 × 0.06
Data collection
DiffractometerNonius Kappa CCD area-detector
diffractometer
Absorption correctionMulti-scan
120 s, Δ = 2°, dx = 30 mm
Tmin, Tmax0.06, 0.14
No. of measured, independent and
observed [I > 2σ(I)] reflections
1030, 360, 347
Rint0.011
(sin θ/λ)max1)0.805
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.041, 1.40
No. of reflections360
No. of parameters36
No. of restraints1
Δρmax, Δρmin (e Å3)1.17, 1.38

Computer programs: COLLECT (Nonius, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Atoms (Dowty, 2006).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds