Download citation
Download citation
link to html
The asymmetric unit of the title salt, C12H24N+·C2H2BrO2, contains a di­cyclo­hexyl­ammonium cation connected to a bromo­acetate anion by means of an N—H...O hydrogen bond. In the crystal, the ion pairs assemble via N—H...O inter­actions, forming zigzag infinite chains parallel to the c axis with the (...H—N—H...O—C—O...)n motif that is considered to be a prerequisite for ensuring gelation properties of secondary ammonium mono­carboxyl­ate salts. The title salt was characterized by FT–IR, X-ray powder diffraction (XRPD), TG–DTA and 1H NMR spectroscopy in solution. Gelation experiments revealed that di­cyclo­hexyl­ammonium bromo­acetate forms mol­ecular gels with di­methyl­formamide and dimethyl sulfoxide. Scanning electron microscopy (SEM) was used to reveal morphological features of dried gels.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615011018/ku3159sup1.cif
Contains datablocks I, publication_text

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615011018/ku3159Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229615011018/ku3159sup3.pdf
Supplementary material

CCDC reference: 1405323

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Dicyclohexylammonium bromoacetate top
Crystal data top
C12H24N+·C2H2BrO2F(000) = 672
Mr = 320.27Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.847 (3) ÅCell parameters from 7011 reflections
b = 17.679 (6) Åθ = 3–29°
c = 9.564 (3) ŵ = 2.79 mm1
β = 100.38 (2)°T = 100 K
V = 1471.4 (8) Å3Block, colorless
Z = 40.50 × 0.50 × 0.25 mm
Data collection top
Kuma KM-4
diffractometer with a CCD camera
2944 reflections with I > 2σ(I)
Radiation source: normal focus sealed tubeRint = 0.028
ω scansθmax = 28.6°, θmin = 3.1°
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
h = 1111
Tmin = 0.290, Tmax = 0.605k = 2322
9495 measured reflectionsl = 1211
3512 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3512 reflectionsΔρmax = 0.49 e Å3
171 parametersΔρmin = 0.56 e Å3
Special details top

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23304 (3)0.08121 (2)0.10283 (2)0.02045 (10)
O10.32380 (19)0.13568 (8)0.40957 (14)0.0205 (3)
O20.34629 (18)0.25941 (8)0.36829 (15)0.0197 (3)
C20.2452 (2)0.18425 (11)0.1729 (2)0.0176 (4)
H2A0.30920.21400.11810.021*
H2B0.14060.20640.15460.021*
C10.3120 (2)0.19262 (11)0.3317 (2)0.0144 (4)
N10.42308 (19)0.12749 (9)0.69680 (18)0.0137 (3)
H1N0.391 (3)0.1687 (14)0.749 (3)0.027 (7)*
H2N0.396 (3)0.1376 (14)0.597 (3)0.032 (7)*
C110.3454 (2)0.05616 (12)0.7307 (2)0.0137 (4)
H110.37450.04630.83500.016*
C210.1731 (2)0.06916 (11)0.6952 (2)0.0165 (4)
H21A0.14370.08310.59370.020*
H21B0.14500.11170.75290.020*
C310.0847 (2)0.00185 (11)0.7248 (2)0.0184 (4)
H31A0.10220.01120.82850.022*
H31B0.02660.00670.69220.022*
C410.1346 (3)0.07146 (12)0.6497 (2)0.0205 (4)
H41A0.08250.11680.67890.025*
H41B0.10270.06540.54560.025*
C510.3075 (3)0.08272 (10)0.6852 (2)0.0181 (4)
H51A0.33680.12600.63000.022*
H51B0.33790.09480.78740.022*
C610.3931 (2)0.01174 (11)0.6509 (2)0.0161 (4)
H61A0.50530.01980.67840.019*
H61B0.36960.00190.54730.019*
C120.5950 (2)0.13028 (11)0.7294 (2)0.0144 (4)
H120.63620.08760.67890.017*
C220.6552 (2)0.12221 (11)0.8895 (2)0.0157 (4)
H22A0.60860.16170.94160.019*
H22B0.62520.07220.92240.019*
C320.8300 (2)0.12990 (12)0.9213 (2)0.0175 (4)
H32A0.87640.08660.87870.021*
H32B0.86610.12811.02550.021*
C420.8837 (2)0.20376 (12)0.8628 (2)0.0182 (4)
H42A0.84780.24710.91360.022*
H42B0.99740.20500.87960.022*
C520.8217 (2)0.21107 (12)0.7040 (2)0.0183 (4)
H52A0.85240.26060.66980.022*
H52B0.86670.17090.65210.022*
C620.6473 (2)0.20447 (11)0.6732 (2)0.0163 (4)
H62A0.60200.24720.71830.020*
H62B0.61010.20740.56930.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02770 (15)0.01755 (14)0.01514 (13)0.00290 (8)0.00129 (9)0.00297 (7)
O10.0319 (8)0.0148 (7)0.0137 (7)0.0023 (6)0.0009 (6)0.0020 (5)
O20.0292 (8)0.0158 (7)0.0142 (7)0.0043 (6)0.0045 (6)0.0013 (5)
C20.0243 (11)0.0142 (10)0.0134 (9)0.0002 (8)0.0008 (8)0.0002 (7)
C10.0136 (9)0.0172 (9)0.0125 (9)0.0003 (7)0.0029 (7)0.0004 (7)
N10.0156 (8)0.0133 (8)0.0122 (8)0.0010 (6)0.0025 (6)0.0005 (6)
C110.0145 (9)0.0154 (9)0.0113 (9)0.0016 (8)0.0026 (7)0.0008 (7)
C210.0164 (10)0.0175 (10)0.0157 (9)0.0016 (8)0.0035 (8)0.0030 (8)
C310.0177 (10)0.0212 (11)0.0164 (9)0.0012 (8)0.0033 (8)0.0001 (8)
C410.0224 (11)0.0201 (11)0.0187 (10)0.0065 (8)0.0029 (9)0.0005 (8)
C510.0224 (11)0.0139 (10)0.0180 (10)0.0001 (8)0.0037 (9)0.0002 (7)
C610.0171 (10)0.0159 (10)0.0153 (9)0.0003 (8)0.0033 (8)0.0014 (8)
C120.0146 (9)0.0154 (9)0.0125 (9)0.0014 (7)0.0010 (7)0.0009 (7)
C220.0176 (10)0.0165 (10)0.0122 (9)0.0004 (8)0.0005 (8)0.0027 (7)
C320.0177 (10)0.0165 (10)0.0173 (9)0.0003 (8)0.0007 (8)0.0009 (8)
C420.0195 (10)0.0174 (10)0.0170 (9)0.0044 (8)0.0010 (8)0.0009 (8)
C520.0193 (10)0.0205 (10)0.0151 (9)0.0046 (8)0.0033 (8)0.0016 (8)
C620.0204 (10)0.0159 (10)0.0121 (9)0.0011 (8)0.0015 (8)0.0022 (7)
Geometric parameters (Å, º) top
Br1—C21.937 (2)C51—C611.531 (3)
O1—C11.245 (2)C51—H51A0.9900
O2—C11.253 (2)C51—H51B0.9900
C2—C11.534 (3)C61—H61A0.9900
C2—H2A0.9900C61—H61B0.9900
C2—H2B0.9900C12—C621.521 (3)
N1—C121.497 (3)C12—C221.535 (3)
N1—C111.499 (2)C12—H121.0000
N1—H1N0.96 (2)C22—C321.527 (3)
N1—H2N0.96 (3)C22—H22A0.9900
C11—C211.518 (3)C22—H22B0.9900
C11—C611.523 (3)C32—C421.530 (3)
C11—H111.0000C32—H32A0.9900
C21—C311.532 (3)C32—H32B0.9900
C21—H21A0.9900C42—C521.525 (3)
C21—H21B0.9900C42—H42A0.9900
C31—C411.529 (3)C42—H42B0.9900
C31—H31A0.9900C52—C621.522 (3)
C31—H31B0.9900C52—H52A0.9900
C41—C511.520 (3)C52—H52B0.9900
C41—H41A0.9900C62—H62A0.9900
C41—H41B0.9900C62—H62B0.9900
C1—C2—Br1114.87 (14)H51A—C51—H51B108.0
C1—C2—H2A108.6C11—C61—C51110.26 (16)
Br1—C2—H2A108.6C11—C61—H61A109.6
C1—C2—H2B108.6C51—C61—H61A109.6
Br1—C2—H2B108.6C11—C61—H61B109.6
H2A—C2—H2B107.5C51—C61—H61B109.6
O1—C1—O2127.20 (18)H61A—C61—H61B108.1
O1—C1—C2119.33 (17)N1—C12—C62108.51 (16)
O2—C1—C2113.45 (16)N1—C12—C22111.18 (16)
C12—N1—C11118.10 (15)C62—C12—C22111.07 (16)
C12—N1—H1N104.7 (16)N1—C12—H12108.7
C11—N1—H1N109.6 (15)C62—C12—H12108.7
C12—N1—H2N105.5 (17)C22—C12—H12108.7
C11—N1—H2N109.1 (16)C32—C22—C12110.33 (17)
H1N—N1—H2N110 (2)C32—C22—H22A109.6
N1—C11—C21107.79 (16)C12—C22—H22A109.6
N1—C11—C61112.04 (16)C32—C22—H22B109.6
C21—C11—C61111.43 (16)C12—C22—H22B109.6
N1—C11—H11108.5H22A—C22—H22B108.1
C21—C11—H11108.5C22—C32—C42111.92 (17)
C61—C11—H11108.5C22—C32—H32A109.2
C11—C21—C31111.08 (16)C42—C32—H32A109.2
C11—C21—H21A109.4C22—C32—H32B109.2
C31—C21—H21A109.4C42—C32—H32B109.2
C11—C21—H21B109.4H32A—C32—H32B107.9
C31—C21—H21B109.4C52—C42—C32110.91 (17)
H21A—C21—H21B108.0C52—C42—H42A109.5
C41—C31—C21111.92 (17)C32—C42—H42A109.5
C41—C31—H31A109.2C52—C42—H42B109.5
C21—C31—H31A109.2C32—C42—H42B109.5
C41—C31—H31B109.2H42A—C42—H42B108.0
C21—C31—H31B109.2C62—C52—C42110.90 (16)
H31A—C31—H31B107.9C62—C52—H52A109.5
C51—C41—C31111.37 (17)C42—C52—H52A109.5
C51—C41—H41A109.4C62—C52—H52B109.5
C31—C41—H41A109.4C42—C52—H52B109.5
C51—C41—H41B109.4H52A—C52—H52B108.0
C31—C41—H41B109.4C12—C62—C52111.12 (16)
H41A—C41—H41B108.0C12—C62—H62A109.4
C41—C51—C61111.21 (16)C52—C62—H62A109.4
C41—C51—H51A109.4C12—C62—H62B109.4
C61—C51—H51A109.4C52—C62—H62B109.4
C41—C51—H51B109.4H62A—C62—H62B108.0
C61—C51—H51B109.4
Br1—C2—C1—O114.5 (2)C41—C51—C61—C1157.0 (2)
Br1—C2—C1—O2166.90 (14)C11—N1—C12—C62174.60 (15)
C12—N1—C11—C21177.12 (16)C11—N1—C12—C2263.0 (2)
C12—N1—C11—C6159.9 (2)N1—C12—C22—C32176.65 (15)
N1—C11—C21—C31179.09 (15)C62—C12—C22—C3255.7 (2)
C61—C11—C21—C3155.8 (2)C12—C22—C32—C4255.0 (2)
C11—C21—C31—C4153.6 (2)C22—C32—C42—C5255.2 (2)
C21—C31—C41—C5153.5 (2)C32—C42—C52—C6255.6 (2)
C31—C41—C51—C6155.2 (2)N1—C12—C62—C52179.59 (15)
N1—C11—C61—C51178.30 (16)C22—C12—C62—C5257.1 (2)
C21—C11—C61—C5157.4 (2)C42—C52—C62—C1256.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.992.513.350 (3)142
N1—H1N···O2ii0.96 (2)1.80 (2)2.748 (2)172 (2)
N1—H2N···O10.96 (3)1.79 (3)2.733 (2)167 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds