Download citation
Download citation
link to html
Single crystals of (2S,5R)-2-isopropyl-5-methyl-7-(5-methyl­isoxazol-3-yl)cyclo­hexa­nespiro-3′-(1,2,4,5,7-tetra­oxazocane), C16H26N2O5, have been studied via X-ray diffraction. The tetra­oxazocane ring adopts a boat–chair conformation in the crystalline state, which is due to intra­molecular inter­actions. Conformational analysis of the tetra­oxazocane fragment performed at the B3LYP/6-31G(d,2p) level of theory showed that there are three minima on the potential energy surface, one of which corresponds to the conformation realized in the solid state, but not to a global minimum. Analysis of the geometry and the topological parameters of the electron density at the (3,−1) bond critical points (BCPs), and the charge transfer in the tetra­oxazocane ring indicated that there are stereoelectronic effects in the O—C—O and N—C—O fragments. There is a two-cross hyperconjugation in the N—C—O fragment between the lone electron pair of the N atom (lpN) and the anti­bonding orbital of a C—O bond (σ*C—O) and vice versa between lpO and σ*C—N. The oxazole substituent has a considerable effect on the geometry and the topological parameters of the electron density at the (3,−1) BCPs of the tetra­oxazocane ring. The crystal structure is stabilized via inter­molecular C—H...N and C—H...O hydrogen bonds, which is unambiguously confirmed with PIXEL calculations, a quantum theory of atoms in mol­ecules (QTAIM) topological analysis of the electron density at the (3,−1) BCPs and a Hirshfeld analysis of the electrostatic potential. The mol­ecules form zigzag chains in the crystal due to inter­molecular C—H...N inter­actions being electrostatic in origin. The mol­ecules are further stacked due to C—H...O hydrogen bonds. The dispersion component in the total stabilization energy of the crystal lattice is 68.09%.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619012592/ku3248sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619012592/ku3248Isup2.hkl
Contains datablock I

CCDC reference: 1952562

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(2S,5R)-2-Isopropyl-5-methyl-7-(5-methylisoxazol-3-yl)cyclohexanespiro-3'-(1,2,4,5,7-tetraoxazocane) top
Crystal data top
C16H26N2O5F(000) = 352.0
Mr = 326.39Dx = 1.284 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.4074 (4) ÅCell parameters from 1493 reflections
b = 8.1772 (8) Åθ = 2.5–26.3°
c = 16.3291 (9) ŵ = 0.10 mm1
β = 99.241 (5)°T = 293 K
V = 844.46 (11) Å3Plank, colourless
Z = 20.75 × 0.23 × 0.11 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
3147 independent reflections
Radiation source: Enhance (Mo) X-ray Source2379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.1709 pixels mm-1θmax = 28.9°, θmin = 2.5°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 109
Tmin = 0.704, Tmax = 1.000l = 2120
5338 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1884P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.25 e Å3
3147 reflectionsΔρmin = 0.16 e Å3
212 parametersAbsolute structure: Flack x determined using 656 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.5 (8)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.9126 (4)0.9809 (4)0.28427 (15)0.0371 (7)
O130.5739 (3)0.8689 (4)0.24519 (16)0.0386 (7)
O80.9905 (4)0.8626 (4)0.35081 (16)0.0459 (8)
O120.5929 (4)0.7332 (4)0.30505 (17)0.0459 (7)
O160.5834 (5)1.3525 (4)0.4259 (2)0.0557 (9)
C140.6042 (6)1.0921 (6)0.4075 (2)0.0380 (10)
C10.7741 (5)0.8959 (5)0.2211 (2)0.0316 (9)
C41.0387 (7)0.9002 (7)0.0910 (3)0.0518 (13)
H4A0.9484580.8530950.0434520.062*
H4B1.1727960.9277030.0741060.062*
C60.7285 (6)1.0176 (6)0.1475 (2)0.0380 (10)
H60.6434550.9560150.1025740.046*
N100.6885 (5)0.9355 (5)0.41200 (19)0.0415 (9)
C31.0762 (6)0.7738 (6)0.1602 (2)0.0428 (11)
H31.1791840.8193180.2052520.051*
N150.7190 (5)1.2155 (6)0.4394 (2)0.0549 (11)
C20.8720 (6)0.7416 (6)0.1940 (2)0.0386 (10)
H2A0.9011440.6676720.2409470.046*
H2B0.7716940.6883210.1515640.046*
C110.5603 (7)0.7982 (6)0.3840 (3)0.0478 (11)
H11A0.5876640.7121720.4252330.057*
H11B0.4130370.8294020.3801080.057*
C170.3915 (6)1.3016 (7)0.3880 (2)0.0461 (12)
C50.9375 (7)1.0539 (6)0.1167 (3)0.0480 (12)
H5A1.0337201.1074230.1604360.058*
H5B0.9112501.1281580.0697970.058*
C90.9127 (6)0.9151 (7)0.4236 (2)0.0483 (12)
H9A0.9534090.8354790.4672990.058*
H9B0.9792221.0181700.4418950.058*
C200.5953 (6)1.1690 (6)0.1606 (3)0.0430 (11)
H200.4790071.1319490.1883750.052*
C180.3952 (6)1.1416 (6)0.3751 (2)0.0430 (11)
H180.2844481.0759020.3501610.052*
C210.4967 (8)1.2403 (8)0.0772 (3)0.0720 (16)
H21A0.4305211.1545390.0421580.108*
H21B0.3927311.3205970.0854660.108*
H21C0.6047391.2908710.0513580.108*
C231.1679 (8)0.6172 (8)0.1313 (3)0.0646 (15)
H23A1.2978310.6410940.1115680.097*
H23B1.1947340.5417250.1768090.097*
H23C1.0692020.5696780.0873070.097*
C190.2301 (7)1.4310 (7)0.3677 (3)0.0614 (14)
H19A0.2529481.4870000.3182510.092*
H19B0.0917961.3825630.3589500.092*
H19C0.2406721.5074870.4128140.092*
C220.7126 (9)1.3014 (7)0.2145 (3)0.0641 (14)
H22A0.8269471.3417150.1887960.096*
H22B0.6173051.3893380.2209250.096*
H22C0.7677701.2568020.2680340.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0343 (13)0.043 (2)0.0323 (13)0.0025 (12)0.0005 (11)0.0018 (13)
O130.0302 (12)0.0411 (19)0.0442 (14)0.0016 (13)0.0050 (10)0.0096 (14)
O80.0391 (13)0.055 (2)0.0413 (15)0.0067 (14)0.0010 (11)0.0038 (15)
O120.0540 (16)0.038 (2)0.0485 (16)0.0069 (15)0.0160 (13)0.0054 (15)
O160.0534 (17)0.050 (2)0.0598 (18)0.0056 (16)0.0027 (14)0.0102 (17)
C140.0344 (19)0.049 (3)0.031 (2)0.007 (2)0.0081 (16)0.006 (2)
C10.0240 (15)0.034 (3)0.0363 (19)0.0046 (16)0.0024 (13)0.0031 (19)
C40.051 (2)0.056 (4)0.053 (2)0.002 (2)0.0230 (19)0.003 (3)
C60.0368 (19)0.040 (3)0.036 (2)0.0008 (18)0.0023 (16)0.001 (2)
N100.0344 (16)0.051 (3)0.0393 (18)0.0036 (17)0.0053 (13)0.0010 (18)
C30.040 (2)0.050 (3)0.038 (2)0.008 (2)0.0045 (17)0.008 (2)
N150.0425 (18)0.054 (3)0.063 (2)0.004 (2)0.0073 (17)0.010 (2)
C20.0383 (19)0.039 (3)0.0369 (19)0.0006 (19)0.0025 (16)0.0008 (19)
C110.050 (2)0.045 (3)0.053 (2)0.008 (2)0.023 (2)0.004 (2)
C170.039 (2)0.059 (4)0.038 (2)0.004 (2)0.0017 (18)0.001 (2)
C50.053 (2)0.047 (3)0.047 (2)0.001 (2)0.019 (2)0.003 (2)
C90.045 (2)0.062 (4)0.036 (2)0.004 (2)0.0026 (17)0.001 (2)
C200.047 (2)0.038 (3)0.045 (2)0.0048 (19)0.0101 (18)0.004 (2)
C180.034 (2)0.052 (3)0.043 (2)0.010 (2)0.0043 (17)0.007 (2)
C210.081 (3)0.069 (4)0.063 (3)0.027 (3)0.001 (3)0.014 (3)
C230.067 (3)0.073 (4)0.056 (3)0.018 (3)0.015 (2)0.003 (3)
C190.064 (3)0.061 (4)0.057 (3)0.007 (3)0.001 (2)0.003 (3)
C220.083 (3)0.039 (3)0.071 (3)0.003 (3)0.017 (3)0.004 (3)
Geometric parameters (Å, º) top
O7—O81.480 (4)C2—H2B0.9700
O7—C11.429 (4)C11—H11A0.9700
O13—O121.471 (4)C11—H11B0.9700
O13—C11.418 (4)C17—C181.326 (7)
O8—C91.427 (5)C17—C191.480 (7)
O12—C111.440 (5)C5—H5A0.9700
O16—N151.414 (5)C5—H5B0.9700
O16—C171.350 (5)C9—H9A0.9700
C14—N101.387 (6)C9—H9B0.9700
C14—N151.307 (6)C20—H200.9800
C14—C181.418 (6)C20—C211.523 (6)
C1—C61.551 (5)C20—C221.516 (7)
C1—C21.506 (6)C18—H180.9300
C4—H4A0.9700C21—H21A0.9600
C4—H4B0.9700C21—H21B0.9600
C4—C31.522 (6)C21—H21C0.9600
C4—C51.505 (7)C23—H23A0.9600
C6—H60.9800C23—H23B0.9600
C6—C51.534 (5)C23—H23C0.9600
C6—C201.539 (6)C19—H19A0.9600
N10—C111.423 (6)C19—H19B0.9600
N10—C91.428 (5)C19—H19C0.9600
C3—H30.9800C22—H22A0.9600
C3—C21.523 (5)C22—H22B0.9600
C3—C231.515 (7)C22—H22C0.9600
C2—H2A0.9700
C1—O7—O8108.0 (3)O16—C17—C19115.7 (5)
C1—O13—O12108.6 (2)C18—C17—O16109.8 (4)
C9—O8—O7107.1 (3)C18—C17—C19134.4 (4)
C11—O12—O13107.9 (3)C4—C5—C6111.6 (4)
C17—O16—N15108.6 (4)C4—C5—H5A109.3
N10—C14—C18128.3 (4)C4—C5—H5B109.3
N15—C14—N10120.2 (4)C6—C5—H5A109.3
N15—C14—C18111.4 (4)C6—C5—H5B109.3
O7—C1—C6105.4 (3)H5A—C5—H5B108.0
O7—C1—C2112.3 (3)O8—C9—N10113.8 (3)
O13—C1—O7111.1 (3)O8—C9—H9A108.8
O13—C1—C6104.4 (3)O8—C9—H9B108.8
O13—C1—C2112.9 (3)N10—C9—H9A108.8
C2—C1—C6110.2 (3)N10—C9—H9B108.8
H4A—C4—H4B107.8H9A—C9—H9B107.7
C3—C4—H4A109.1C6—C20—H20107.2
C3—C4—H4B109.1C21—C20—C6110.1 (4)
C5—C4—H4A109.1C21—C20—H20107.2
C5—C4—H4B109.1C22—C20—C6114.9 (4)
C5—C4—C3112.6 (3)C22—C20—H20107.2
C1—C6—H6105.3C22—C20—C21110.0 (4)
C5—C6—C1108.2 (3)C14—C18—H18127.4
C5—C6—H6105.3C17—C18—C14105.2 (4)
C5—C6—C20115.0 (4)C17—C18—H18127.4
C20—C6—C1116.6 (3)C20—C21—H21A109.5
C20—C6—H6105.3C20—C21—H21B109.5
C14—N10—C11120.8 (3)C20—C21—H21C109.5
C14—N10—C9119.3 (4)H21A—C21—H21B109.5
C11—N10—C9117.8 (4)H21A—C21—H21C109.5
C4—C3—H3107.9H21B—C21—H21C109.5
C4—C3—C2110.2 (3)C3—C23—H23A109.5
C2—C3—H3107.9C3—C23—H23B109.5
C23—C3—C4111.5 (4)C3—C23—H23C109.5
C23—C3—H3107.9H23A—C23—H23B109.5
C23—C3—C2111.4 (4)H23A—C23—H23C109.5
C14—N15—O16104.9 (3)H23B—C23—H23C109.5
C1—C2—C3112.6 (4)C17—C19—H19A109.5
C1—C2—H2A109.1C17—C19—H19B109.5
C1—C2—H2B109.1C17—C19—H19C109.5
C3—C2—H2A109.1H19A—C19—H19B109.5
C3—C2—H2B109.1H19A—C19—H19C109.5
H2A—C2—H2B107.8H19B—C19—H19C109.5
O12—C11—H11A108.6C20—C22—H22A109.5
O12—C11—H11B108.6C20—C22—H22B109.5
N10—C11—O12114.8 (3)C20—C22—H22C109.5
N10—C11—H11A108.6H22A—C22—H22B109.5
N10—C11—H11B108.6H22A—C22—H22C109.5
H11A—C11—H11B107.5H22B—C22—H22C109.5
O7—O8—C9—N1054.7 (5)N10—C14—N15—O16178.4 (3)
O7—C1—C6—C563.1 (4)N10—C14—C18—C17177.6 (4)
O7—C1—C6—C2068.4 (4)C3—C4—C5—C656.4 (5)
O7—C1—C2—C359.2 (4)N15—O16—C17—C180.9 (5)
O13—O12—C11—N1052.2 (4)N15—O16—C17—C19179.0 (4)
O13—C1—C6—C5179.7 (3)N15—C14—N10—C11174.6 (4)
O13—C1—C6—C2048.7 (4)N15—C14—N10—C922.1 (6)
O13—C1—C2—C3174.3 (3)N15—C14—C18—C171.0 (5)
O8—O7—C1—O1376.8 (3)C2—C1—C6—C558.3 (4)
O8—O7—C1—C6170.8 (2)C2—C1—C6—C20170.2 (3)
O8—O7—C1—C250.8 (4)C11—N10—C9—O857.7 (6)
O12—O13—C1—O776.7 (4)C17—O16—N15—C141.5 (4)
O12—O13—C1—C6170.2 (3)C5—C4—C3—C252.9 (5)
O12—O13—C1—C250.5 (4)C5—C4—C3—C23177.1 (4)
O16—C17—C18—C140.0 (5)C5—C6—C20—C2172.6 (5)
C14—N10—C11—O12104.1 (4)C5—C6—C20—C2252.2 (5)
C14—N10—C9—O8106.1 (5)C9—N10—C11—O1259.5 (5)
C1—O7—O8—C9115.9 (3)C20—C6—C5—C4169.8 (3)
C1—O13—O12—C11113.5 (3)C18—C14—N10—C111.8 (6)
C1—C6—C5—C457.8 (5)C18—C14—N10—C9161.6 (4)
C1—C6—C20—C21159.1 (4)C18—C14—N15—O161.5 (5)
C1—C6—C20—C2276.1 (5)C23—C3—C2—C1178.5 (3)
C4—C3—C2—C154.2 (4)C19—C17—C18—C14177.5 (5)
C6—C1—C2—C358.0 (4)
Topological parameters of electron density at the (3,-1) BCPs of (I) top
Bondρ(r) (e a.u.-3)-∇2ρ(r) (e a.u.-5)
C1—O70.25560.65740.1954
O7—O80.25730.06190.0550
O8—C90.25410.59020.1526
C9—N100.28660.98090.0647
N10—C110.29071.00250.0582
C11—O120.24850.63560.1358
O12—O130.26350.08300.0498
O13—C10.26050.63060.1987
N10—C140.31121.9410.0104
C14—N150.36520.79250.4275
N15—O160.3020–0.46180.0213
O16—C170.2950–0.29510.0525
C17—C180.3530–1.06740.6134
C18—C140.3034–0.94700.0615
C17—C190.2688–0.73400.0220
The energies of stereoelectronic interactions obtained within NBO theory for (I) top
Interacting fragmentsEintInteracting fragmentsEint
lp(O7) σ*(C1—O13)14.61lp(O13) σ*(C1—O7)15.70
lp(O7) σ*(O8—C9)1.21lp(O13) σ*(C11—O12)1.53
lp(O8) σ*(C1—O7)1.20lp(O12) σ*(C1—O13)1.30
lp(O8) σ*(C9—N10)9.23lp(O12) σ*(N10—C11)8.34
lp(N10) σ*(O8—C9)14.27lp(N10) σ*( C11—O12)16.06
lp(N10) σ*(C14—N15)46.77lp(N15) σ*(C14—C18)5.87
lp(N15) σ*(O16—C17)4.92lp(O16) σ*(C17—C18)36.01
lp(O16) σ*(C14—N15)12.79
Theoretical energetic parameters (kcal mol-1) for conformational transformations of (I) top
Conformer-E0 (Hartree)ΔE00 (kcal mol-1) (ΔE=0)
TS11110.75575.82
TS21110.732520.40
TS31110.681952.13
Chair–chair1110.76500.00
Boat–chair1110.76241.62
Twist–boat–chair1110.75963.39
Topological parameters of electron density at the (3,-1) BCPs for intermolecular interactions in the crystal of (I) top
Interactionρ(r) (e a.u.-3)2ρ(r) (e a.u.-5)εE (kcal mol-1)Symmetry code
C9—H9A···N150.01150.03580.04572.2-x+1, y-1/2, -z
C18—H18···O80.00950.03860.98072.35x+1, y, z
C11—H11B···O80.00810.02740.10131.66x+1, y, z
C18—H18···O70.00910.03832.87192.32x+1, y, z
H5A···H200.00500.00970.09620.35x+1, y, z
H22A···H19C0.00390.01420.26300.05x+1, y, z
C3—H3···O130.00970.03470.09492.19x+1, y, z
H4B···H21A0.00210.00660.09250.21x+1, y, z
H23B···H2B0.00500.01750.13370.69x+1, y, z
C19—H19C···N150.00360.01220.14940.5x+1, y, z
C19—H19A···H23C—C230.00450.01620.22470.60x-1, y+1, z
C21—H21B···C230.00530.01940.52030.78x-1, y+1, z
C19—H19B···O80.00160.00740.47650.28x-1, y+1, z
C19—H19C···N150.00570.01870.42300.94-x+2, y-1/2, -z
C19—H19C···N100.00600.02140.27961.13-x+2, y-1/2, -z
C11—H11A···?0.00310.01072.98610.47-x+2, y-1/2, -z
C22—H22B···O120.00280.01170.31310.44x, y-1, z
C19—H19A···O120.00600.02190.19091.13x, y-1, z
C11—H11A···O160.00470.01830.04060.87x, y-1, z
H23C···H22A0.00300.01010.10430.37x, y-1, z
H2A···H22A0.00400.01400.38400.56x, y-1, z
Interaction energies (kcal mol-1) obtained from PIXEL calculations for various molecular pairs in the crystal of (I) top
D—H···A-ECoul-EPol-EDispERep-ETotSymmetry code
C3—H3···O135.312.1012.08.6810.76x+1, y, z
C18—H18···O75.312.1012.08.6810.76x+1, y, z
C18—H18···O85.312.1012.08.6810.76x+1, y, z
C11—H11B···O85.312.1012.08.6810.76x+1, y, z
C19—H19C···N151.891.035.623.974.57-x+2, y-1/2, -z
C19—H19C···N101.891.035.623.974.57-x+2, y-1/2, -z
C19—H19C···C141.891.035.623.974.57-x+2, y-1/2, -z
C11—H11A···O161.310.865.543.494.25x, y-1, z
C9—H9A···N151.980.762.292.222.82-x+1, y-1/2, -z
C19—H19A···H23C—C230.620.293.942.102.75x-1, y+1, z
C21—H21B···C230.620.293.942.102.75x-1, y+1, z
C23—H23A···C40.500.193.421.652.44-x+1, y-1/2, -z+1
C5—H5A···H23A—C230.500.193.421.652.44-x+1, y-1/2, -z+1
Topological parameters of electron density at the (3,-1) BCPs for intramolecular interactions in the crystal of (I) top
Interactionρ(r) (e a.u.-3)2ρ(r) (e a.u.-5)εE (kcal mol-1)
C22—H22C···N150.00590.01900.40680.97
C22—H22C···O70.01090.04410.16582.79
C20—H20···C180.00340.01070.48530.47
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds