Download citation
Download citation
link to html
In 4-fluoro­isoquinoline-5-sulfonyl chloride, C9H5ClFNO2S, (I), one of the two sulfonyl O atoms lies approximately on the isoquinoline plane as a result of minimizing the steric repulsion between the chloro­sulfonyl group and the neighbouring F atom. In (S)-(−)-4-fluoro-N-(1-hy­droxy­propan-2-yl)isoquinoline-5-sulfonamide, C12H13FN2O3S, (II), there are two crystallographically independent mol­ecules (Z′ = 2). The mol­ecular conformations of these two mol­ecules differ in that the amine group of one forms an intra­molecular bifurcated hydrogen bond with the F and OH groups, whilst the other forms only a single intra­molecular N—H...F hydrogen bond. The N—H...F hydrogen bonds correspond to weak coupling between the N(H) and 19F nuclei, observed in the 1H NMR solution-state spectra. In (S)-(−)-4-[(4-fluoro­isoquinolin-5-yl)sulfon­yl]-3-methyl-1,4-diazepan-1-ium chloride, C15H19FN3O2S+·Cl, (III), the isoquinoline plane is slightly deformed, suggestive of a steric effect induced by the bulky substituent on the sulfonyl group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112039388/ky3019sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039388/ky3019Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S0108270112039388/ky3019Isup5.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039388/ky3019IIsup3.hkl
Contains datablock II

cdx

Chemdraw file https://doi.org/10.1107/S0108270112039388/ky3019IIsup6.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039388/ky3019IIIsup4.hkl
Contains datablock III

cdx

Chemdraw file https://doi.org/10.1107/S0108270112039388/ky3019IIIsup7.cdx
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039388/ky3019Isup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039388/ky3019IIsup9.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039388/ky3019IIIsup10.cml
Supplementary material

CCDC references: 906597; 906598; 906599

Comment top

Fasudil hydrochloride, (IV), is a synthetic protein kinase inhibitor which is known to have a potent vasodilatory effect on the vertebral arteries (Morikawa et al., 1992). Crystal structure analyses of complexes of protein kinase A with fasudil or related compounds have been undertaken to investigate the nature of these ligands in the binding pocket (Engh et al., 1996; Breitenlechner et al., 2003). Various derivatives of fasudil have been explored, and it was found that (S)-(-)-4-[(4-fluoroisoquinolin-5-yl)sulfonyl]-3-methyl-1,4-diazepan-1-ium chloride, (III), has a much more potent and selective Rho-kinase inhibitory activity than (IV), i.e. the incorporation of an F atom at the 4-position of the isoquinoline system and the chiral attachment of a methyl group at the 2-position of the 1,4-diazepane ring dramatically improve the pharmacological action. As an illustration, the half-maximum inhibitory concentration (IC50) of (III) and fasudil are 0.03 and 0.50 µM, respectively (Gomi et al., 2011). A practical synthesis of (III) may be achieved by starting from 4-fluoroisoquinoline and passing through the intermediates 4-fluoroisoquinoline-5-sulfonyl chloride, (I), and (S)-(-)-4-fluoro-N-(1-hydroxypropan-2-yl)isoquinoline-5-sulfonamide, (II) (Gomi et al., 2011), despite (I) being less reactive than its nonfluorinated analogue.

The 1H NMR spectra of (II) suggested a coupling between N(H) and 19F through an intramolecular N—H···F hydrogen bond (Manjunatha Reddy et al., 2010). In the present study, the structures of (I), (II) and (III) have been determined in order to investigate the intramolecular interactions between the sulfonyl and F atoms at the vicinal positions. Although there is no entry for such an SO2···F combination in a naphthalene-like compound in the Cambridge Structural Database (CSD, Version 5.33 of November 2011; Allen, 2002), the structures of four naphthalene-1-sulfonates (e.g. Vennila et al., 2008) and seven naphthalene-1-sulfonamides (e.g. Navarrete-Vázquez et al., 2010) are available. These all show similar conformations of the S(O)2O or S(O)2N group with the naphthalene ring, namely that the C6—C5—SO torsion angles range from -7 to 7°. This suggests that there is an intramolecular repulsion between the H atom at the vicinal 4-position and the sulfonyl O atoms. An exception is N-(2-aminoethyl)-N-methylisoquinoline-5-sulfonamide hydrochloride (Vasdev et al., 2008). There, the C6—C5—SO torsion angle is ca -86° with a short C4—H···O(S) nonbonded distance of 2.28 Å. Replacing the H atom at the 4-position with an F atom should mean that such short contacts are not allowed.

The orientations of the S(O)2Cl group in (I) and the S(O)2N groups in (II) and (III) relative to the isoquinoline ring are similar to each other, as expected (Figs. 1–3). The C6—C5—S12—O13 torsion angle in (I) is 1.6 (3)°, the corresponding angles for the two crystallographically independent molecules in (II) are -2.5 (5) and -0.2 (5)°, and that in (III) is 9.3 (6)°. In (I), the F11···S12, F11···O14 and F11···Cl15 distances are 3.037 (3), 2.667 (4) and 3.104 (3) Å, respectively, which are shorter by 0.1 to ~0.3 Å than the sum of their van der Waals radii (Bondi, 1964). The molecular packing pattern of (I) is a typical herringbone (Fig. 4), and there is an intermolecular short contact, the N2···Cl15(-x+1/2, y-1/2, -z1/2) distance being 3.129 (3) Å.

In the 1H NMR spectrum of (II), the multiplicity of the amide proton is triplet (δ 5.34), but doublet (δ 5.40) for the non-fluorinated analogue, suggesting spin–spin coupling between the amide N—H group and the active 19F nuclei (JN—H···F = 7.1 Hz). Similar through-space nuclear spin–spin couplings due to intramolecular N—H···F hydrogen bonds have been observed for 2-fluoro-N-(pyridyl)benzamides, the N···F distances being 2.722 (5)–2.753 (6) Å (Mocilac et al., 2012). The 2-fluorophenylsulfonamides do not show such intramolecular spin–spin coupling (Samarakoon et al., 2010), and this agrees with the fact that the conformations of these molecules are not suitable for the formation of intramolecular N—H···X hydrogen bonds (X = Cl: Fernandes et al., 2011; Shakuntala et al., 2011; X = I: Arshad et al., 2011). Somewhat weaker intramolecular N—H···F hydrogen bonds are observed in (II), with N···F distances of 2.884 (5) and 2.893 (6) Å and N—H···F angles of 115 (5) and 137 (6)° (Fig. 2 and Table 1).

In the following discussion, the two independent molecules of (II) are labelled A and B (for the molecules containing atoms S12 and S31, respectively). The amide N15—H15 group has another hydrogen-bond acceptor, O14(-x+1, y+1/2, -z), and this hydrogen bond links molecule A and its equivalents to form a chain around the twofold screw axis parallel to b passing through (1/2, 0, 0) (Fig. 5 and Table 1). Molecules A and B are connected by an O38—H38···N2(x, y-1, z) hydrogen bond, and these pairs are further connected by another hydrogen bond, O19—H19···O38(x, y+1, z-1), to form a zigzag molecular chain along the c axis. The N34—H34 group in molecule B forms an intramolecular bifurcated hydrogen bond, which is achieved by a pyramidal configuration around atom N34.

In (III), the isoquinoline ring is a little skewed, the C8—C9—C10—C5 torsion angle being 6.1 (8)°. Atoms F11 and S12 are displaced below and above the average plane of the isoquinoline ring by -0.233 (8) and 0.556 (7) Å, respectively, and the resulting F···S distance is 3.053 (5) Å. This may be due to the strain introduced by the bulky group attached to the sulfonyl group. A similar twist in the naphthalene ring was observed in 1,8-bis(methylsulfanyl)naphthalene, which has a nonbonded S···S distance of 2.918 (2)–2.934 (2) Å. There, the S atoms are displaced from the naphthalene ring by 0.306 (2) and -0.291 (2) Å (Glass et al., 1989). On the other hand, the twist of the naphthalene ring in 1-bromo-8-(ethysulfanyl)naphthalene is very slight, with the shifts of the S and Br atoms from the naphthalene plane both less than 0.12 Å and with S···Br distances of 3.050 (2)–3.056 (2) Å. This relative planarity is achieved mainly by the imbalance of the Br—C—C bond angles, viz. 124.1 (4)–124.5 (4)° inside and 112.3 (5)–112.8 (5)° outside (Fuller et al., 2007). In the packing structure of (III), the 1,4-diazepan-1-ium group acts as a hydrogen-bond donor to the chloride anions (Fig. 6 and Table 2). A (Cl···H—N—H···)n chain is formed around the twofold screw axis parallel to c, passing through (1/4, 0, 0).

Related literature top

For related literature, see: Allen (2002); Arshad et al. (2011); Bondi (1964); Breitenlechner et al. (2003); Engh et al. (1996); Fernandes et al. (2011); Flack (1983); Fuller et al. (2007); Glass et al. (1989); Gomi et al. (2011, 2012); Manjunatha Reddy, Vasantha Kumar, Guru Row & Suryaprakash (2010); Mocilac et al. (2012); Morikawa et al. (1992); Navarrete-Vázquez, Morales-Vilchis, Estrada-Soto, Rodríguez-López & Tlahuext (2010); Samarakoon et al. (2010); Shakuntala et al. (2011); Vasdev et al. (2008); Vennila et al. (2008).

Experimental top

A pilot-scale production of (III) was achieved, where (I) and (II) were the reaction intermediates (Gomi et al., 2011). Compound (I) was synthesized from 4-fluoroisoquinoline. Plate-like crystals of (I) were grown by slow diffusion of hexane vapour into a chloroform solution.

Compound (II) was prepared by the reaction of (I) with (S)-(+)-2-aminopropan-1-ol. The specific rotation, [α]D, of (II) at 292 K is -18.36° (c = 0.54, CHCl3, where c is the concentration in units of grams per 100 ml). 1H NMR (400 MHz, CDCl3): δ 1.06 (3H, d, J = 6.3 Hz), 1.78 (1H, t, J = 5.1 Hz), 3.43–3.59 (3H, m), 5.34 (1H, t, J = 7.1 Hz), 7.77 (1H, t, J = 7.8 Hz), 8.23–8.28 (1H, m), 8.60 (1H, d, J = 5.4 Hz), 8.68 (1H, dd, J = 7.8, 1.2 Hz), 9.19 (1H, s) (Gomi et al., 2011). Plate-like crystals of (II) were grown by slow diffusion of hexane vapour into an acetone solution.

Compound (III) was prepared from (I) and (S)-(+)-tert-butyl 3-methyl-1,4-diazepane-1-carboxylate (Gomi et al., 2012). The specific rotation, [α]D, of (III) at 293 K is -8.82° (c = 1.00, H2O). Plate-like crystals of (III) were grown by slow diffusion of ethyl acetate vapour into a methanol solution.

Refinement top

The coordinates of the amide H atoms in (II) were refined with the N—H distances restrained to 0.86 (1) Å. This revealed a pyramidal configuration around the N34 atom of molecule B with reasonable hydrogen-bond geometry in contrast to the almost flat configuration around the N15 atom of molecule A. All the other H atoms were positioned geometrically and refined as riding, with C—H = 0.93 (aromatic), 0.96 (methyl), 0.97 (CH2) or 0.98 Å (sp3 CH), O—H = 0.82 Å, and 0.90 Å (NH2), and with Uiso(H) = 1.2Ueq(parent). Methyl-group orientations were obtained by allowing rotation about the C—C bond.

For (II), Friedel pairs were averaged before the final refinement, since the Flack (1983) parameter was estimated to be 0.4 (3). The absolute structure was assigned based on the known absolute configuration of the (S)-2-aminopropan-1-ol group.

For (III), the absolute structure was assigned based on the known absolute configuration of the (S)-3-methyl-1,4-diazepane group. This assignment is tentatively supported by the value obtained for the Flack (1983) parameter.

Computing details top

For all compounds, data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate N—H···F and N—H···O interactions.
[Figure 3] Fig. 3. The molecular structure of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the N—H···Cl interaction.
[Figure 4] Fig. 4. The crystal structure of (I), projected along c.
[Figure 5] Fig. 5. The crystal structure of (II), projected along b. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) -x + 1, y + 1/2, -z; (ii) x, y + 1, z - 1.]
[Figure 6] Fig. 6. The crystal structure of (III), projected along c. Dashed lines indicate hydrogen bonds. [Symmetry code: (iv) -x + 1/2, -y, z - 1/2.]
(I) 4-Fluoroisoquinoline-5-sulfonyl chloride top
Crystal data top
C9H5ClFNO2SF(000) = 496.00
Mr = 245.66Dx = 1.700 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.070 (3) Åθ = 10.0–12.5°
b = 15.353 (3) ŵ = 0.61 mm1
c = 7.789 (2) ÅT = 293 K
β = 96.08 (3)°Plate, colourless
V = 959.6 (5) Å30.55 × 0.50 × 0.30 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
1621 reflections with F2 > 2σ(F2)
Radiation source: Rigaku rotating Mo anodeRint = 0.040
Graphite plate monochromatorθmax = 27.5°
ω/2θ scansh = 103
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.730, Tmax = 0.834l = 1010
2444 measured reflections3 standard reflections every 150 reflections
2202 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1016P)2 + 0.2981P]
where P = (Fo2 + 2Fc2)/3
2202 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
C9H5ClFNO2SV = 959.6 (5) Å3
Mr = 245.66Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.070 (3) ŵ = 0.61 mm1
b = 15.353 (3) ÅT = 293 K
c = 7.789 (2) Å0.55 × 0.50 × 0.30 mm
β = 96.08 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
1621 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.040
Tmin = 0.730, Tmax = 0.8343 standard reflections every 150 reflections
2444 measured reflections intensity decay: none
2202 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2202 reflectionsΔρmin = 0.70 e Å3
136 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2772 (4)0.0232 (2)0.1594 (5)0.0571 (8)
N20.3504 (4)0.00576 (19)0.2983 (4)0.0606 (7)
C30.4284 (4)0.0726 (3)0.3023 (4)0.0549 (7)
C40.4338 (4)0.13116 (19)0.1704 (4)0.0473 (7)
C50.3604 (4)0.16752 (17)0.1359 (4)0.0432 (6)
C60.2727 (4)0.14193 (19)0.2702 (4)0.0500 (7)
C70.1881 (4)0.0621 (2)0.2652 (5)0.0581 (8)
C80.1916 (4)0.0083 (2)0.1275 (5)0.0534 (7)
C90.2763 (4)0.03319 (17)0.0155 (4)0.0455 (6)
C100.3607 (3)0.11463 (17)0.0163 (4)0.0410 (6)
F110.5097 (3)0.20776 (13)0.1929 (3)0.0639 (6)
S120.47932 (10)0.26332 (5)0.17663 (9)0.0495 (3)
O130.4622 (4)0.29341 (16)0.3466 (3)0.0660 (7)
O140.6413 (3)0.25348 (16)0.1227 (4)0.0628 (6)
Cl150.35201 (12)0.35169 (5)0.01771 (11)0.0638 (3)
H10.22210.07620.15530.0685*
H30.48050.08680.39940.0658*
H60.26980.17820.36550.0600*
H70.12930.04590.35660.0697*
H80.13800.04540.12670.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0610 (18)0.0481 (17)0.0599 (19)0.0014 (13)0.0039 (14)0.0092 (14)
N20.0691 (17)0.0590 (16)0.0517 (15)0.0040 (13)0.0032 (13)0.0130 (12)
C30.0578 (17)0.0630 (19)0.0435 (15)0.0060 (14)0.0041 (13)0.0051 (13)
C40.0498 (15)0.0480 (15)0.0442 (14)0.0014 (12)0.0058 (12)0.0011 (12)
C50.0487 (14)0.0393 (13)0.0421 (14)0.0070 (11)0.0075 (11)0.0038 (11)
C60.0605 (17)0.0447 (15)0.0468 (15)0.0089 (12)0.0144 (13)0.0021 (12)
C70.0607 (18)0.0538 (17)0.0630 (18)0.0023 (14)0.0216 (15)0.0121 (15)
C80.0529 (16)0.0408 (14)0.0667 (19)0.0031 (12)0.0074 (14)0.0067 (13)
C90.0436 (13)0.0393 (13)0.0525 (16)0.0040 (11)0.0002 (11)0.0012 (12)
C100.0411 (13)0.0401 (13)0.0417 (13)0.0035 (10)0.0035 (11)0.0007 (10)
F110.0786 (13)0.0614 (12)0.0545 (11)0.0165 (9)0.0202 (9)0.0002 (9)
S120.0606 (5)0.0420 (4)0.0454 (4)0.0027 (3)0.0027 (3)0.0029 (3)
O130.0945 (18)0.0575 (14)0.0453 (12)0.0042 (12)0.0038 (11)0.0126 (10)
O140.0506 (12)0.0685 (15)0.0689 (15)0.0076 (10)0.0049 (11)0.0032 (12)
Cl150.0857 (6)0.0441 (5)0.0614 (5)0.0055 (4)0.0069 (4)0.0083 (3)
Geometric parameters (Å, º) top
C1—N21.314 (5)C8—C91.419 (5)
C1—C91.417 (5)C9—C101.424 (4)
N2—C31.359 (5)S12—O131.423 (3)
C3—C41.363 (5)S12—O141.423 (3)
C4—C101.415 (4)S12—Cl152.0394 (12)
C4—F111.346 (4)C1—H10.930
C5—C61.381 (5)C3—H30.930
C5—C101.437 (4)C6—H60.930
C5—S121.766 (3)C7—H70.930
C6—C71.402 (5)C8—H80.930
C7—C81.356 (5)
N2—C1—C9124.6 (3)C5—C10—C9116.7 (3)
C1—N2—C3116.7 (3)C5—S12—O13109.46 (15)
N2—C3—C4123.0 (3)C5—S12—O14110.93 (15)
C3—C4—C10122.6 (3)C5—S12—Cl15102.46 (10)
C3—C4—F11117.2 (3)O13—S12—O14119.46 (16)
C10—C4—F11120.3 (3)O13—S12—Cl15104.86 (12)
C6—C5—C10120.7 (3)O14—S12—Cl15108.12 (12)
C6—C5—S12114.4 (2)N2—C1—H1117.715
C10—C5—S12124.8 (2)C9—C1—H1117.718
C5—C6—C7121.0 (3)N2—C3—H3118.507
C6—C7—C8120.3 (4)C4—C3—H3118.508
C7—C8—C9120.5 (3)C5—C6—H6119.507
C1—C9—C8120.0 (3)C7—C6—H6119.505
C1—C9—C10119.3 (3)C6—C7—H7119.866
C8—C9—C10120.7 (3)C8—C7—H7119.873
C4—C10—C5129.5 (3)C7—C8—H8119.729
C4—C10—C9113.8 (3)C9—C8—H8119.726
N2—C1—C9—C8179.3 (3)C6—C5—S12—Cl15109.3 (2)
N2—C1—C9—C100.6 (5)S12—C5—C6—C7172.64 (18)
C9—C1—N2—C30.7 (5)C10—C5—S12—O13173.8 (2)
C1—N2—C3—C40.5 (5)C10—C5—S12—O1439.8 (3)
N2—C3—C4—C101.1 (5)C10—C5—S12—Cl1575.3 (3)
N2—C3—C4—F11177.6 (3)S12—C5—C10—C48.8 (4)
C3—C4—C10—C5177.5 (3)S12—C5—C10—C9171.04 (16)
C3—C4—C10—C92.4 (4)C5—C6—C7—C80.2 (5)
F11—C4—C10—C53.8 (4)C6—C7—C8—C92.0 (5)
F11—C4—C10—C9176.3 (2)C7—C8—C9—C1179.2 (3)
C6—C5—C10—C4176.1 (3)C7—C8—C9—C100.7 (5)
C6—C5—C10—C94.0 (4)C1—C9—C10—C42.1 (4)
C10—C5—C6—C72.9 (4)C1—C9—C10—C5177.8 (3)
C6—C5—S12—O131.6 (3)C8—C9—C10—C4177.9 (3)
C6—C5—S12—O14135.5 (2)C8—C9—C10—C52.2 (4)
(II) (S)-(-)-4-Fluoro-N-(1-hydroxypropan-2-yl)isoquinoline-5- sulfonamide top
Crystal data top
C12H13FN2O3SF(000) = 592.00
Mr = 284.31Dx = 1.475 Mg m3
Monoclinic, P21Melting point = 422–424 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71069 Å
a = 18.907 (8) ÅCell parameters from 25 reflections
b = 7.543 (3) Åθ = 10.4–12.4°
c = 9.173 (4) ŵ = 0.27 mm1
β = 101.88 (3)°T = 292 K
V = 1280.2 (9) Å3Plate, colourless
Z = 40.50 × 0.50 × 0.30 mm
Data collection top
Rigaku AFC-7R
diffractometer
2458 reflections with F2 > 2σ(F2)
Radiation source: Rigaku rotating Mo anodeRint = 0.038
Graphite plate monochromatorθmax = 27.5°, θmin = 3°
ω scansh = 924
Absorption correction: numerical
(NUMABS; Rigaku, 1999b)
k = 93
Tmin = 0.887, Tmax = 0.922l = 1111
3554 measured reflections3 standard reflections every 150 reflections
3163 independent reflections intensity decay: 12%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0972P)2 + 0.2545P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3163 reflectionsΔρmax = 0.39 e Å3
351 parametersΔρmin = 0.32 e Å3
3 restraintsAbsolute structure: see text
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H13FN2O3SV = 1280.2 (9) Å3
Mr = 284.31Z = 4
Monoclinic, P21Mo Kα radiation
a = 18.907 (8) ŵ = 0.27 mm1
b = 7.543 (3) ÅT = 292 K
c = 9.173 (4) Å0.50 × 0.50 × 0.30 mm
β = 101.88 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
2458 reflections with F2 > 2σ(F2)
Absorption correction: numerical
(NUMABS; Rigaku, 1999b)
Rint = 0.038
Tmin = 0.887, Tmax = 0.9223 standard reflections every 150 reflections
3554 measured reflections intensity decay: 12%
3163 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0543 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.39 e Å3
3163 reflectionsΔρmin = 0.32 e Å3
351 parametersAbsolute structure: see text
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7840 (3)0.7844 (9)0.3945 (7)0.0591 (14)
N20.7384 (3)0.8562 (8)0.4656 (5)0.0622 (12)
C30.6692 (4)0.8725 (8)0.3907 (6)0.0578 (14)
C40.6459 (3)0.8168 (8)0.2484 (6)0.0476 (11)
C50.6762 (3)0.6646 (7)0.0179 (5)0.0437 (10)
C60.7299 (3)0.5931 (8)0.0423 (6)0.0527 (12)
C70.8026 (4)0.5858 (9)0.0369 (7)0.0627 (15)
C80.8199 (3)0.6481 (9)0.1773 (7)0.0594 (13)
C90.7670 (3)0.7223 (7)0.2465 (6)0.0481 (11)
C100.6928 (3)0.7348 (7)0.1668 (6)0.0425 (10)
F110.57628 (15)0.8427 (6)0.1855 (4)0.0638 (9)
S120.58687 (6)0.65236 (16)0.09721 (13)0.0455 (3)
O130.5968 (3)0.5723 (6)0.2328 (5)0.0623 (11)
O140.5419 (3)0.5691 (7)0.0106 (5)0.0663 (11)
N150.5572 (2)0.8509 (7)0.1345 (5)0.0484 (10)
C160.5773 (3)0.9590 (7)0.2524 (5)0.0439
C170.5111 (4)0.9955 (12)0.3764 (7)0.0691 (17)
C180.6133 (3)1.1316 (9)0.1867 (7)0.0599 (14)
O190.6795 (3)1.1016 (9)0.0888 (5)0.0836 (16)
H10.83170.77300.44550.0709*
H30.63590.92460.43930.0693*
H60.71850.54750.13860.0633*
H70.83820.53810.00790.0752*
H80.86760.64190.22930.0713*
H150.531 (3)0.893 (8)0.077 (5)0.0581*
H160.61250.89220.29540.0526*
H17A0.49020.88500.41560.0829*
H17B0.52561.06210.45450.0829*
H17C0.47611.06210.33670.0829*
H18A0.62111.20760.26720.0719*
H18B0.58101.19300.13400.0719*
H190.70581.04290.13100.1003*
C200.6944 (3)0.2775 (9)0.2561 (6)0.0574 (13)
N210.6526 (3)0.3453 (9)0.3387 (6)0.0647 (13)
C220.6850 (3)0.3957 (9)0.4770 (7)0.0592 (14)
C230.7575 (3)0.3761 (8)0.5328 (6)0.0505 (12)
C240.8813 (3)0.2777 (8)0.4884 (6)0.0465 (11)
C250.9183 (3)0.2007 (8)0.3908 (6)0.0547 (13)
C260.8813 (3)0.1472 (10)0.2472 (6)0.0588 (13)
C270.8089 (3)0.1738 (8)0.2034 (6)0.0538 (12)
C280.7699 (3)0.2505 (7)0.3022 (6)0.0467 (11)
C290.8044 (3)0.3054 (7)0.4472 (5)0.0429 (10)
F300.78313 (18)0.4294 (6)0.6742 (4)0.0684 (10)
S310.93581 (7)0.33073 (19)0.66727 (14)0.0528 (4)
O321.0075 (2)0.2767 (7)0.6646 (5)0.0695 (12)
O330.9239 (3)0.5136 (7)0.7014 (6)0.0720 (12)
N340.9070 (3)0.2080 (7)0.7889 (5)0.0515 (10)
C350.9142 (3)0.0149 (8)0.7768 (6)0.0499
C360.9832 (4)0.0566 (11)0.8768 (8)0.0726 (17)
C370.8483 (3)0.0711 (9)0.8195 (6)0.0570 (13)
O380.78193 (19)0.0050 (7)0.7446 (5)0.0641 (11)
H200.67290.24440.15950.0689*
H220.65670.44630.53780.0710*
H250.96790.18340.41920.0656*
H260.90670.09360.18240.0705*
H270.78520.14130.10800.0645*
H340.8650 (16)0.245 (9)0.796 (7)0.0618*
H350.91470.01520.67310.0599*
H36A1.02460.00750.84590.0871*
H36B0.98420.18350.86900.0871*
H36C0.98410.02370.97830.0871*
H37A0.84810.19660.79640.0683*
H37B0.85210.05940.92610.0683*
H380.77810.00570.65440.0769*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (3)0.058 (4)0.060 (3)0.005 (3)0.003 (3)0.006 (3)
N20.076 (3)0.055 (3)0.049 (3)0.002 (3)0.003 (2)0.003 (3)
C30.073 (4)0.053 (4)0.048 (3)0.005 (3)0.014 (3)0.004 (3)
C40.052 (3)0.043 (3)0.047 (3)0.001 (3)0.0083 (19)0.003 (3)
C50.043 (3)0.042 (3)0.047 (3)0.001 (2)0.0111 (18)0.007 (3)
C60.062 (3)0.049 (3)0.050 (3)0.006 (3)0.018 (3)0.005 (3)
C70.058 (3)0.062 (4)0.075 (4)0.014 (3)0.030 (3)0.014 (4)
C80.046 (3)0.056 (3)0.077 (4)0.005 (3)0.013 (3)0.011 (4)
C90.050 (3)0.038 (3)0.054 (3)0.003 (2)0.005 (2)0.006 (3)
C100.049 (3)0.034 (3)0.046 (3)0.0001 (19)0.0112 (19)0.0052 (19)
F110.0520 (16)0.089 (3)0.0505 (15)0.0160 (19)0.0116 (12)0.0043 (19)
S120.0494 (6)0.0416 (6)0.0451 (6)0.0060 (6)0.0090 (5)0.0007 (6)
O130.076 (3)0.055 (3)0.053 (2)0.003 (2)0.0046 (19)0.0087 (18)
O140.062 (3)0.065 (3)0.071 (3)0.021 (2)0.0117 (19)0.007 (3)
N150.048 (2)0.052 (3)0.050 (2)0.006 (2)0.0181 (16)0.002 (2)
C160.04280.04670.04250.00280.00980.0026
C170.057 (4)0.086 (5)0.059 (4)0.006 (4)0.001 (3)0.006 (4)
C180.058 (3)0.056 (4)0.068 (4)0.007 (3)0.018 (3)0.004 (3)
O190.058 (3)0.123 (5)0.068 (3)0.018 (3)0.010 (2)0.036 (3)
C200.052 (3)0.062 (4)0.054 (3)0.002 (3)0.002 (3)0.004 (3)
N210.054 (3)0.074 (4)0.066 (3)0.010 (3)0.011 (2)0.010 (3)
C220.047 (3)0.060 (4)0.074 (4)0.014 (3)0.020 (3)0.011 (3)
C230.056 (3)0.048 (3)0.048 (3)0.006 (3)0.012 (2)0.001 (3)
C240.048 (3)0.047 (3)0.045 (3)0.000 (2)0.0111 (19)0.002 (2)
C250.053 (3)0.055 (4)0.058 (3)0.005 (3)0.019 (3)0.001 (3)
C260.063 (3)0.063 (4)0.055 (3)0.006 (3)0.022 (3)0.007 (3)
C270.060 (3)0.055 (4)0.046 (3)0.001 (3)0.011 (2)0.003 (3)
C280.053 (3)0.040 (3)0.047 (3)0.002 (2)0.012 (2)0.004 (2)
C290.047 (3)0.037 (3)0.046 (3)0.004 (2)0.0111 (18)0.002 (2)
F300.073 (2)0.082 (3)0.0513 (17)0.0201 (19)0.0154 (15)0.0150 (17)
S310.0486 (7)0.0520 (8)0.0557 (7)0.0092 (6)0.0057 (5)0.0051 (7)
O320.055 (2)0.078 (3)0.073 (3)0.015 (2)0.0061 (18)0.006 (3)
O330.082 (3)0.056 (3)0.076 (3)0.013 (3)0.009 (3)0.010 (3)
N340.052 (3)0.055 (3)0.046 (2)0.000 (2)0.0075 (18)0.006 (2)
C350.05470.05410.04180.00140.01200.0019
C360.063 (4)0.076 (5)0.074 (4)0.008 (4)0.004 (3)0.010 (4)
C370.062 (3)0.063 (4)0.046 (3)0.006 (3)0.011 (3)0.003 (3)
O380.052 (2)0.084 (3)0.055 (2)0.009 (2)0.0097 (16)0.015 (3)
Geometric parameters (Å, º) top
C1—N21.301 (9)S31—O321.421 (5)
C1—C91.409 (8)S31—O331.442 (5)
N2—C31.352 (8)S31—N341.627 (5)
C3—C41.356 (7)N34—C351.469 (8)
C4—C101.415 (8)C35—C361.531 (8)
C4—F111.339 (6)C35—C371.525 (9)
C5—C61.364 (8)C37—O381.422 (7)
C5—C101.438 (7)C1—H10.930
C5—S121.800 (5)C3—H30.930
C6—C71.418 (8)C6—H60.930
C7—C81.347 (9)C7—H70.930
C8—C91.407 (9)C8—H80.930
C9—C101.445 (7)N15—H150.858 (10)
S12—O131.429 (5)C16—H160.980
S12—O141.424 (5)C17—H17A0.960
S12—N151.611 (6)C17—H17B0.960
N15—C161.466 (7)C17—H17C0.960
C16—C171.532 (7)C18—H18A0.970
C16—C181.533 (8)C18—H18B0.970
C18—O191.401 (7)O19—H190.820
C20—N211.306 (9)C20—H200.930
C20—C281.418 (8)C22—H220.930
N21—C221.345 (8)C25—H250.930
C22—C231.369 (8)C26—H260.930
C23—C291.405 (8)C27—H270.930
C23—F301.348 (6)N34—H340.858 (10)
C24—C251.372 (9)C35—H350.980
C24—C291.441 (7)C36—H36A0.960
C24—S311.794 (5)C36—H36B0.960
C25—C261.417 (8)C36—H36C0.960
C26—C271.360 (8)C37—H37A0.970
C27—C281.405 (8)C37—H37B0.970
C28—C291.417 (7)O38—H380.820
N2—C1—C9125.3 (5)C36—C35—C37109.7 (5)
C1—N2—C3117.1 (5)C35—C37—O38113.0 (5)
N2—C3—C4123.3 (6)N2—C1—H1117.343
C3—C4—C10122.0 (5)C9—C1—H1117.335
C3—C4—F11117.7 (5)N2—C3—H3118.344
C10—C4—F11120.3 (4)C4—C3—H3118.341
C6—C5—C10119.6 (4)C5—C6—H6118.928
C6—C5—S12115.4 (4)C7—C6—H6118.914
C10—C5—S12124.9 (4)C6—C7—H7120.136
C5—C6—C7122.2 (5)C8—C7—H7120.134
C6—C7—C8119.7 (6)C7—C8—H8119.495
C7—C8—C9121.0 (5)C9—C8—H8119.500
C1—C9—C8121.7 (5)C16—N15—H15121 (4)
C1—C9—C10118.1 (5)S12—N15—H15116 (4)
C8—C9—C10120.3 (5)N15—C16—H16108.150
C4—C10—C5128.6 (5)C17—C16—H16108.149
C4—C10—C9114.2 (5)C18—C16—H16108.141
C5—C10—C9117.2 (5)C16—C17—H17A109.469
C5—S12—O13104.9 (3)C16—C17—H17B109.466
C5—S12—O14107.0 (3)C16—C17—H17C109.470
C5—S12—N15108.7 (3)H17A—C17—H17B109.475
O13—S12—O14120.0 (3)H17A—C17—H17C109.477
O13—S12—N15108.1 (3)H17B—C17—H17C109.470
O14—S12—N15107.8 (3)C16—C18—H18A109.123
S12—N15—C16122.8 (4)C16—C18—H18B109.126
N15—C16—C17110.6 (5)O19—C18—H18A109.124
N15—C16—C18110.1 (5)O19—C18—H18B109.128
C17—C16—C18111.6 (5)H18A—C18—H18B107.855
C16—C18—O19112.4 (6)C18—O19—H19109.468
N21—C20—C28125.1 (5)N21—C20—H20117.430
C20—N21—C22116.5 (5)C28—C20—H20117.430
N21—C22—C23123.3 (6)N21—C22—H22118.364
C22—C23—C29122.0 (5)C23—C22—H22118.368
C22—C23—F30117.5 (6)C24—C25—H25119.753
C29—C23—F30120.5 (5)C26—C25—H25119.754
C25—C24—C29120.8 (5)C25—C26—H26119.787
C25—C24—S31114.7 (4)C27—C26—H26119.790
C29—C24—S31124.5 (4)C26—C27—H27119.993
C24—C25—C26120.5 (5)C28—C27—H27120.009
C25—C26—C27120.4 (6)C35—N34—H34116 (5)
C26—C27—C28120.0 (5)S31—N34—H34108 (5)
C20—C28—C27119.8 (5)N34—C35—H35108.814
C20—C28—C29118.6 (5)C36—C35—H35108.813
C27—C28—C29121.6 (5)C37—C35—H35108.818
C23—C29—C24128.9 (5)C35—C36—H36A109.478
C23—C29—C28114.5 (5)C35—C36—H36B109.471
C24—C29—C28116.7 (5)C35—C36—H36C109.475
C24—S31—O32106.9 (3)H36A—C36—H36B109.473
C24—S31—O33109.0 (3)H36A—C36—H36C109.462
C24—S31—N34106.9 (3)H36B—C36—H36C109.470
O32—S31—O33118.0 (3)C35—C37—H37A108.988
O32—S31—N34107.7 (3)C35—C37—H37B108.984
O33—S31—N34107.9 (3)O38—C37—H37A108.974
S31—N34—C35117.6 (4)O38—C37—H37B108.976
N34—C35—C36112.6 (5)H37A—C37—H37B107.775
N34—C35—C37108.0 (5)C37—O38—H38109.470
N2—C1—C9—C8179.2 (6)N21—C20—C28—C27179.1 (6)
N2—C1—C9—C101.5 (9)N21—C20—C28—C292.1 (9)
C9—C1—N2—C30.1 (9)C28—C20—N21—C221.3 (10)
C1—N2—C3—C40.6 (9)C20—N21—C22—C231.1 (10)
N2—C3—C4—C100.5 (9)N21—C22—C23—C291.8 (10)
N2—C3—C4—F11179.0 (5)N21—C22—C23—F30179.0 (6)
C3—C4—C10—C5178.1 (5)C22—C23—C29—C24179.4 (5)
C3—C4—C10—C92.0 (8)C22—C23—C29—C282.4 (8)
F11—C4—C10—C52.3 (8)F30—C23—C29—C240.2 (9)
F11—C4—C10—C9177.5 (5)F30—C23—C29—C28178.4 (4)
C6—C5—C10—C4178.8 (5)C25—C24—C29—C23177.7 (5)
C6—C5—C10—C91.0 (7)C25—C24—C29—C280.4 (8)
C10—C5—C6—C70.3 (8)C29—C24—C25—C260.2 (9)
C6—C5—S12—O132.5 (5)C25—C24—S31—O320.2 (5)
C6—C5—S12—O14125.9 (4)C25—C24—S31—O33128.4 (5)
C6—C5—S12—N15117.9 (5)C25—C24—S31—N34115.3 (5)
S12—C5—C6—C7177.3 (4)S31—C24—C25—C26178.1 (4)
C10—C5—S12—O13179.3 (4)C29—C24—S31—O32177.6 (5)
C10—C5—S12—O1450.9 (5)C29—C24—S31—O3353.8 (5)
C10—C5—S12—N1565.3 (5)C29—C24—S31—N3462.5 (5)
S12—C5—C10—C44.5 (8)S31—C24—C29—C230.0 (8)
S12—C5—C10—C9175.7 (3)S31—C24—C29—C28178.1 (4)
C5—C6—C7—C81.2 (10)C24—C25—C26—C270.9 (10)
C6—C7—C8—C90.7 (10)C25—C26—C27—C281.7 (10)
C7—C8—C9—C1178.5 (6)C26—C27—C28—C20179.8 (6)
C7—C8—C9—C100.7 (9)C26—C27—C28—C291.4 (9)
C1—C9—C10—C42.5 (7)C20—C28—C29—C232.5 (7)
C1—C9—C10—C5177.7 (5)C20—C28—C29—C24179.1 (5)
C8—C9—C10—C4178.3 (5)C27—C28—C29—C23178.8 (5)
C8—C9—C10—C51.5 (8)C27—C28—C29—C240.4 (8)
C5—S12—N15—C1681.0 (4)C24—S31—N34—C3563.4 (4)
O13—S12—N15—C1632.3 (4)O32—S31—N34—C3551.2 (4)
O14—S12—N15—C16163.3 (3)O33—S31—N34—C35179.5 (3)
S12—N15—C16—C17114.7 (4)S31—N34—C35—C3694.8 (4)
S12—N15—C16—C18121.5 (4)S31—N34—C35—C37143.9 (3)
N15—C16—C18—O1965.4 (6)N34—C35—C37—O3849.3 (6)
C17—C16—C18—O19171.4 (5)C36—C35—C37—O38172.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···F110.86 (1)2.42 (5)2.884 (5)115 (5)
N15—H15···O14i0.86 (1)2.18 (2)3.003 (6)161 (6)
O19—H19···O38ii0.822.032.799 (6)155
N34—H34···F300.86 (1)2.20 (4)2.893 (6)137 (6)
N34—H34···O380.86 (1)2.38 (7)2.777 (6)109 (5)
O38—H38···N2iii0.822.032.761 (6)148
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1, z1; (iii) x, y1, z.
(III) (S)-(-)-4-[(4-Fluoroisoquinolin-5-yl)sulfonyl]-3-methyl-1,4- diazepan-1-ium chloride top
Crystal data top
C15H19FN3O2S+·ClF(000) = 752.00
Mr = 359.85Dx = 1.464 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 12.379 (8) Åθ = 10.1–12.4°
b = 19.294 (14) ŵ = 0.38 mm1
c = 6.835 (4) ÅT = 293 K
V = 1633 (2) Å3Plate, colourless
Z = 40.50 × 0.40 × 0.30 mm
Data collection top
Rigaku AFC-7R
diffractometer
1504 reflections with F2 > 2σ(F2)
Radiation source: Rigaku rotating anodeRint = 0.040
Graphite plate monochromatorθmax = 27.5°
ω scansh = 616
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
k = 025
Tmin = 0.855, Tmax = 0.891l = 38
2428 measured reflections3 standard reflections every 150 reflections
2215 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0996P)2 + 0.1864P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2215 reflectionsΔρmax = 0.37 e Å3
209 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), with 60 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (18)
Crystal data top
C15H19FN3O2S+·ClV = 1633 (2) Å3
Mr = 359.85Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.379 (8) ŵ = 0.38 mm1
b = 19.294 (14) ÅT = 293 K
c = 6.835 (4) Å0.50 × 0.40 × 0.30 mm
Data collection top
Rigaku AFC-7R
diffractometer
1504 reflections with F2 > 2σ(F2)
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
Rint = 0.040
Tmin = 0.855, Tmax = 0.8913 standard reflections every 150 reflections
2428 measured reflections intensity decay: none
2215 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.166Δρmax = 0.37 e Å3
S = 1.04Δρmin = 0.26 e Å3
2215 reflectionsAbsolute structure: Flack (1983), with 60 Friedel pairs
209 parametersAbsolute structure parameter: 0.03 (18)
0 restraints
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1643 (7)0.5537 (4)0.3337 (10)0.069 (2)
N20.0597 (6)0.5408 (3)0.3303 (10)0.0736 (18)
C30.0293 (6)0.4728 (4)0.3272 (11)0.0645 (18)
C40.1022 (5)0.4205 (3)0.3408 (10)0.0501 (14)
C50.2988 (5)0.3809 (3)0.3769 (9)0.0449 (13)
C60.4048 (5)0.4022 (4)0.3592 (11)0.0603 (17)
C70.4329 (6)0.4718 (4)0.3327 (12)0.069 (2)
C80.3553 (7)0.5213 (4)0.3312 (11)0.0655 (19)
C90.2459 (6)0.5025 (3)0.3419 (9)0.0536 (14)
C100.2149 (5)0.4310 (3)0.3553 (8)0.0454 (12)
F110.0624 (3)0.35544 (17)0.3319 (7)0.0656 (11)
S120.27795 (11)0.29499 (7)0.4661 (2)0.0452 (4)
O130.3823 (4)0.2727 (2)0.5288 (8)0.0640 (13)
O140.1923 (4)0.2964 (2)0.6066 (6)0.0567 (11)
N150.2408 (4)0.2492 (2)0.2804 (7)0.0434 (11)
C160.1384 (4)0.2091 (3)0.2832 (9)0.0429 (13)
C170.0841 (5)0.2097 (4)0.0823 (11)0.0662 (19)
C180.1522 (4)0.1361 (3)0.3631 (10)0.0460 (13)
N190.2405 (4)0.0946 (2)0.2697 (7)0.0471 (11)
C200.3524 (5)0.1194 (3)0.3210 (11)0.0546 (16)
C210.3978 (5)0.1720 (4)0.1788 (12)0.0622 (18)
C220.3231 (5)0.2328 (3)0.1331 (10)0.0560 (16)
Cl230.25917 (15)0.06375 (7)0.3220 (3)0.0633 (5)
H10.18590.59990.33050.0824*
H30.04360.46200.31530.0774*
H60.45940.36920.36500.0724*
H70.50490.48410.31600.0833*
H80.37450.56780.32320.0786*
H160.08950.23330.37290.0515*
H17A0.08730.25560.02850.0794*
H17B0.01000.19580.09550.0794*
H17C0.12090.17810.00320.0794*
H18A0.16650.13910.50230.0552*
H18B0.08460.11130.34660.0552*
H19A0.23230.09630.13890.0565*
H19B0.23380.05010.30680.0565*
H20A0.40050.07980.32570.0655*
H20B0.35070.13990.45060.0655*
H21A0.41500.14840.05740.0746*
H21B0.46470.19010.23200.0746*
H22A0.36740.27360.11320.0672*
H22B0.28660.22310.01040.0672*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.113 (7)0.049 (4)0.044 (4)0.002 (4)0.002 (5)0.009 (4)
N20.099 (5)0.056 (4)0.066 (4)0.027 (4)0.006 (4)0.012 (3)
C30.069 (5)0.060 (4)0.065 (5)0.013 (4)0.005 (4)0.010 (4)
C40.053 (4)0.047 (3)0.050 (4)0.004 (3)0.002 (3)0.003 (3)
C50.050 (3)0.039 (3)0.046 (3)0.008 (3)0.001 (3)0.001 (3)
C60.057 (4)0.063 (4)0.062 (5)0.014 (3)0.007 (4)0.005 (4)
C70.064 (4)0.079 (5)0.065 (5)0.037 (4)0.013 (4)0.011 (5)
C80.094 (5)0.054 (4)0.048 (4)0.025 (4)0.005 (4)0.006 (4)
C90.080 (4)0.043 (3)0.037 (3)0.009 (3)0.006 (4)0.007 (3)
C100.057 (3)0.043 (3)0.036 (3)0.001 (3)0.002 (3)0.003 (3)
F110.0479 (18)0.0507 (18)0.098 (3)0.0029 (15)0.006 (3)0.004 (3)
S120.0489 (7)0.0385 (6)0.0482 (7)0.0019 (6)0.0058 (7)0.0006 (6)
O130.062 (3)0.055 (3)0.076 (3)0.002 (2)0.021 (3)0.004 (3)
O140.071 (3)0.048 (2)0.051 (3)0.005 (2)0.006 (3)0.003 (2)
N150.041 (3)0.038 (2)0.051 (3)0.0021 (18)0.005 (3)0.004 (2)
C160.037 (3)0.036 (3)0.055 (4)0.003 (3)0.001 (3)0.003 (3)
C170.056 (4)0.059 (4)0.083 (6)0.000 (4)0.026 (4)0.005 (4)
C180.036 (3)0.044 (3)0.058 (4)0.002 (3)0.000 (3)0.002 (3)
N190.055 (3)0.0357 (19)0.051 (3)0.000 (2)0.001 (3)0.004 (2)
C200.044 (3)0.046 (3)0.074 (5)0.013 (3)0.002 (4)0.004 (4)
C210.047 (4)0.064 (4)0.075 (5)0.003 (3)0.016 (4)0.014 (4)
C220.056 (4)0.060 (4)0.052 (4)0.009 (3)0.010 (3)0.005 (3)
Cl230.0945 (13)0.0443 (7)0.0510 (8)0.0099 (8)0.0002 (9)0.0017 (7)
Geometric parameters (Å, º) top
C1—N21.318 (12)C20—C211.512 (10)
C1—C91.415 (11)C21—C221.525 (9)
N2—C31.366 (9)C1—H10.930
C3—C41.356 (9)C3—H30.930
C4—C101.413 (9)C6—H60.930
C4—F111.350 (7)C7—H70.930
C5—C61.381 (9)C8—H80.930
C5—C101.425 (8)C16—H160.980
C5—S121.785 (6)C17—H17A0.960
C6—C71.398 (10)C17—H17B0.960
C7—C81.354 (11)C17—H17C0.960
C8—C91.405 (11)C18—H18A0.970
C9—C101.435 (8)C18—H18B0.970
S12—O131.428 (5)N19—H19A0.900
S12—O141.430 (5)N19—H19B0.900
S12—N151.613 (5)C20—H20A0.970
N15—C161.486 (7)C20—H20B0.970
N15—C221.467 (8)C21—H21A0.970
C16—C171.529 (10)C21—H21B0.970
C16—C181.521 (8)C22—H22A0.970
C18—N191.497 (7)C22—H22B0.970
N19—C201.508 (7)
N2—C1—C9124.7 (7)C7—C6—H6118.896
C1—N2—C3116.9 (7)C6—C7—H7119.916
N2—C3—C4122.0 (7)C8—C7—H7119.923
C3—C4—C10123.8 (6)C7—C8—H8119.990
C3—C4—F11116.5 (6)C9—C8—H8119.992
C10—C4—F11119.7 (5)N15—C16—H16106.665
C6—C5—C10118.8 (5)C17—C16—H16106.661
C6—C5—S12116.3 (5)C18—C16—H16106.660
C10—C5—S12124.0 (5)C16—C17—H17A109.467
C5—C6—C7122.2 (6)C16—C17—H17B109.478
C6—C7—C8120.2 (7)C16—C17—H17C109.474
C7—C8—C9120.0 (7)H17A—C17—H17B109.475
C1—C9—C8120.4 (6)H17A—C17—H17C109.457
C1—C9—C10118.9 (7)H17B—C17—H17C109.477
C8—C9—C10120.7 (6)C16—C18—H18A108.495
C4—C10—C5129.0 (5)C16—C18—H18B108.506
C4—C10—C9113.4 (6)N19—C18—H18A108.499
C5—C10—C9117.6 (6)N19—C18—H18B108.492
C5—S12—O13104.6 (3)H18A—C18—H18B107.513
C5—S12—O14108.5 (3)C18—N19—H19A108.823
C5—S12—N15106.3 (3)C18—N19—H19B108.820
O13—S12—O14118.3 (3)C20—N19—H19A108.823
O13—S12—N15109.2 (3)C20—N19—H19B108.820
O14—S12—N15109.1 (3)H19A—N19—H19B107.681
S12—N15—C16121.2 (4)N19—C20—H20A108.787
S12—N15—C22117.5 (4)N19—C20—H20B108.781
C16—N15—C22119.2 (5)C21—C20—H20A108.783
N15—C16—C17111.1 (5)C21—C20—H20B108.781
N15—C16—C18113.1 (4)H20A—C20—H20B107.668
C17—C16—C18112.3 (5)C20—C21—H21A108.521
C16—C18—N19115.1 (5)C20—C21—H21B108.527
C18—N19—C20113.7 (5)C22—C21—H21A108.528
N19—C20—C21113.9 (6)C22—C21—H21B108.520
C20—C21—C22115.0 (6)H21A—C21—H21B107.531
N15—C22—C21116.5 (6)N15—C22—H22A108.170
N2—C1—H1117.641N15—C22—H22B108.158
C9—C1—H1117.657C21—C22—H22A108.164
N2—C3—H3119.007C21—C22—H22B108.162
C4—C3—H3119.008H22A—C22—H22B107.332
C5—C6—H6118.898
N2—C1—C9—C8175.6 (6)C7—C8—C9—C1177.8 (6)
N2—C1—C9—C102.6 (10)C7—C8—C9—C100.3 (10)
C9—C1—N2—C32.6 (10)C1—C9—C10—C45.4 (8)
C1—N2—C3—C44.6 (11)C1—C9—C10—C5175.8 (5)
N2—C3—C4—C101.3 (11)C8—C9—C10—C4172.7 (5)
N2—C3—C4—F11178.7 (6)C8—C9—C10—C56.1 (8)
C3—C4—C10—C5177.7 (6)C5—S12—N15—C16124.6 (4)
C3—C4—C10—C93.7 (9)C5—S12—N15—C2272.0 (4)
F11—C4—C10—C55.1 (10)O13—S12—N15—C16123.1 (4)
F11—C4—C10—C9173.6 (5)O13—S12—N15—C2240.3 (4)
C6—C5—C10—C4170.5 (6)O14—S12—N15—C167.7 (4)
C6—C5—C10—C98.1 (8)O14—S12—N15—C22171.1 (3)
C10—C5—C6—C74.0 (10)S12—N15—C16—C17143.5 (3)
C6—C5—S12—O139.3 (6)S12—N15—C16—C1889.3 (5)
C6—C5—S12—O14136.5 (5)S12—N15—C22—C2181.4 (5)
C6—C5—S12—N15106.2 (5)C16—N15—C22—C2182.3 (6)
S12—C5—C6—C7165.8 (5)C22—N15—C16—C1753.4 (6)
C10—C5—S12—O13159.9 (5)C22—N15—C16—C1873.8 (6)
C10—C5—S12—O1432.7 (6)N15—C16—C18—N1951.7 (7)
C10—C5—S12—N1584.6 (5)C17—C16—C18—N1974.9 (6)
S12—C5—C10—C420.5 (8)C16—C18—N19—C2070.4 (6)
S12—C5—C10—C9160.9 (4)C18—N19—C20—C2191.7 (6)
C5—C6—C7—C82.6 (11)N19—C20—C21—C2250.1 (7)
C6—C7—C8—C94.7 (11)C20—C21—C22—N1523.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19A···Cl23i0.902.263.117 (6)160
N19—H19B···Cl230.902.223.085 (5)161
Symmetry code: (i) x+1/2, y, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC9H5ClFNO2SC12H13FN2O3SC15H19FN3O2S+·Cl
Mr245.66284.31359.85
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21Orthorhombic, P212121
Temperature (K)293292293
a, b, c (Å)8.070 (3), 15.353 (3), 7.789 (2)18.907 (8), 7.543 (3), 9.173 (4)12.379 (8), 19.294 (14), 6.835 (4)
α, β, γ (°)90, 96.08 (3), 9090, 101.88 (3), 9090, 90, 90
V3)959.6 (5)1280.2 (9)1633 (2)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.610.270.38
Crystal size (mm)0.55 × 0.50 × 0.300.50 × 0.50 × 0.300.50 × 0.40 × 0.30
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Rigaku AFC-7R
diffractometer
Rigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Numerical
(NUMABS; Rigaku, 1999b)
Numerical
(NUMABS; Rigaku, 1999)
Tmin, Tmax0.730, 0.8340.887, 0.9220.855, 0.891
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
2444, 2202, 1621 3554, 3163, 2458 2428, 2215, 1504
Rint0.0400.0380.040
(sin θ/λ)max1)0.6490.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.164, 1.05 0.054, 0.159, 1.08 0.059, 0.166, 1.04
No. of reflections220231632215
No. of parameters136351209
No. of restraints030
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.700.39, 0.320.37, 0.26
Absolute structure?See textFlack (1983), with 60 Friedel pairs
Absolute structure parameter??0.03 (18)

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), CrystalStructure (Rigaku, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N15—H15···F110.858 (10)2.42 (5)2.884 (5)115 (5)
N15—H15···O14i0.858 (10)2.18 (2)3.003 (6)161 (6)
O19—H19···O38ii0.8202.032.799 (6)155
N34—H34···F300.858 (10)2.20 (4)2.893 (6)137 (6)
N34—H34···O380.858 (10)2.38 (7)2.777 (6)109 (5)
O38—H38···N2iii0.8202.032.761 (6)148
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1, z1; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N19—H19A···Cl23i0.9002.263.117 (6)160
N19—H19B···Cl230.9002.223.085 (5)161
Symmetry code: (i) x+1/2, y, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds