Download citation
Download citation
link to html
Langbeinite-type com­pounds are a large family that include phosphates, sulfates and arsenates, and which are accom­panied by inter­esting physical properties. This work reports a new disordered langbeinite-type com­pound, K2GdHf(PO4)3 [dipotassium gadolinium hafnium tris­(phosphate)], and its structure as determined by single-crystal X-ray diffraction. Theoretical studies reveal that K2GdHf(PO4)3 is an insulator with a direct band gap of 4.600 eV and that the optical transition originates from the O-2p→Hf-5d transition. A Ce3+-doped phosphor, K2Gd0.99Ce0.01Hf(PO4)3, was prepared and its luminescence properties studied. With 324 nm light excitation, a blue emission band was observed due to the 5d1→4f1 transition of Ce3+. The average luminescence lifetime was calculated to be 5.437 µs and the CIE chromaticity coordinates were (0.162, 0.035). One may expect that K2Gd0.99Ce0.01Hf(PO4)3 can be used as a good blue phosphor for three-colour white-light-emitting diodes (WLEDs).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620009857/ky3197sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620009857/ky3197Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620009857/ky3197sup3.pdf
EDS analysis, plus fractional coordinates and displacement parameters

CCDC reference: 2006673

Computing details top

Data collection: APEX2 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SHELXL2018 (Sheldrick, 2015b); software used to prepare material for publication: SHELXTL2018 (Sheldrick, 2015b) and PLATON (Spek, 2020).

Dipotassium gadolinium hafnium tris(phosphate) top
Crystal data top
K2GdHf(PO4)3Mo Kα radiation, λ = 0.71073 Å
Mr = 698.85Cell parameters from 1108 reflections
Cubic, P213θ = 2.7–24.6°
a = 10.3179 (7) ŵ = 16.69 mm1
V = 1098.4 (2) Å3T = 296 K
Z = 4Prism, colourless
F(000) = 12600.20 × 0.04 × 0.04 mm
Dx = 4.226 Mg m3
Data collection top
Bruker SMART APEXII CCD area detector
diffractometer
927 independent reflections
Radiation source: fine-focus sealed tube888 reflections with I > 2σ(I)
Detector resolution: 83.33 pixels mm-1Rint = 0.045
ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
h = 1113
Tmin = 0.051, Tmax = 0.709k = 1311
7436 measured reflectionsl = 1013
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0054P)2 + 0.3204P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.018Δρmax = 0.53 e Å3
wR(F2) = 0.031Δρmin = 0.58 e Å3
S = 1.08Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
927 reflectionsExtinction coefficient: 0.00042 (12)
61 parametersAbsolute structure: Flack x determined using 363 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.019 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. A single-crystal with dimensions of 0.20 × 0.04 × 0.04 mm was mounted on a glass fiber for the single-crystal X-ray diffraction experiments. A set of intensity data was collected using a Bruker Smart APEX II CCD equipped with a graphite-monochromated Mo—Ka radiation source (λ = 0.71073 Å) with a tube power of 50 kV and 20 mA. The frames were collected at ambient temperature with a scan width of 0.5° in ω and integrated with the Bruker SAINT software package (Bruker, 2018) using a narrow-frame integration algorithm. The unit cells were determined and refined by least squares upon the refinement of XYZ-centeroids of reflections above 10 σ(I). Then the data was scaled for absorption using the SADABS programme of APEXII package. Intensities of all measured reflections were corrected for Lp and crystal absorption effects. The crystal structure of title complex K2GdHf(PO4)3 were solved using the SHELX2018 crystallographic computing system (Sheldrick, 2015) and standardized using PLATON (Spek, 2003).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.56920 (17)0.56920 (17)0.56920 (17)0.0320 (7)
K20.7035 (2)0.2035 (2)0.2965 (2)0.0410 (9)
Hf10.91688 (3)0.58312 (3)0.41688 (3)0.01225 (14)0.404 (4)
Gd10.91688 (3)0.58312 (3)0.41688 (3)0.01225 (14)0.596 (4)
Hf20.35145 (3)0.35145 (3)0.35145 (3)0.01377 (14)0.596 (4)
Gd20.35145 (3)0.35145 (3)0.35145 (3)0.01377 (14)0.404 (4)
P10.62435 (17)0.53517 (17)0.23556 (17)0.0151 (4)
O10.5204 (6)0.4510 (6)0.2971 (6)0.0499 (17)
O20.7445 (7)0.5203 (7)0.3167 (7)0.057 (2)
O30.6512 (6)0.4885 (5)0.1003 (6)0.0437 (15)
O40.5801 (5)0.6745 (5)0.2338 (5)0.0389 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0320 (7)0.0320 (7)0.0320 (7)0.0012 (8)0.0012 (8)0.0012 (8)
K20.0410 (9)0.0410 (9)0.0410 (9)0.0009 (9)0.0009 (9)0.0009 (9)
Hf10.01225 (14)0.01225 (14)0.01225 (14)0.00100 (13)0.00100 (13)0.00100 (13)
Gd10.01225 (14)0.01225 (14)0.01225 (14)0.00100 (13)0.00100 (13)0.00100 (13)
Hf20.01377 (14)0.01377 (14)0.01377 (14)0.00087 (13)0.00087 (13)0.00087 (13)
Gd20.01377 (14)0.01377 (14)0.01377 (14)0.00087 (13)0.00087 (13)0.00087 (13)
P10.0132 (10)0.0158 (9)0.0161 (9)0.0039 (7)0.0030 (7)0.0009 (7)
O10.039 (4)0.054 (4)0.057 (5)0.032 (3)0.013 (3)0.002 (3)
O20.043 (4)0.060 (5)0.067 (5)0.015 (3)0.034 (4)0.020 (4)
O30.053 (4)0.043 (4)0.035 (3)0.003 (3)0.018 (3)0.014 (3)
O40.039 (3)0.024 (3)0.054 (4)0.010 (3)0.012 (3)0.006 (3)
Geometric parameters (Å, º) top
K1—O3i2.963 (6)K2—O2viii3.303 (7)
K1—O3ii2.963 (6)K2—P1viii3.574 (3)
K1—O3iii2.963 (6)K2—P1ix3.574 (3)
K1—O13.102 (7)K2—P13.574 (3)
K1—O1iv3.102 (7)Hf1—O3x2.150 (6)
K1—O1v3.102 (7)Hf1—O3viii2.150 (6)
K1—O23.212 (8)Hf1—O3i2.150 (6)
K1—O2v3.212 (8)Hf1—O2iii2.157 (6)
K1—O2iv3.212 (8)Hf1—O2xi2.157 (6)
K1—O2i3.327 (9)Hf1—O22.157 (6)
K1—O2ii3.327 (9)Hf2—O12.099 (5)
K1—O2iii3.327 (9)Hf2—O1v2.099 (5)
K2—O4vi2.958 (6)Hf2—O1iv2.099 (5)
K2—O4v2.958 (6)Hf2—O4vi2.146 (5)
K2—O4vii2.958 (6)Hf2—O4xii2.146 (5)
K2—O1viii3.176 (8)Hf2—O4xiii2.146 (5)
K2—O1ix3.176 (8)P1—O31.502 (6)
K2—O13.176 (8)P1—O21.504 (6)
K2—O23.303 (7)P1—O41.509 (5)
K2—O2ix3.303 (7)P1—O11.519 (6)
O3i—K1—O3ii96.41 (17)O3x—Hf1—O3viii95.6 (2)
O3i—K1—O3iii96.41 (17)O3x—Hf1—O3i95.6 (2)
O3ii—K1—O3iii96.41 (17)O3viii—Hf1—O3i95.6 (2)
O3i—K1—O1100.21 (19)O3x—Hf1—O2iii92.8 (3)
O3ii—K1—O1153.02 (18)O3viii—Hf1—O2iii171.4 (2)
O3iii—K1—O1102.63 (16)O3i—Hf1—O2iii82.1 (2)
O3i—K1—O1iv153.02 (17)O3x—Hf1—O2xi82.1 (2)
O3ii—K1—O1iv102.63 (16)O3viii—Hf1—O2xi92.8 (3)
O3iii—K1—O1iv100.21 (19)O3i—Hf1—O2xi171.4 (2)
O1—K1—O1iv55.49 (17)O2iii—Hf1—O2xi89.8 (2)
O3i—K1—O1v102.63 (16)O3x—Hf1—O2171.4 (2)
O3ii—K1—O1v100.21 (19)O3viii—Hf1—O282.1 (2)
O3iii—K1—O1v153.02 (18)O3i—Hf1—O292.8 (3)
O1—K1—O1v55.49 (17)O2iii—Hf1—O289.8 (2)
O1iv—K1—O1v55.49 (17)O2xi—Hf1—O289.8 (2)
O3i—K1—O260.53 (15)O3x—Hf1—K1132.85 (16)
O3ii—K1—O2156.92 (17)O3viii—Hf1—K1114.41 (16)
O3iii—K1—O285.92 (15)O3i—Hf1—K148.33 (16)
O1—K1—O245.22 (15)O2iii—Hf1—K158.1 (2)
O1iv—K1—O299.52 (17)O2xi—Hf1—K1128.55 (18)
O1v—K1—O287.01 (18)O2—Hf1—K155.0 (2)
O3i—K1—O2v85.92 (15)O3x—Hf1—K1iii48.33 (16)
O3ii—K1—O2v60.53 (15)O3viii—Hf1—K1iii132.85 (16)
O3iii—K1—O2v156.92 (17)O3i—Hf1—K1iii114.41 (16)
O1—K1—O2v99.52 (17)O2iii—Hf1—K1iii55.0 (2)
O1iv—K1—O2v87.01 (19)O2xi—Hf1—K1iii58.1 (2)
O1v—K1—O2v45.22 (15)O2—Hf1—K1iii128.55 (18)
O2—K1—O2v114.71 (9)K1—Hf1—K1iii112.700 (12)
O3i—K1—O2iv156.92 (17)O3x—Hf1—K1xi114.41 (16)
O3ii—K1—O2iv85.91 (15)O3viii—Hf1—K1xi48.33 (16)
O3iii—K1—O2iv60.53 (15)O3i—Hf1—K1xi132.85 (16)
O1—K1—O2iv87.00 (19)O2iii—Hf1—K1xi128.54 (18)
O1iv—K1—O2iv45.22 (15)O2xi—Hf1—K1xi55.0 (2)
O1v—K1—O2iv99.52 (17)O2—Hf1—K1xi58.1 (2)
O2—K1—O2iv114.71 (9)K1—Hf1—K1xi112.700 (12)
O2v—K1—O2iv114.71 (9)K1iii—Hf1—K1xi112.700 (12)
O3i—K1—O2i45.45 (15)O1—Hf2—O1v86.9 (3)
O3ii—K1—O2i53.05 (15)O1—Hf2—O1iv86.9 (3)
O3iii—K1—O2i111.22 (19)O1v—Hf2—O1iv86.9 (3)
O1—K1—O2i132.78 (18)O1—Hf2—O4vi91.9 (2)
O1iv—K1—O2i141.22 (18)O1v—Hf2—O4vi87.2 (2)
O1v—K1—O2i95.76 (15)O1iv—Hf2—O4vi174.1 (2)
O2—K1—O2i104.69 (3)O1—Hf2—O4xii174.1 (2)
O2v—K1—O2i55.5 (2)O1v—Hf2—O4xii91.9 (2)
O2iv—K1—O2i138.21 (12)O1iv—Hf2—O4xii87.2 (2)
O3i—K1—O2ii111.22 (19)O4vi—Hf2—O4xii93.8 (2)
O3ii—K1—O2ii45.45 (15)O1—Hf2—O4xiii87.2 (2)
O3iii—K1—O2ii53.05 (15)O1v—Hf2—O4xiii174.1 (2)
O1—K1—O2ii141.22 (18)O1iv—Hf2—O4xiii91.9 (2)
O1iv—K1—O2ii95.76 (15)O4vi—Hf2—O4xiii93.8 (2)
O1v—K1—O2ii132.78 (18)O4xii—Hf2—O4xiii93.8 (2)
O2—K1—O2ii138.21 (12)O1—Hf2—K152.59 (18)
O2v—K1—O2ii104.69 (3)O1v—Hf2—K152.59 (18)
O2iv—K1—O2ii55.5 (2)O1iv—Hf2—K152.59 (18)
O2i—K1—O2ii86.00 (17)O4vi—Hf2—K1122.52 (15)
O3i—K1—O2iii53.05 (15)O4xii—Hf2—K1122.52 (15)
O3ii—K1—O2iii111.22 (19)O4xiii—Hf2—K1122.52 (15)
O3iii—K1—O2iii45.45 (15)O1—Hf2—K2v129.18 (18)
O1—K1—O2iii95.76 (15)O1v—Hf2—K2v52.5 (2)
O1iv—K1—O2iii132.78 (18)O1iv—Hf2—K2v64.5 (2)
O1v—K1—O2iii141.22 (18)O4vi—Hf2—K2v112.26 (15)
O2—K1—O2iii55.5 (2)O4xii—Hf2—K2v46.77 (15)
O2v—K1—O2iii138.21 (12)O4xiii—Hf2—K2v131.77 (16)
O2iv—K1—O2iii104.69 (3)K1—Hf2—K2v77.102 (15)
O2i—K1—O2iii86.00 (17)O1—Hf2—K2iv64.5 (2)
O2ii—K1—O2iii86.00 (17)O1v—Hf2—K2iv129.18 (18)
O4vi—K2—O4v90.85 (18)O1iv—Hf2—K2iv52.5 (2)
O4vi—K2—O4vii90.85 (18)O4vi—Hf2—K2iv131.77 (16)
O4v—K2—O4vii90.85 (18)O4xii—Hf2—K2iv112.26 (15)
O4vi—K2—O1viii149.05 (18)O4xiii—Hf2—K2iv46.77 (15)
O4v—K2—O1viii59.54 (14)K1—Hf2—K2iv77.102 (15)
O4vii—K2—O1viii81.55 (16)K2v—Hf2—K2iv115.167 (11)
O4vi—K2—O1ix81.55 (16)O1—Hf2—K252.5 (2)
O4v—K2—O1ix149.05 (18)O1v—Hf2—K264.5 (2)
O4vii—K2—O1ix59.54 (14)O1iv—Hf2—K2129.18 (18)
O1viii—K2—O1ix118.60 (5)O4vi—Hf2—K246.77 (15)
O4vi—K2—O159.54 (14)O4xii—Hf2—K2131.77 (16)
O4v—K2—O181.55 (16)O4xiii—Hf2—K2112.26 (15)
O4vii—K2—O1149.05 (18)K1—Hf2—K277.102 (15)
O1viii—K2—O1118.60 (5)K2v—Hf2—K2115.168 (11)
O1ix—K2—O1118.60 (5)K2iv—Hf2—K2115.166 (11)
O4vi—K2—O2103.51 (17)O3—P1—O2109.4 (4)
O4v—K2—O281.15 (17)O3—P1—O4110.5 (4)
O4vii—K2—O2163.59 (15)O2—P1—O4110.7 (4)
O1viii—K2—O282.04 (16)O3—P1—O1109.6 (4)
O1ix—K2—O2129.78 (19)O2—P1—O1106.9 (4)
O1—K2—O243.99 (15)O4—P1—O1109.6 (4)
O4vi—K2—O2ix81.15 (17)O3—P1—K1166.9 (2)
O4v—K2—O2ix163.59 (15)O2—P1—K166.3 (3)
O4vii—K2—O2ix103.51 (17)O4—P1—K182.4 (2)
O1viii—K2—O2ix129.78 (19)O1—P1—K162.1 (3)
O1ix—K2—O2ix43.99 (15)O3—P1—K279.3 (2)
O1—K2—O2ix82.04 (16)O2—P1—K267.4 (3)
O2—K2—O2ix86.8 (2)O4—P1—K2169.7 (2)
O4vi—K2—O2viii163.59 (15)O1—P1—K262.6 (3)
O4v—K2—O2viii103.51 (17)K1—P1—K287.73 (6)
O4vii—K2—O2viii81.15 (17)O3—P1—K1xi47.8 (3)
O1viii—K2—O2viii43.99 (15)O2—P1—K1xi62.0 (3)
O1ix—K2—O2viii82.04 (16)O4—P1—K1xi121.5 (2)
O1—K2—O2viii129.78 (19)O1—P1—K1xi128.4 (3)
O2—K2—O2viii86.8 (2)K1—P1—K1xi127.88 (6)
O2ix—K2—O2viii86.8 (2)K2—P1—K1xi67.25 (7)
O4vi—K2—P1viii171.54 (11)O3—P1—K2iv103.3 (3)
O4v—K2—P1viii81.50 (11)O2—P1—K2iv145.6 (3)
O4vii—K2—P1viii92.86 (11)O4—P1—K2iv45.3 (2)
O1viii—K2—P1viii25.14 (10)O1—P1—K2iv70.8 (3)
O1ix—K2—P1viii106.88 (13)K1—P1—K2iv84.01 (5)
O1—K2—P1viii115.33 (12)K2—P1—K2iv130.81 (7)
O2—K2—P1viii71.87 (13)K1xi—P1—K2iv146.83 (6)
O2ix—K2—P1viii105.32 (17)P1—O1—Hf2167.8 (5)
O2viii—K2—P1viii24.87 (11)P1—O1—K192.2 (3)
O4vi—K2—P1ix92.86 (11)Hf2—O1—K194.9 (2)
O4v—K2—P1ix171.54 (11)P1—O1—K292.2 (3)
O4vii—K2—P1ix81.50 (11)Hf2—O1—K295.8 (2)
O1viii—K2—P1ix115.33 (12)K1—O1—K2102.8 (2)
O1ix—K2—P1ix25.14 (10)P1—O2—Hf1156.4 (4)
O1—K2—P1ix106.88 (13)P1—O2—K188.3 (3)
O2—K2—P1ix105.32 (17)Hf1—O2—K191.6 (2)
O2ix—K2—P1ix24.87 (11)P1—O2—K287.7 (3)
O2viii—K2—P1ix71.87 (13)Hf1—O2—K2115.7 (2)
P1viii—K2—P1ix95.21 (7)K1—O2—K297.7 (2)
O4vi—K2—P181.50 (11)P1—O2—K1xi94.4 (3)
O4v—K2—P192.86 (11)Hf1—O2—K1xi88.6 (2)
O4vii—K2—P1171.54 (11)K1—O2—K1xi172.6 (2)
O1viii—K2—P1106.88 (13)K2—O2—K1xi75.56 (18)
O1ix—K2—P1115.33 (12)P1—O3—Hf1xiv150.2 (4)
O1—K2—P125.14 (10)P1—O3—K1xi110.2 (3)
O2—K2—P124.87 (11)Hf1xiv—O3—K1xi98.85 (19)
O2ix—K2—P171.87 (13)P1—O4—Hf2xv135.7 (3)
O2viii—K2—P1105.32 (17)P1—O4—K2iv113.4 (3)
P1viii—K2—P195.21 (7)Hf2xv—O4—K2iv101.33 (19)
P1ix—K2—P195.21 (7)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) y+1, z+1/2, x+3/2; (iii) z+1/2, x+3/2, y+1; (iv) z, x, y; (v) y, z, x; (vi) x+1, y1/2, z+1/2; (vii) z+1/2, x+1/2, y+1; (viii) y+1/2, z+1/2, x+1; (ix) z+1, x1/2, y+1/2; (x) z+1, x, y; (xi) y+3/2, z+1, x1/2; (xii) y1/2, z+1/2, x+1; (xiii) z+1/2, x+1, y1/2; (xiv) y, z, x1; (xv) y+1, z+1/2, x+1/2.
Important interatomic distances (Å) and angles (°) of K2GdHf(PO4)3 top
K1—O3i2.963 (6)K2—O2ix3.303 (7)
K1—O3ii2.963 (6)K2—O2viii3.303 (7)
K1—O3iii2.963 (6)Hf1—O3x2.150 (6)
K1—O13.102 (7)Hf1—O3viii2.150 (6)
K1—O1iv3.102 (7)Hf1—O3i2.150 (6)
K1—O1v3.102 (7)Hf1—O2iii2.157 (6)
K1—O23.212 (8)Hf1—O2xi2.157 (6)
K1—O2v3.212 (8)Hf1—O22.157 (6)
K1—O2iv3.212 (8)Hf2—O12.099 (5)
K1—O2i3.327 (9)Hf2—O1v2.099 (5)
K1—O2ii3.327 (9)Hf2—O1iv2.099 (5)
K1—O2iii3.327 (9)Hf2—O4vi2.146 (5)
K2—O4vi2.958 (6)Hf2—O4xii2.146 (5)
K2—O4v2.958 (6)Hf2—O4xiii2.146 (5)
K2—O4vii2.958 (6)P1—O31.502 (6)
K2—O1viii3.176 (8)P1—O21.504 (6)
K2—O1ix3.176 (8)P1—O41.509 (5)
K2—O13.176 (8)P1—O11.519 (6)
K2—O23.303 (7)
O3x—Hf1—O3viii95.6 (2)O1—Hf2—O4vi91.9 (2)
O3x—Hf1—O3i95.6 (2)O1v—Hf2—O4vi87.2 (2)
O3viii—Hf1—O3i95.6 (2)O1v—Hf2—O4xii91.9 (2)
O3x—Hf1—O2iii92.8 (3)O1iv—Hf2—O4xii87.2 (2)
O3i—Hf1—O2iii82.1 (2)O4vi—Hf2—O4xii93.8 (2)
O3x—Hf1—O2xi82.1 (2)O1—Hf2—O4xiii87.2 (2)
O3viii—Hf1—O2xi92.8 (3)O1iv—Hf2—O4xiii91.9 (2)
O2iii—Hf1—O2xi89.8 (2)O4vi—Hf2—O4xiii93.8 (2)
O3viii—Hf1—O282.1 (2)O4xii—Hf2—O4xiii93.8 (2)
O3i—Hf1—O292.8 (3)O3—P1—O2109.4 (4)
O2iii—Hf1—O289.8 (2)O3—P1—O4110.5 (4)
O2xi—Hf1—O289.8 (2)O2—P1—O4110.7 (4)
O1—Hf2—O1v86.9 (3)O3—P1—O1109.6 (4)
O1—Hf2—O1iv86.9 (3)O2—P1—O1106.9 (4)
O1v—Hf2—O1iv86.9 (3)O4—P1—O1109.6 (4)
Symmetry codes: (i) -x+3/2, -y+1, z+1/2; (ii) -y+1, z+1/2, -x+3/2; (iii) z+1/2, -x+3/2, -y+1; (iv) z, x, y; (v) y, z, x; (vi) -x+1, y-1/2, -z+1/2; (vii) z+1/2, -x+1/2, -y+1; (viii) y+1/2, -z+1/2, -x+1; (ix) -z+1, x-1/2, -y+1/2; (x) z+1, x, y; (xi) -y+3/2, -z+1, x-1/2; (xii) y-1/2, -z+1/2, -x+1; (xiii) -z+1/2, -x+1, y-1/2.
Rietveld refinement for polycrystalline K2Gd0.99Ce0.01Hf(PO4)3 top
Crystal systemCubic
Space groupP213
a = b = c (Å)10.33073 (6)
α = β = γ (°)90
V3)1102.537 (19)
No. of formula units, Z4
2θ interval (°)5–75
DiffractometerRigaku SmartLab 9 KW
Radiation/wavelength (λ/Å)Cu Kα1/Kα2 = 1.5406/1.5444
Step size (°)0.02
Counting time (s)0.115364
No. of reflns246
No. of refined/params46
Rp (%)4.54
Rwp (%)5.44
GOF (χ2)1.791
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds