Download citation
Download citation
link to html
Two com­plexes of 5-phenyl-3-(pyridin-2-yl)-1,2,4-triazine (PPTA), namely (ethanol-κO)bis­(nitrato-κO)[5-phenyl-3-(pyridin-2-yl-κN)-1,2,4-triazine-κN2]cop­per(II), [Cu(NO3)2(C14H10N4)(C2H6O)] or [Cu(NO3)2(PPTA)(EtOH)] (1), and bis­[μ-5-phenyl-3-(pyridin-2-yl)-1,2,4-triazine]-κ3N1:N2,N33N2,N3:N1-bis­[(nitrato-κO)silver(I)], [Ag2(NO3)2(C14H10N4)2] or [Ag2(NO3)2(μ-PPTA)2] (2), were prepared and characterized by elemental analysis, FT–IR spectroscopy and single-crystal X-ray diffraction. The X-ray structure analysis of 1 revealed a copper com­plex with square-pyramdial geometry containing two O-donor nitrate ligands along with an N,N′-donor PPTA ligand and one O-donor ethanol ligand. In the binuclear structure of 2, formed by the bridging of two PPTA ligands, each Ag atom has an AgN3O environment and square-planar geometry. In addition to the four dative inter­actions, each Ag atom inter­acts with two O atoms of two nitrate ligands on adjacent com­plexes to com­plete a pseudo-octa­hedral geometry. Density functional theory (DFT) calculations revealed that the geometry around the Cu and Ag atoms in 1opt and 2opt (opt is optimized) for an isolated mol­ecule is the same as the experimental results. In 1, O—H...O hydrogen bonds form R12(4) motifs. In the crystal network of the com­plexes, in addition to the hydrogen bonds, there are π–π stacking inter­actions between the aromatic rings (phenyl, pyridine and triazine) of the ligands on adjacent com­plexes. The ability of the ligand and com­plexes 1 and 2 to inter­act with ten selected biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B-DNA) was investigated by docking studies. The results show that the studied com­pounds can inter­act with proteins better than doxorubicin (except for TrxR and Top II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619011719/lf3098sup1.cif
Contains datablocks sv0120, sv0187, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619011719/lf3098sv0120sup2.hkl
Contains datablock sv0120

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619011719/lf3098sv0187sup3.hkl
Contains datablock sv0187

CCDC references: 1887083; 1887082

Computing details top

For both structures, data collection: X-AREA (Stoe & Cie, 2016); cell refinement: X-AREA (Stoe & Cie, 2016); data reduction: X-AREA (Stoe & Cie, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015). Molecular graphics: ORTEP-3 (Farrugia, 2012), ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Bergerhoff et al., 1996) for sv0120; ORTEP-3 (Farrugia, 2012), ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Bergerhoff, et al., 1996) for sv0187. For both structures, software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(Ethanol-κO)bis(nitrato-κO)[5-phenyl-3-(pyridin-2-yl-κN)-1,2,4-triazine-κN2]copper(II) (sv0120) top
Crystal data top
[Cu(NO3)2(C14H10N4)(C2H6O)]F(000) = 956
Mr = 467.89Dx = 1.627 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54186 Å
a = 18.8929 (4) ÅCell parameters from 20318 reflections
b = 12.8744 (2) Åθ = 4.2–70.7°
c = 8.4047 (2) ŵ = 2.11 mm1
β = 110.904 (2)°T = 180 K
V = 1909.76 (7) Å3Block, green
Z = 40.25 × 0.18 × 0.13 mm
Data collection top
Stoe Stadivari
diffractometer
3519 reflections with I > 2σ(I)
Radiation source: GeniX 3D HF CuRint = 0.012
ω scansθmax = 70.2°, θmin = 4.3°
Absorption correction: multi-scan
(LANA; Koziskova et al., 2016)
h = 2222
Tmin = 0.443, Tmax = 0.909k = 1511
22502 measured reflectionsl = 910
3564 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0346P)2 + 1.5566P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
3564 reflectionsΔρmax = 0.59 e Å3
277 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00030 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data were collected at 180 K using a Stoe StadiVari diffractometer equipped with a copper X-ray microsource (Cu Kα radiation) and a Dectris Pilatus 300k detector. Intensity data were collected using ω scans. All data were corrected for Lorentz and polarization effects. Absorption effects were corrected based on numerical absorption corrections, in addition, a scaling correction was applied using Stoe X-Area software. Structures were solved by direct methods (ShelxS) and refined by full-matrix least-squares against F2 by using ShelxL (Sheldrick, 2008). Diagrams of the molecular structure and unit cell were created using Ortep-III and Diamond (Farrugia, 1997, Burnett & Johnson, 1996)(Bergerhof et al., 1996). Crystallographic data and details of the data collection and structure refinement are listed in Table 1, selected bond lengths and angles in Table 2 and hydrogen bond geometries in Table 3.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64705 (11)0.81082 (15)0.0835 (2)0.0286 (4)
H10.69090.84820.08690.034*
C20.57648 (12)0.84640 (15)0.0205 (3)0.0317 (4)
H20.57200.90760.08660.038*
C30.51282 (11)0.79177 (16)0.0267 (3)0.0329 (4)
H30.46390.81540.09610.040*
C40.52086 (10)0.70195 (15)0.0695 (2)0.0291 (4)
H40.47790.66220.06530.035*
C50.59277 (10)0.67196 (13)0.1714 (2)0.0230 (4)
C60.60741 (10)0.57897 (14)0.2810 (2)0.0224 (3)
C70.64396 (11)0.41872 (15)0.4815 (3)0.0299 (4)
H7A0.65620.36000.55470.036*
C80.56656 (10)0.43869 (14)0.3853 (2)0.0237 (4)
C90.50393 (10)0.37283 (14)0.3911 (2)0.0244 (4)
C100.51667 (11)0.28573 (15)0.4968 (2)0.0293 (4)
H100.56680.26790.56780.035*
C110.45628 (12)0.22534 (16)0.4981 (3)0.0353 (4)
H110.46530.16580.56930.042*
C120.38287 (12)0.25100 (17)0.3963 (3)0.0362 (5)
H120.34160.20950.39840.043*
C130.36978 (11)0.33728 (16)0.2916 (3)0.0339 (4)
H130.31940.35500.22200.041*
C140.42953 (11)0.39788 (15)0.2877 (2)0.0289 (4)
H140.42010.45660.21470.035*
N10.65537 (8)0.72544 (12)0.17933 (19)0.0241 (3)
N20.68028 (8)0.56070 (12)0.37041 (19)0.0240 (3)
N30.69957 (9)0.47768 (12)0.4742 (2)0.0290 (3)
N40.54949 (8)0.52139 (12)0.28343 (19)0.0237 (3)
Cu10.75252 (2)0.66284 (2)0.33301 (3)0.02318 (10)
N50.81044 (9)0.86450 (12)0.4174 (2)0.0270 (3)
O10.81917 (7)0.78373 (10)0.33616 (17)0.0283 (3)
O20.85819 (8)0.93415 (11)0.4465 (2)0.0392 (3)
O30.75443 (8)0.87134 (12)0.4600 (2)0.0403 (4)
N60.85967 (9)0.61392 (13)0.6347 (2)0.0317 (4)
O40.84207 (7)0.58606 (10)0.47811 (16)0.0274 (3)
O50.91350 (9)0.57154 (14)0.7429 (2)0.0512 (4)
O60.82087 (10)0.68236 (13)0.66779 (19)0.0449 (4)
O70.77363 (8)0.59575 (12)0.10796 (18)0.0296 (3)
H70.7575 (15)0.545 (2)0.078 (3)0.038 (7)*
C150.84188 (12)0.61248 (18)0.0730 (3)0.0364 (5)
H15A0.86490.67920.12460.044*
H15B0.82890.61790.05160.044*
C160.89888 (12)0.52694 (18)0.1408 (3)0.0449 (5)
H16A0.87720.46110.08680.067*
H16B0.91210.52130.26440.067*
H16C0.94450.54270.11560.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0276 (9)0.0241 (9)0.0322 (10)0.0040 (7)0.0085 (8)0.0041 (7)
C20.0354 (11)0.0248 (9)0.0311 (10)0.0002 (8)0.0072 (8)0.0067 (7)
C30.0261 (10)0.0327 (10)0.0344 (10)0.0026 (8)0.0039 (8)0.0080 (8)
C40.0211 (9)0.0303 (10)0.0333 (10)0.0004 (7)0.0066 (7)0.0051 (8)
C50.0225 (8)0.0213 (9)0.0255 (9)0.0006 (7)0.0088 (7)0.0005 (7)
C60.0208 (8)0.0223 (9)0.0245 (8)0.0014 (7)0.0086 (7)0.0003 (7)
C70.0273 (9)0.0247 (9)0.0363 (10)0.0021 (7)0.0095 (8)0.0084 (8)
C80.0248 (9)0.0218 (9)0.0263 (9)0.0015 (7)0.0113 (7)0.0002 (7)
C90.0259 (9)0.0237 (9)0.0260 (9)0.0001 (7)0.0120 (7)0.0002 (7)
C100.0277 (10)0.0283 (10)0.0330 (10)0.0024 (7)0.0121 (8)0.0055 (8)
C110.0384 (11)0.0310 (10)0.0397 (11)0.0017 (8)0.0178 (9)0.0096 (9)
C120.0317 (10)0.0373 (11)0.0426 (11)0.0101 (9)0.0171 (9)0.0026 (9)
C130.0249 (10)0.0380 (11)0.0363 (11)0.0022 (8)0.0079 (8)0.0036 (8)
C140.0275 (9)0.0288 (10)0.0300 (9)0.0001 (7)0.0095 (8)0.0049 (7)
N10.0213 (7)0.0233 (7)0.0268 (7)0.0011 (6)0.0077 (6)0.0020 (6)
N20.0209 (7)0.0226 (7)0.0281 (8)0.0011 (6)0.0082 (6)0.0031 (6)
N30.0240 (8)0.0249 (8)0.0356 (9)0.0025 (6)0.0075 (7)0.0075 (6)
N40.0217 (7)0.0225 (7)0.0272 (7)0.0002 (6)0.0092 (6)0.0024 (6)
Cu10.01790 (15)0.02240 (16)0.02813 (16)0.00056 (9)0.00683 (11)0.00200 (10)
N50.0237 (8)0.0232 (8)0.0298 (8)0.0011 (6)0.0043 (6)0.0022 (6)
O10.0255 (6)0.0245 (7)0.0367 (7)0.0028 (5)0.0134 (6)0.0038 (5)
O20.0358 (8)0.0275 (7)0.0482 (9)0.0115 (6)0.0075 (7)0.0027 (6)
O30.0327 (8)0.0375 (8)0.0561 (9)0.0015 (6)0.0222 (7)0.0077 (7)
N60.0288 (8)0.0335 (9)0.0295 (8)0.0024 (7)0.0063 (7)0.0002 (7)
O40.0227 (6)0.0309 (7)0.0261 (6)0.0017 (5)0.0055 (5)0.0017 (5)
O50.0453 (9)0.0576 (11)0.0338 (8)0.0181 (8)0.0065 (7)0.0016 (7)
O60.0547 (10)0.0469 (9)0.0338 (8)0.0185 (8)0.0165 (7)0.0013 (7)
O70.0286 (7)0.0289 (8)0.0327 (7)0.0031 (6)0.0124 (6)0.0049 (6)
C150.0354 (11)0.0449 (12)0.0337 (10)0.0020 (9)0.0181 (9)0.0032 (9)
C160.0343 (11)0.0361 (12)0.0633 (15)0.0016 (9)0.0164 (11)0.0117 (11)
Geometric parameters (Å, º) top
C1—N11.338 (2)C12—H120.9500
C1—C21.386 (3)C13—C141.382 (3)
C1—H10.9500C13—H130.9500
C2—C31.378 (3)C14—H140.9500
C2—H20.9500N1—Cu11.9987 (15)
C3—C41.388 (3)N2—N31.345 (2)
C3—H30.9500N2—Cu11.9993 (15)
C4—C51.377 (3)Cu1—O41.9632 (13)
C4—H40.9500Cu1—O11.9962 (13)
C5—N11.350 (2)Cu1—O72.2407 (14)
C5—C61.475 (2)N5—O21.233 (2)
C6—N41.328 (2)N5—O31.235 (2)
C6—N21.333 (2)N5—O11.286 (2)
C7—N31.315 (3)N6—O51.224 (2)
C7—C81.419 (3)N6—O61.239 (2)
C7—H7A0.9500N6—O41.288 (2)
C8—N41.332 (2)O7—C151.437 (2)
C8—C91.471 (2)O7—H70.73 (3)
C9—C101.397 (3)C15—C161.503 (3)
C9—C141.401 (3)C15—H15A0.9900
C10—C111.384 (3)C15—H15B0.9900
C10—H100.9500C16—H16A0.9800
C11—C121.385 (3)C16—H16B0.9800
C11—H110.9500C16—H16C0.9800
C12—C131.384 (3)
N1—C1—C2122.08 (17)C1—N1—C5118.46 (15)
N1—C1—H1119.0C1—N1—Cu1127.13 (12)
C2—C1—H1119.0C5—N1—Cu1114.39 (12)
C3—C2—C1119.04 (18)C6—N2—N3119.49 (15)
C3—C2—H2120.5C6—N2—Cu1114.88 (12)
C1—C2—H2120.5N3—N2—Cu1125.62 (11)
C2—C3—C4119.38 (18)C7—N3—N2116.92 (15)
C2—C3—H3120.3C6—N4—C8116.38 (15)
C4—C3—H3120.3O4—Cu1—O189.12 (5)
C5—C4—C3118.31 (17)O4—Cu1—N1173.50 (6)
C5—C4—H4120.8O1—Cu1—N197.10 (6)
C3—C4—H4120.8O4—Cu1—N293.24 (6)
N1—C5—C4122.72 (16)O1—Cu1—N2166.79 (6)
N1—C5—C6114.66 (15)N1—Cu1—N281.13 (6)
C4—C5—C6122.62 (16)O4—Cu1—O787.53 (5)
N4—C6—N2125.70 (16)O1—Cu1—O790.59 (5)
N4—C6—C5119.39 (15)N1—Cu1—O790.51 (6)
N2—C6—C5114.91 (15)N2—Cu1—O7102.49 (6)
N3—C7—C8123.13 (17)O2—N5—O3122.15 (17)
N3—C7—H7A118.4O2—N5—O1118.05 (16)
C8—C7—H7A118.4O3—N5—O1119.78 (15)
N4—C8—C7118.37 (16)N5—O1—Cu1115.95 (11)
N4—C8—C9117.97 (16)O5—N6—O6123.47 (17)
C7—C8—C9123.66 (16)O5—N6—O4118.54 (17)
C10—C9—C14119.09 (17)O6—N6—O4117.99 (15)
C10—C9—C8121.72 (16)N6—O4—Cu1110.22 (11)
C14—C9—C8119.19 (16)C15—O7—Cu1123.89 (13)
C11—C10—C9120.03 (18)C15—O7—H7111 (2)
C11—C10—H10120.0Cu1—O7—H7117 (2)
C9—C10—H10120.0O7—C15—C16112.74 (18)
C10—C11—C12120.53 (18)O7—C15—H15A109.0
C10—C11—H11119.7C16—C15—H15A109.0
C12—C11—H11119.7O7—C15—H15B109.0
C13—C12—C11119.79 (18)C16—C15—H15B109.0
C13—C12—H12120.1H15A—C15—H15B107.8
C11—C12—H12120.1C15—C16—H16A109.5
C14—C13—C12120.40 (19)C15—C16—H16B109.5
C14—C13—H13119.8H16A—C16—H16B109.5
C12—C13—H13119.8C15—C16—H16C109.5
C13—C14—C9120.15 (18)H16A—C16—H16C109.5
C13—C14—H14119.9H16B—C16—H16C109.5
C9—C14—H14119.9
Bis[µ-5-phenyl-3-(pyridin-2-yl)-1,2,4-triazine]-κ3N1:N2,N3;N2,N3:N1-bis[(nitrato-κO)silver(I)] (sv0187) top
Crystal data top
[Ag2(NO3)2(C14H10N4)2]F(000) = 800
Mr = 404.14Dx = 1.973 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54186 Å
a = 6.1435 (1) ÅCell parameters from 17682 reflections
b = 16.2987 (4) Åθ = 3.2–70.4°
c = 13.9126 (3) ŵ = 12.13 mm1
β = 102.414 (2)°T = 180 K
V = 1360.51 (5) Å3Rod, yellow
Z = 40.30 × 0.06 × 0.04 mm
Data collection top
Stoe STADIVARI
diffractometer
2175 reflections with I > 2σ(I)
Radiation source: microfocusRint = 0.023
ω scansθmax = 67.9°, θmin = 4.2°
Absorption correction: numerical
[X-RED32 (Stoe & Cie, 2016) and LANA (Koziskova et al., 2016)
h = 57
Tmin = 0.065, Tmax = 0.208k = 1918
14066 measured reflectionsl = 1615
2432 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.7721P]
where P = (Fo2 + 2Fc2)/3
2432 reflections(Δ/σ)max = 0.002
208 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data were collected at 180 K using a Stoe StadiVari diffractometer equipped with a copper X-ray microsource (Cu Kα radiation) and a Dectris Pilatus 300k detector. Intensity data were collected using ω scans. All data were corrected for Lorentz and polarization effects. Absorption effects were corrected based on numerical absorption corrections, in addition, a scaling correction was applied using Stoe X-Area software. Structures were solved by direct methods (ShelxS) and refined by full-matrix least-squares against F2 by using ShelxL (Sheldrick, 2008). Diagrams of the molecular structure and unit cell were created using Ortep-III and Diamond (Farrugia, 1997, Burnett & Johnson, 1996)(Bergerhof et al., 1996). Crystallographic data and details of the data collection and structure refinement are listed in Table 1, selected bond lengths and angles in Table 2 and hydrogen bond geometries in Table 3.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.21648 (3)0.50990 (2)0.42836 (2)0.04241 (9)
C10.1653 (4)0.63295 (16)0.32500 (19)0.0318 (5)
H10.24580.58300.31130.038*
C20.2712 (4)0.70554 (17)0.29117 (19)0.0327 (6)
H20.42160.70530.25560.039*
C30.1554 (5)0.77841 (17)0.3098 (2)0.0360 (6)
H30.22440.82910.28730.043*
C40.0639 (5)0.77619 (16)0.3621 (2)0.0346 (6)
H40.14790.82540.37520.041*
C50.1590 (4)0.70157 (16)0.39482 (19)0.0291 (5)
C60.3910 (4)0.69761 (15)0.45402 (19)0.0287 (5)
C70.7964 (4)0.68641 (16)0.55961 (18)0.0285 (5)
H70.94360.68280.59840.034*
C80.7006 (4)0.76379 (16)0.53618 (19)0.0298 (5)
C90.8196 (4)0.84045 (16)0.57079 (19)0.0312 (6)
C101.0486 (4)0.84146 (17)0.6121 (2)0.0352 (6)
H101.13330.79240.61490.042*
C111.1514 (5)0.91381 (18)0.6489 (2)0.0404 (7)
H111.30690.91430.67650.049*
C121.0295 (6)0.98521 (18)0.6457 (3)0.0483 (8)
H121.10131.03480.67080.058*
C130.8021 (6)0.98474 (18)0.6057 (3)0.0521 (8)
H130.71781.03370.60480.063*
C140.6980 (5)0.91293 (18)0.5671 (2)0.0406 (7)
H140.54320.91310.53800.049*
N10.0458 (3)0.62995 (13)0.37628 (16)0.0295 (5)
N20.4782 (4)0.62325 (14)0.47281 (17)0.0321 (5)
N30.6866 (4)0.61817 (13)0.52903 (17)0.0313 (5)
N40.4934 (3)0.76870 (13)0.48247 (15)0.0296 (5)
N50.3515 (4)0.59312 (15)0.67703 (18)0.0374 (5)
O10.3553 (4)0.66883 (13)0.6793 (2)0.0583 (6)
O20.5185 (4)0.55112 (14)0.71314 (18)0.0542 (6)
O3A0.1920 (5)0.55619 (18)0.6205 (3)0.0400 (10)*0.726 (9)
O3B0.1548 (15)0.5681 (5)0.6709 (8)0.050 (3)*0.274 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03206 (13)0.02377 (12)0.06335 (16)0.00061 (7)0.00759 (9)0.00302 (9)
C10.0283 (14)0.0297 (13)0.0350 (14)0.0042 (10)0.0015 (10)0.0001 (10)
C20.0255 (14)0.0354 (14)0.0341 (14)0.0005 (10)0.0001 (10)0.0009 (11)
C30.0356 (16)0.0288 (14)0.0395 (15)0.0023 (11)0.0007 (11)0.0006 (11)
C40.0326 (15)0.0254 (13)0.0421 (15)0.0030 (10)0.0002 (11)0.0010 (11)
C50.0264 (14)0.0285 (13)0.0322 (13)0.0037 (9)0.0057 (10)0.0037 (10)
C60.0246 (14)0.0270 (13)0.0340 (13)0.0028 (10)0.0057 (10)0.0012 (10)
C70.0216 (13)0.0295 (13)0.0319 (13)0.0013 (9)0.0000 (10)0.0028 (10)
C80.0264 (14)0.0323 (14)0.0302 (13)0.0018 (10)0.0051 (10)0.0006 (10)
C90.0321 (15)0.0281 (14)0.0309 (13)0.0045 (10)0.0015 (10)0.0010 (10)
C100.0302 (15)0.0320 (15)0.0417 (15)0.0025 (10)0.0043 (11)0.0019 (11)
C110.0301 (16)0.0403 (16)0.0470 (17)0.0088 (11)0.0005 (12)0.0024 (13)
C120.0474 (19)0.0279 (15)0.0587 (19)0.0101 (12)0.0126 (14)0.0005 (13)
C130.049 (2)0.0266 (16)0.069 (2)0.0010 (12)0.0128 (15)0.0037 (14)
C140.0346 (16)0.0301 (15)0.0495 (17)0.0013 (11)0.0080 (12)0.0029 (12)
N10.0258 (12)0.0269 (11)0.0339 (11)0.0031 (8)0.0022 (8)0.0002 (9)
N20.0232 (11)0.0301 (12)0.0401 (13)0.0004 (8)0.0002 (9)0.0013 (9)
N30.0238 (12)0.0290 (12)0.0388 (12)0.0018 (8)0.0019 (9)0.0000 (9)
N40.0265 (12)0.0282 (11)0.0324 (12)0.0012 (8)0.0023 (9)0.0013 (8)
N50.0278 (13)0.0359 (14)0.0436 (14)0.0071 (9)0.0033 (10)0.0046 (10)
O10.0455 (14)0.0330 (13)0.0866 (18)0.0020 (9)0.0073 (12)0.0166 (11)
O20.0351 (12)0.0481 (13)0.0706 (15)0.0051 (9)0.0082 (10)0.0136 (11)
Geometric parameters (Å, º) top
Ag1—N3i2.216 (2)C8—C91.475 (4)
Ag1—N12.264 (2)C9—C141.393 (4)
Ag1—N22.440 (2)C9—C101.401 (4)
C1—N11.340 (3)C10—C111.383 (4)
C1—C21.383 (4)C11—C121.379 (4)
C2—C31.380 (4)C12—C131.388 (5)
C3—C41.387 (4)C13—C141.386 (4)
C4—C51.383 (4)N2—N31.352 (3)
C5—N11.355 (3)N3—Ag1i2.216 (2)
C5—C61.486 (4)N5—O11.234 (3)
C6—N21.328 (3)N5—O21.246 (3)
C6—N41.337 (3)N5—O3B1.260 (9)
C7—N31.323 (3)N5—O3A1.269 (4)
C7—C81.400 (4)O3A—O3B0.806 (10)
C8—N41.333 (3)
N3i—Ag1—N1168.20 (8)C11—C12—C13120.1 (3)
N3i—Ag1—N2121.39 (7)C14—C13—C12120.1 (3)
N1—Ag1—N270.21 (8)C13—C14—C9120.2 (3)
N1—C1—C2122.9 (2)C1—N1—C5117.9 (2)
C3—C2—C1119.1 (3)C1—N1—Ag1122.05 (17)
C2—C3—C4118.7 (3)C5—N1—Ag1120.01 (17)
C5—C4—C3119.3 (2)C6—N2—N3117.5 (2)
N1—C5—C4122.1 (2)C6—N2—Ag1115.17 (17)
N1—C5—C6117.4 (2)N3—N2—Ag1126.22 (16)
C4—C5—C6120.5 (2)C7—N3—N2119.2 (2)
N2—C6—N4126.0 (2)C7—N3—Ag1i128.10 (18)
N2—C6—C5116.5 (2)N2—N3—Ag1i112.27 (15)
N4—C6—C5117.4 (2)C8—N4—C6116.5 (2)
N3—C7—C8121.5 (2)O1—N5—O2122.0 (2)
N4—C8—C7119.2 (2)O1—N5—O3B109.7 (5)
N4—C8—C9118.6 (2)O2—N5—O3B123.0 (5)
C7—C8—C9122.2 (2)O1—N5—O3A119.9 (3)
C14—C9—C10119.3 (2)O2—N5—O3A116.7 (3)
C14—C9—C8118.8 (2)O3B—N5—O3A37.2 (4)
C10—C9—C8121.8 (2)O3B—O3A—N570.9 (7)
C11—C10—C9120.0 (3)O3A—O3B—N572.0 (8)
C12—C11—C10120.4 (3)
Symmetry code: (i) x+1, y+1, z+1.
Selected bond lengths (Å) and angles (°) for complexes of 1, 1opt, 2 and 2opt with estimated standard deviations in parentheses top
11opt22opt
Cu1—N11.9987 (15)2.061Ag1—N12.264 (2)2.314
Cu1—N21.9993 (15)2.054Ag1—N22.440 (2)2.508
Cu1—O11.9962 (13)1.994Ag1—N3i2.216 (2)2.281
Cu1—O41.9632 (13)1.983Ag1—O3A2.680 (3)
Cu1—O72.2407 (14)2.297
N1—Cu1—O197.10 (6)N1—Ag1—N270.21 (8)
N1—Cu1—O4173.50 (6)N1—Ag1—N3i168.20 (8)
N1—Cu1—O790.51 (6)N2—Ag1—N3i121.39 (7)
N1—Cu1—N281.13 (6)N1—Ag1—O3A85.56 (8)
N1—Cu1—O6129.32 (6)N2—Ag1—O3A153.95 (8)
O4—Cu1—O653.42 (5)N3i—Ag1—O3A82.70 (9)
Symmetry code: (i) -x+1, -y+1, -z+1.
Hydrogen-bond dimensions (Å, °) in complexes of 1 and 2 top
D—H···AD—HH···AD—H···AD···A
1
C10—H10···O6i0.9502.700158.53.601 (2)
C11—H11···O5i0.9502.575133.43.300 (2)
C12—H12···O3ii0.9512.708155.13.592 (3)
C14—H14···O2iii0.9502.559158.23.458 (2)
C4—H4···O2iii0.9492.458159.73.364 (2)
C2—H2···O5iv0.9502.552169.53.491 (3)
C16—H16A···O3v0.9802.641131.63.372 (3)
C15—H15B···O6vi0.9892.453161.53.406 (3)
O7—H7···O3v0.73 (3)2.26 (3)161 (3)2.956 (2)
O7—H7···O2v0.73 (3)2.56 (3)140 (3)3.151 (2)
2
C12—H12···O2vii0.9512.552127.63.221 (4)
C3—H3···O2viii0.9502.583168.53.519 (4)
C3—H3···O1viii0.9502.694120.03.275 (4)
C2—H2···O1viii0.9502.567125.83.216 (3)
Symmetry codes: (i) -x+3/2, y-1/2, -z+3/2; (ii) -x+1, -y+1, -z+1; (iii) x-1/2, -y+3/2, z-1/2; (iv) -x+3/2, y+1/2, -z+1/2; (v) -x+3/2, y-1/2, -z+1/2; (vi) x, y, z-1; (vii) x+2, -y+3/2, z+1/2; (viii) -x-1, y+1/2, -z+1/2.
ππ stacking interactions dimensions (Å and °) in complexes 1 and 2 top
Centroid–centroid distanceAngle between the planesType
13.5971.39Ph···tz
3.8991.68Ph···py
23.4677.65Ph···tz
3.7629.92Ph···py
The NBO analysis results for the PPTA and complexes 1 and 2. The values are the total of charge on the similar atoms. The values of parentheses show the variation of charge on the atoms after coordination top
CPPTACEtOHHPPTAHEtOHNpyN2tzN3tzN4tzNNitratoONitratoOEtOHMetal
PPTA-0.08+0.25-0.42-0.27-0.19-0.43
1opt-0.04 (+0.04)-0.35+0.24 (-0.01)+0.27-0.53 (-0.11)-0.33 (-0.06)-0.15 (+0.04)-0.50 (-0.07)+0.69-0.46-0.81+0.99
2opt-0.04 (+0.04)+0.24 (-0.01)-0.57 (-0.15)-0.33 (-0.06)-0.31 (-0.12)-0.51 (-0.08)+0.69-0.52+0.73
HOMO and LUMO orbitals for optimized structures of PPTA and complexes 1 and 2 top
HOMOLUMOTotal Energy (kcal mol-1)HOMO/LUMO Gap (kcal mol-1)
PPTA(a)(b)-475964.3895.83
1opt(c)(d)-1048023.6769.52
2opt(e)(f)-1486507.1260.81
The calculated fitness values for PPTA ligand and complexes 1 and 2 along with doxorubicin top
B-DNAs/MinBRAF-KinaseCatBDNA-GyraseHDAC7rHARNRTrxRTSTop II
PPTA50.9842.9530.7146.7247.7145.6239.1348.7944.8542.10
Complex 161.2454.4932.7554.2650.3656.6645.0658.2350.7350.24
Complex 264.9959.5325.8568.0339.8762.3152.2849.0958.40-2.62
Doxorubicin83.1054.2125.9552.9750.7350.1049.1866.7053.3459.05
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds