


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807040184/lh2472sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536807040184/lh2472Isup2.hkl |
CCDC reference: 660154
Bis-N,N'(salicylidene)-2,2'-dimethyl-1,3-propanediamine was synthesized from salicylaldehyde and 2,2'-dimethyl-1,3-propanediamine in EtOH. This compound was reduced using NaBH4 in MeOH resulting in the formation of bis-N,N'(2-hydroxybenzyl)-2,2'-dimethyl-1,3-propanediamine. 0.628 g (2 mmol) bis-N,N'(2-hydroxybenzyl)-2,2'-dimethyl-1,3-propanediamine was dissolved in 50 ml dmf and heated to 383 K. To this solution were added a solution of 0.712 g (3 mmol) NiCl2.6H2O in 20 ml hot MeOH and a solution of 0.408 g (6 mmol) NaHCOO in 5 ml hot water. This final mixture was left to stand for 2–3 days. After this period, light green crystals were filtered and dried in air. [C46H64N6O10Ni3] Element Analysis results: Ni, found %: 16.24 (calculated %:16.65); N found %: 7.53 (calculated %: 7.94). The measured dmf mass using thermogravimetrie: % 13.69 (calculated: %13.80).
The H atoms of the phenyl rings were positioned geometrically using riding model Uiso(H) = 1.2Ueq(C). The H atoms on all methyl groups excluding C23 were positioned geometrically using a riding-model with Uiso(H) = 1.5Ueq(C). All other hydrogen atoms were located in a difference map and refined isotropically.
ONNO type Schiff base ligands have been known since as early as 1946 (Barkelew & Calvin, 1946; Martell et al., 1958). Schiff-bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most transition metals (Drew et al., 1985; Fukuhara et al., 1990). Oxygen-bridged polynuclear complexes of the transition series are of interest because of their magnetic properties (Barandika et al., 1999; Ribas et al., 1999; Du et al., 2005). The ONNO type ligand stereochemistry around the metal ions and the structure of the O-atom bridges influence the magnetic exchange interactions. These complexes may be homo or heteronuclear. Polynuclear metal complexes of Schiff-base ligands have been the subject on considerable interest in our laboratory, e.g. [NiZnI2(LH2)(dmf)] (Tatar, 2002), [Ni{Ni(LH2)(O2CMe)(dmf)}2] (Tatar & Atakol, 2002), [Ni(LH2)N3(dmf)H2O and Ni(DMLH2)N3(dmf)] (Durmuş et al., 2005). Where LH2 is N,N'-bis(salicylidene)-1,3-propanediamine.
In this study, bis-N,N'(salicylidene)-2,2'-dimethyl-1,3-propanediamine was reduced by using NaBH4 in MeOH and we obtained an ONNO type ligand. The title molecule was prepared by initating a reaction between the ONNO ligand and nickel(II)-formato in dmf. The crystal and molecular structure of the title homotrinuclear complex has been determined. Recently details of a similar complex were reported literature (Reglinski et al., 2006).
In the title complex (Fig. 1), the central Ni1 atom, which is located on an inversion centre, has a distorted octahedral coordination environment, formed by four O atoms from two DMLH2 ligands in the equatorial plane [Ni1—O1 = 2.075 (3), Ni1—O2 = 2.076 (3) Å] and two O atoms of two –O2CH groups located at the axial positions [Ni1—O4 = 2.160 (3) Å]. The bond angles around Ni1 angles range between 99.66 (12) and 80.34 (12)°.
The terminal Ni2 atoms also have distorted octahedral coordination environments formed by two O and two N atoms from DMLH2 ligands in the equatorial plane and bond distances ranging between 2.037 (3) - 2.098 (4) Å. The distance of atom Ni2 from the O1/O2/N1/N2 mean plane is 0.0546 (8) Å. The dihedral angle between the planes O1—Ni2—O2 and N1—Ni2—N2 is 4.3 (2)°. The axial positions are occupied by atoms O3 and O5i [symmetry code: (i) -x, -y, -z] from a dmf molecule and an –O2CH group, respectively. This coordination involves a fairly long axial Ni2—O3 bond of 2.147 (3) Å. The Ni2 coordination involves bond angles ranging between 81.85 (12) and 93.54 (16)°.
The conformation of the rings in the title molecule were analyzed using PLATON (Spek, 2003). The Cremer & Pople puckering parameter (Cremer & Pople, 1975) of Q(2) = 0.262 (2) Å is for the Ni1—O1—Ni2—O2 ring and the dihedral angle between the planes O1—Ni1—O2 and O1—Ni2—O2 is 19.36 (12)°. The six-membered Ni2/N1/C8/C9/C12/N2 ring is in a (C) chair form (Q = 0.607 (6) Å, θ = 3.1 (5)° and φ = 168 (10)°). The Cremer & Pople puckering parameters of the Ni1—O1—Ni2—O5i—C20i—O4i (symmetry code: (i) -x, -y, -z) ring are Q = 1.045 (3) Å, θ = 128.4 (2), φ = 239.7 (3) °, showing this six-membered ring is an E (envelope) form. The crystal structure is stabilized by weak C—H···O hydrogen bonds.
For general background, see: Martell & Calvin (1958); Drew et al. (1985); Fukuhara et al. (1990); Barandika et al. (1999). For related literature, see: Tatar (2002); Tatar & Atakol (2002); Durmuş et al. (2005). For related literature, see: Barkelew & Calvin (1946); Cremer & Pople (1975); Du et al. (2005); Reglinski et al. (2006); Ribas et al. (1999); Spek (2003).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
![]() | Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (symmetry code (i): -x, -y, -z). |
[Ni3(C19H24N2O2)2(CHO2)2(C3H7NO)2] | F(000) = 1092 |
Mr = 1037.10 | Dx = 1.440 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2yn | Cell parameters from 15 reflections |
a = 10.289 (2) Å | θ = 19.0–23.9° |
b = 14.054 (5) Å | µ = 1.88 mm−1 |
c = 17.005 (4) Å | T = 293 K |
β = 103.433 (19)° | Prism, light green |
V = 2391.7 (11) Å3 | 0.2 × 0.2 × 0.1 mm |
Z = 2 |
Enraf–Nonius TurboCAD-4 diffractometer | 2200 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
Graphite monochromator | θmax = 73.9°, θmin = 4.1° |
non–profiled ω scans | h = −12→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −17→0 |
Tmin = 0.720, Tmax = 0.828 | l = −20→21 |
5007 measured reflections | 3 standard reflections every 120 min |
4740 independent reflections | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.150 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0515P)2 + 0.3344P] where P = (Fo2 + 2Fc2)/3 |
4740 reflections | (Δ/σ)max < 0.001 |
343 parameters | Δρmax = 0.43 e Å−3 |
6 restraints | Δρmin = −0.49 e Å−3 |
[Ni3(C19H24N2O2)2(CHO2)2(C3H7NO)2] | V = 2391.7 (11) Å3 |
Mr = 1037.10 | Z = 2 |
Monoclinic, P21/n | Cu Kα radiation |
a = 10.289 (2) Å | µ = 1.88 mm−1 |
b = 14.054 (5) Å | T = 293 K |
c = 17.005 (4) Å | 0.2 × 0.2 × 0.1 mm |
β = 103.433 (19)° |
Enraf–Nonius TurboCAD-4 diffractometer | 2200 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.048 |
Tmin = 0.720, Tmax = 0.828 | 3 standard reflections every 120 min |
5007 measured reflections | intensity decay: 2% |
4740 independent reflections |
R[F2 > 2σ(F2)] = 0.056 | 6 restraints |
wR(F2) = 0.150 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.43 e Å−3 |
4740 reflections | Δρmin = −0.49 e Å−3 |
343 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0 | 0 | 0 | 0.0447 (3) | |
Ni2 | 0.00481 (8) | −0.08187 (5) | 0.16902 (5) | 0.0439 (3) | |
O1 | 0.1113 (3) | 0.0124 (2) | 0.11806 (18) | 0.0470 (9) | |
O3 | 0.1641 (3) | −0.1840 (2) | 0.1868 (2) | 0.0510 (9) | |
O2 | −0.0683 (3) | −0.1191 (2) | 0.05036 (17) | 0.0443 (9) | |
N2 | −0.1059 (4) | −0.1871 (3) | 0.2102 (2) | 0.0436 (11) | |
N1 | 0.0996 (5) | −0.0405 (3) | 0.2869 (3) | 0.0537 (12) | |
O4 | 0.1491 (3) | −0.0798 (2) | −0.0429 (2) | 0.0526 (10) | |
C12 | −0.1609 (7) | −0.1579 (5) | 0.2788 (4) | 0.0598 (17) | |
C7 | 0.1727 (8) | 0.0507 (4) | 0.2844 (4) | 0.0646 (19) | |
C1 | 0.2388 (6) | 0.0303 (3) | 0.1530 (3) | 0.0480 (14) | |
C5 | 0.4122 (7) | 0.0612 (4) | 0.2736 (4) | 0.078 (2) | |
H5 | 0.4371 | 0.0723 | 0.329 | 0.093* | |
C2 | 0.3375 (6) | 0.0313 (4) | 0.1086 (4) | 0.0641 (16) | |
H2 | 0.3148 | 0.0228 | 0.0529 | 0.077* | |
C6 | 0.2769 (6) | 0.0465 (4) | 0.2373 (3) | 0.0568 (15) | |
C18 | −0.0554 (5) | −0.2520 (4) | −0.0358 (3) | 0.0610 (16) | |
H18 | −0.0156 | −0.2155 | −0.0693 | 0.073* | |
C15 | −0.1814 (6) | −0.3629 (4) | 0.0580 (3) | 0.0604 (16) | |
H15 | −0.2243 | −0.4002 | 0.0894 | 0.072* | |
C14 | −0.1610 (5) | −0.2665 (4) | 0.0757 (3) | 0.0477 (14) | |
C17 | −0.0766 (6) | −0.3480 (4) | −0.0512 (3) | 0.0668 (17) | |
H17 | −0.0477 | −0.3757 | −0.0938 | 0.08* | |
C19 | −0.0936 (5) | −0.2091 (4) | 0.0301 (3) | 0.0427 (13) | |
C9 | −0.0597 (6) | −0.1276 (4) | 0.3550 (3) | 0.0614 (16) | |
O5 | 0.1429 (4) | −0.0182 (3) | −0.1667 (2) | 0.0607 (11) | |
N3 | 0.3568 (5) | −0.2094 (3) | 0.1475 (3) | 0.0568 (12) | |
C21 | 0.2270 (6) | −0.1944 (4) | 0.1348 (4) | 0.0522 (15) | |
C22 | 0.4387 (6) | −0.2064 (4) | 0.2286 (3) | 0.080 (2) | |
H22A | 0.53 | −0.2185 | 0.2274 | 0.12* | |
H22B | 0.4088 | −0.254 | 0.2608 | 0.12* | |
H22C | 0.4317 | −0.1447 | 0.2515 | 0.12* | |
C13 | −0.2127 (5) | −0.2229 (4) | 0.1423 (4) | 0.0529 (15) | |
C10 | 0.0391 (6) | −0.2081 (4) | 0.3851 (3) | 0.0689 (18) | |
H10A | 0.1026 | −0.1879 | 0.433 | 0.103* | |
H10B | 0.0853 | −0.2242 | 0.344 | 0.103* | |
H10C | −0.0084 | −0.2628 | 0.3974 | 0.103* | |
C11 | −0.1416 (7) | −0.1071 (4) | 0.4189 (4) | 0.099 (2) | |
H11A | −0.0824 | −0.0878 | 0.4687 | 0.148* | |
H11B | −0.1884 | −0.1637 | 0.4279 | 0.148* | |
H11C | −0.2048 | −0.0573 | 0.3998 | 0.148* | |
C3 | 0.4713 (6) | 0.0452 (4) | 0.1494 (5) | 0.078 (2) | |
H3 | 0.5367 | 0.0444 | 0.1197 | 0.094* | |
C8 | 0.0105 (7) | −0.0342 (5) | 0.3429 (3) | 0.0639 (17) | |
C16 | −0.1395 (6) | −0.4034 (4) | −0.0046 (4) | 0.0730 (19) | |
H16 | −0.1534 | −0.4678 | −0.0157 | 0.088* | |
C4 | 0.5093 (7) | 0.0599 (4) | 0.2304 (5) | 0.084 (2) | |
H4 | 0.5987 | 0.0688 | 0.2559 | 0.101* | |
C23 | 0.4236 (7) | −0.2142 (6) | 0.0815 (4) | 0.089 (2) | |
C20 | 0.1795 (6) | −0.0748 (4) | −0.1089 (4) | 0.0565 (15) | |
H12B | −0.208 (5) | −0.207 (3) | 0.295 (3) | 0.061* | |
H13B | −0.274 (4) | −0.273 (3) | 0.163 (2) | 0.052* | |
H12A | −0.221 (5) | −0.099 (4) | 0.262 (3) | 0.067 (17)* | |
H8A | −0.066 (4) | 0.011 (3) | 0.321 (3) | 0.052* | |
H7A | 0.097 (5) | 0.092 (4) | 0.259 (3) | 0.070 (19)* | |
H8B | 0.064 (4) | −0.021 (3) | 0.3945 (17) | 0.067 (18)* | |
H21 | 0.188 (4) | −0.190 (3) | 0.0823 (13) | 0.042 (15)* | |
H7B | 0.206 (5) | 0.073 (4) | 0.342 (3) | 0.09 (2)* | |
H13A | −0.261 (4) | −0.166 (2) | 0.121 (3) | 0.075 (19)* | |
H23B | 0.4846 | −0.2653 | 0.0803 | 0.057 (16)* | |
H23C | 0.4841 | −0.1563 | 0.0878 | 0.09 (2)* | |
H23A | 0.3565 | −0.2136 | 0.0288 | 0.12 (3)* | |
H20 | 0.246 (4) | −0.114 (3) | −0.113 (3) | 0.067 (19)* | |
H2N | −0.042 (3) | −0.230 (3) | 0.227 (3) | 0.051 (16)* | |
H1N | 0.153 (5) | −0.090 (3) | 0.300 (3) | 0.09 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0489 (8) | 0.0389 (7) | 0.0441 (7) | −0.0022 (6) | 0.0061 (6) | 0.0071 (6) |
Ni2 | 0.0512 (5) | 0.0374 (5) | 0.0416 (5) | −0.0010 (4) | 0.0078 (4) | 0.0018 (4) |
O1 | 0.049 (2) | 0.045 (2) | 0.043 (2) | −0.0099 (18) | 0.0016 (17) | 0.0045 (16) |
O3 | 0.054 (2) | 0.045 (2) | 0.055 (2) | 0.0034 (18) | 0.0129 (19) | 0.0038 (18) |
O2 | 0.058 (2) | 0.0333 (19) | 0.0393 (19) | −0.0065 (17) | 0.0076 (17) | 0.0044 (15) |
N2 | 0.046 (3) | 0.045 (3) | 0.040 (3) | 0.004 (2) | 0.009 (2) | 0.004 (2) |
N1 | 0.079 (4) | 0.035 (3) | 0.045 (3) | −0.002 (3) | 0.010 (3) | 0.000 (2) |
O4 | 0.056 (2) | 0.051 (2) | 0.052 (2) | 0.0104 (19) | 0.0147 (19) | 0.0130 (19) |
C12 | 0.079 (5) | 0.051 (4) | 0.058 (4) | 0.007 (4) | 0.034 (4) | 0.009 (3) |
C7 | 0.100 (6) | 0.038 (3) | 0.047 (4) | −0.009 (4) | 0.000 (4) | −0.002 (3) |
C1 | 0.054 (4) | 0.028 (3) | 0.057 (4) | −0.004 (3) | 0.003 (3) | 0.003 (3) |
C5 | 0.085 (5) | 0.050 (4) | 0.075 (5) | −0.031 (4) | −0.029 (4) | 0.007 (3) |
C2 | 0.055 (4) | 0.054 (4) | 0.078 (4) | −0.014 (3) | 0.006 (4) | −0.001 (3) |
C6 | 0.076 (5) | 0.036 (3) | 0.052 (4) | −0.012 (3) | 0.002 (3) | 0.004 (3) |
C18 | 0.072 (4) | 0.059 (4) | 0.050 (3) | −0.008 (3) | 0.009 (3) | −0.004 (3) |
C15 | 0.069 (4) | 0.049 (4) | 0.051 (4) | −0.017 (3) | −0.010 (3) | 0.010 (3) |
C14 | 0.053 (3) | 0.043 (3) | 0.041 (3) | −0.006 (3) | −0.002 (3) | 0.001 (3) |
C17 | 0.085 (5) | 0.055 (4) | 0.057 (4) | −0.006 (4) | 0.010 (3) | −0.015 (3) |
C19 | 0.041 (3) | 0.041 (3) | 0.040 (3) | −0.001 (3) | −0.004 (2) | 0.005 (3) |
C9 | 0.088 (5) | 0.056 (4) | 0.047 (4) | 0.006 (4) | 0.029 (3) | −0.003 (3) |
O5 | 0.074 (3) | 0.058 (3) | 0.056 (2) | 0.016 (2) | 0.027 (2) | 0.015 (2) |
N3 | 0.053 (3) | 0.049 (3) | 0.062 (3) | 0.007 (2) | 0.000 (3) | −0.005 (2) |
C21 | 0.057 (4) | 0.045 (3) | 0.049 (4) | 0.006 (3) | −0.001 (3) | −0.001 (3) |
C22 | 0.067 (4) | 0.077 (5) | 0.081 (5) | −0.001 (4) | −0.016 (4) | −0.008 (4) |
C13 | 0.042 (3) | 0.058 (4) | 0.057 (4) | −0.013 (3) | 0.007 (3) | 0.013 (3) |
C10 | 0.095 (5) | 0.053 (4) | 0.049 (4) | 0.003 (4) | −0.003 (3) | 0.010 (3) |
C11 | 0.175 (7) | 0.073 (5) | 0.073 (5) | 0.012 (5) | 0.076 (5) | 0.001 (4) |
C3 | 0.059 (5) | 0.058 (4) | 0.114 (6) | −0.012 (3) | 0.014 (4) | −0.002 (4) |
C8 | 0.101 (5) | 0.057 (4) | 0.034 (4) | 0.006 (4) | 0.016 (4) | −0.003 (3) |
C16 | 0.101 (5) | 0.036 (4) | 0.066 (4) | −0.007 (3) | −0.012 (4) | −0.002 (3) |
C4 | 0.064 (5) | 0.058 (5) | 0.113 (6) | −0.020 (4) | −0.016 (4) | 0.008 (4) |
C23 | 0.059 (4) | 0.121 (7) | 0.090 (6) | 0.018 (5) | 0.025 (4) | −0.030 (4) |
C20 | 0.046 (4) | 0.051 (4) | 0.075 (5) | 0.010 (3) | 0.021 (3) | 0.003 (4) |
Ni1—Ni2 | 3.0857 (14) | C18—H18 | 0.93 |
Ni1—O1i | 2.075 (3) | C15—C16 | 1.362 (7) |
Ni1—O1 | 2.075 (3) | C15—C14 | 1.392 (7) |
Ni1—O2 | 2.076 (3) | C15—H15 | 0.93 |
Ni1—O2i | 2.076 (3) | C14—C19 | 1.409 (6) |
Ni1—O4 | 2.160 (3) | C14—C13 | 1.490 (7) |
Ni1—O4i | 2.160 (3) | C17—C16 | 1.375 (7) |
Ni2—O1 | 2.037 (3) | C17—H17 | 0.93 |
Ni2—O2 | 2.051 (3) | C9—C10 | 1.529 (7) |
Ni2—O5i | 2.064 (4) | C9—C8 | 1.534 (8) |
Ni2—N2 | 2.084 (4) | C9—C11 | 1.550 (7) |
Ni2—N1 | 2.098 (4) | O5—C20 | 1.253 (6) |
Ni2—O3 | 2.147 (3) | O5—Ni2i | 2.064 (4) |
O1—C1 | 1.332 (6) | N3—C21 | 1.319 (7) |
O3—C21 | 1.221 (6) | N3—C22 | 1.440 (6) |
O2—C19 | 1.321 (5) | N3—C23 | 1.447 (7) |
N2—C12 | 1.469 (7) | C21—H21 | 0.892 (19) |
N2—C13 | 1.485 (6) | C22—H22A | 0.96 |
N2—H2N | 0.892 (19) | C22—H22B | 0.96 |
N1—C8 | 1.470 (7) | C22—H22C | 0.96 |
N1—C7 | 1.492 (7) | C13—H13B | 1.06 (4) |
N1—H1N | 0.890 (19) | C13—H13A | 0.964 (19) |
O4—C20 | 1.235 (6) | C10—H10A | 0.96 |
C12—C9 | 1.523 (8) | C10—H10B | 0.96 |
C12—H12B | 0.93 (5) | C10—H10C | 0.96 |
C12—H12A | 1.03 (5) | C11—H11A | 0.96 |
C7—C6 | 1.480 (8) | C11—H11B | 0.96 |
C7—H7A | 0.98 (5) | C11—H11C | 0.96 |
C7—H7B | 1.00 (5) | C3—C4 | 1.357 (8) |
C1—C2 | 1.398 (7) | C3—H3 | 0.93 |
C1—C6 | 1.415 (7) | C8—H8A | 1.01 (4) |
C5—C4 | 1.370 (8) | C8—H8B | 0.937 (19) |
C5—C6 | 1.402 (8) | C16—H16 | 0.93 |
C5—H5 | 0.93 | C4—H4 | 0.93 |
C2—C3 | 1.404 (7) | C23—H23B | 0.957 (7) |
C2—H2 | 0.93 | C23—H23C | 1.014 (8) |
C18—C17 | 1.382 (7) | C23—H23A | 0.996 (7) |
C18—C19 | 1.406 (7) | C20—H20 | 0.886 (19) |
O1i—Ni1—O1 | 180.00 (19) | C17—C18—H18 | 119.7 |
O1i—Ni1—O2 | 99.66 (12) | C19—C18—H18 | 119.7 |
O1—Ni1—O2 | 80.34 (12) | C16—C15—C14 | 121.1 (5) |
O1i—Ni1—O2i | 80.34 (12) | C16—C15—H15 | 119.5 |
O1—Ni1—O2i | 99.66 (12) | C14—C15—H15 | 119.5 |
O2—Ni1—O2i | 180.00 (17) | C15—C14—C19 | 120.4 (5) |
O1i—Ni1—O4 | 84.56 (13) | C15—C14—C13 | 120.1 (5) |
O1—Ni1—O4 | 95.44 (13) | C19—C14—C13 | 119.5 (5) |
O2—Ni1—O4 | 93.19 (13) | C16—C17—C18 | 121.2 (6) |
O2i—Ni1—O4 | 86.81 (13) | C16—C17—H17 | 119.4 |
O1i—Ni1—O4i | 95.44 (13) | C18—C17—H17 | 119.4 |
O1—Ni1—O4i | 84.56 (13) | O2—C19—C18 | 123.0 (5) |
O2—Ni1—O4i | 86.81 (13) | O2—C19—C14 | 119.8 (5) |
O2i—Ni1—O4i | 93.19 (13) | C18—C19—C14 | 117.2 (5) |
O4—Ni1—O4i | 180.0 (2) | C12—C9—C10 | 110.4 (5) |
O1—Ni2—O2 | 81.85 (12) | C12—C9—C8 | 112.1 (5) |
O1—Ni2—O5i | 90.88 (14) | C10—C9—C8 | 112.4 (5) |
O2—Ni2—O5i | 93.16 (14) | C12—C9—C11 | 105.8 (5) |
O1—Ni2—N2 | 173.93 (15) | C10—C9—C11 | 109.3 (5) |
O2—Ni2—N2 | 92.58 (14) | C8—C9—C11 | 106.6 (5) |
O5i—Ni2—N2 | 91.84 (16) | C20—O5—Ni2i | 122.2 (4) |
O1—Ni2—N1 | 92.84 (16) | C21—N3—C22 | 119.8 (5) |
O2—Ni2—N1 | 173.67 (17) | C21—N3—C23 | 121.7 (5) |
O5i—Ni2—N1 | 90.35 (18) | C22—N3—C23 | 117.8 (5) |
N2—Ni2—N1 | 92.58 (17) | O3—C21—N3 | 126.0 (6) |
O1—Ni2—O3 | 91.51 (13) | O3—C21—H21 | 122 (3) |
O2—Ni2—O3 | 93.54 (13) | N3—C21—H21 | 112 (3) |
O5i—Ni2—O3 | 173.15 (14) | N3—C22—H22A | 109.5 |
N2—Ni2—O3 | 86.41 (16) | N3—C22—H22B | 109.5 |
N1—Ni2—O3 | 83.12 (17) | H22A—C22—H22B | 109.5 |
C1—O1—Ni2 | 120.3 (3) | N3—C22—H22C | 109.5 |
C1—O1—Ni1 | 135.4 (3) | H22A—C22—H22C | 109.5 |
Ni2—O1—Ni1 | 97.26 (13) | H22B—C22—H22C | 109.5 |
C21—O3—Ni2 | 119.6 (4) | N2—C13—C14 | 113.5 (4) |
C19—O2—Ni2 | 120.4 (3) | N2—C13—H13B | 111 (2) |
C19—O2—Ni1 | 136.8 (3) | C14—C13—H13B | 109 (2) |
Ni2—O2—Ni1 | 96.77 (13) | N2—C13—H13A | 104 (3) |
C12—N2—C13 | 111.1 (4) | C14—C13—H13A | 108 (3) |
C12—N2—Ni2 | 114.2 (3) | H13B—C13—H13A | 112 (4) |
C13—N2—Ni2 | 110.1 (3) | C9—C10—H10A | 109.5 |
C12—N2—H2N | 109 (3) | C9—C10—H10B | 109.5 |
C13—N2—H2N | 112 (3) | H10A—C10—H10B | 109.5 |
Ni2—N2—H2N | 100 (3) | C9—C10—H10C | 109.5 |
C8—N1—C7 | 111.2 (5) | H10A—C10—H10C | 109.5 |
C8—N1—Ni2 | 114.5 (4) | H10B—C10—H10C | 109.5 |
C7—N1—Ni2 | 109.7 (3) | C9—C11—H11A | 109.5 |
C8—N1—H1N | 110 (4) | C9—C11—H11B | 109.5 |
C7—N1—H1N | 113 (4) | H11A—C11—H11B | 109.5 |
Ni2—N1—H1N | 98 (4) | C9—C11—H11C | 109.5 |
C20—O4—Ni1 | 128.8 (4) | H11A—C11—H11C | 109.5 |
N2—C12—C9 | 116.1 (5) | H11B—C11—H11C | 109.5 |
N2—C12—H12B | 111 (3) | C4—C3—C2 | 122.7 (6) |
C9—C12—H12B | 104 (3) | C4—C3—H3 | 118.6 |
N2—C12—H12A | 108 (3) | C2—C3—H3 | 118.6 |
C9—C12—H12A | 105 (3) | N1—C8—C9 | 114.8 (5) |
H12B—C12—H12A | 111 (4) | N1—C8—H8A | 110 (3) |
C6—C7—N1 | 114.5 (5) | C9—C8—H8A | 104 (3) |
C6—C7—H7A | 113 (3) | N1—C8—H8B | 108 (3) |
N1—C7—H7A | 100 (3) | C9—C8—H8B | 104 (3) |
C6—C7—H7B | 114 (3) | H8A—C8—H8B | 117 (4) |
N1—C7—H7B | 107 (3) | C15—C16—C17 | 119.4 (5) |
H7A—C7—H7B | 108 (4) | C15—C16—H16 | 120.3 |
O1—C1—C2 | 121.7 (5) | C17—C16—H16 | 120.3 |
O1—C1—C6 | 119.6 (5) | C3—C4—C5 | 118.2 (6) |
C2—C1—C6 | 118.7 (5) | C3—C4—H4 | 120.9 |
C4—C5—C6 | 122.3 (6) | C5—C4—H4 | 120.9 |
C4—C5—H5 | 118.8 | N3—C23—H23B | 118.9 (7) |
C6—C5—H5 | 118.8 | N3—C23—H23C | 105.7 (6) |
C1—C2—C3 | 119.1 (6) | H23B—C23—H23C | 102.5 (6) |
C1—C2—H2 | 120.4 | N3—C23—H23A | 110.0 (6) |
C3—C2—H2 | 120.4 | H23B—C23—H23A | 107.9 (7) |
C5—C6—C1 | 118.9 (6) | H23C—C23—H23A | 111.6 (8) |
C5—C6—C7 | 121.7 (6) | O4—C20—O5 | 131.0 (6) |
C1—C6—C7 | 119.4 (5) | O4—C20—H20 | 113 (3) |
C17—C18—C19 | 120.6 (5) | O5—C20—H20 | 116 (3) |
O2—Ni2—O1—C1 | −140.1 (4) | Ni1—O1—C1—C2 | −10.3 (7) |
O5i—Ni2—O1—C1 | 126.8 (4) | Ni2—O1—C1—C6 | −45.5 (6) |
N1—Ni2—O1—C1 | 36.4 (4) | Ni1—O1—C1—C6 | 171.2 (3) |
O3—Ni2—O1—C1 | −46.8 (4) | O1—C1—C2—C3 | −176.5 (5) |
O2—Ni1—O1—C1 | 133.9 (4) | C6—C1—C2—C3 | 2.1 (8) |
O2i—Ni1—O1—C1 | −46.1 (4) | C4—C5—C6—C1 | −0.4 (9) |
O4—Ni1—O1—C1 | 41.6 (4) | C4—C5—C6—C7 | −178.3 (6) |
O4i—Ni1—O1—C1 | −138.4 (4) | O1—C1—C6—C5 | 177.3 (5) |
O1—Ni2—O3—C21 | −39.4 (4) | C2—C1—C6—C5 | −1.2 (8) |
O2—Ni2—O3—C21 | 42.5 (4) | O1—C1—C6—C7 | −4.7 (7) |
N2—Ni2—O3—C21 | 134.9 (4) | C2—C1—C6—C7 | 176.8 (5) |
N1—Ni2—O3—C21 | −132.1 (4) | N1—C7—C6—C5 | −117.1 (6) |
O1—Ni2—O2—C19 | 142.4 (4) | N1—C7—C6—C1 | 65.0 (7) |
O5i—Ni2—O2—C19 | −127.1 (4) | C16—C15—C14—C19 | −1.4 (8) |
N2—Ni2—O2—C19 | −35.1 (4) | C16—C15—C14—C13 | 177.4 (5) |
O3—Ni2—O2—C19 | 51.4 (4) | C19—C18—C17—C16 | 2.4 (9) |
O1i—Ni1—O2—C19 | 43.8 (4) | Ni2—O2—C19—C18 | −134.9 (4) |
O1—Ni1—O2—C19 | −136.2 (4) | Ni1—O2—C19—C18 | 10.8 (7) |
O4—Ni1—O2—C19 | −41.2 (4) | Ni2—O2—C19—C14 | 44.6 (6) |
O4i—Ni1—O2—C19 | 138.8 (4) | Ni1—O2—C19—C14 | −169.6 (3) |
O1i—Ni1—O2—Ni2 | −165.45 (13) | C17—C18—C19—O2 | 175.7 (5) |
O1—Ni1—O2—Ni2 | 14.55 (13) | C17—C18—C19—C14 | −3.9 (8) |
O4—Ni1—O2—Ni2 | 109.53 (14) | C15—C14—C19—O2 | −176.2 (4) |
O4i—Ni1—O2—Ni2 | −70.47 (14) | C13—C14—C19—O2 | 5.0 (7) |
O2—Ni2—N2—C12 | −141.5 (4) | C15—C14—C19—C18 | 3.4 (7) |
O5i—Ni2—N2—C12 | −48.3 (4) | C13—C14—C19—C18 | −175.4 (5) |
N1—Ni2—N2—C12 | 42.1 (4) | N2—C12—C9—C10 | −58.2 (7) |
O3—Ni2—N2—C12 | 125.1 (4) | N2—C12—C9—C8 | 67.9 (7) |
O2—Ni2—N2—C13 | −15.8 (4) | N2—C12—C9—C11 | −176.3 (5) |
O5i—Ni2—N2—C13 | 77.5 (4) | Ni2—O3—C21—N3 | 141.5 (5) |
N1—Ni2—N2—C13 | 167.9 (4) | C22—N3—C21—O3 | −5.4 (9) |
O3—Ni2—N2—C13 | −109.2 (4) | C23—N3—C21—O3 | −175.5 (6) |
O1—Ni2—N1—C8 | 139.8 (4) | C12—N2—C13—C14 | −171.7 (5) |
O5i—Ni2—N1—C8 | 48.9 (4) | Ni2—N2—C13—C14 | 60.8 (5) |
N2—Ni2—N1—C8 | −42.9 (4) | C15—C14—C13—N2 | 115.8 (5) |
O3—Ni2—N1—C8 | −129.0 (4) | C19—C14—C13—N2 | −65.4 (6) |
O1—Ni2—N1—C7 | 14.0 (4) | C1—C2—C3—C4 | −1.4 (9) |
O5i—Ni2—N1—C7 | −76.9 (4) | C7—N1—C8—C9 | −174.9 (5) |
N2—Ni2—N1—C7 | −168.7 (4) | Ni2—N1—C8—C9 | 60.1 (6) |
O3—Ni2—N1—C7 | 105.2 (4) | C12—C9—C8—N1 | −67.7 (7) |
O1i—Ni1—O4—C20 | 37.4 (5) | C10—C9—C8—N1 | 57.3 (7) |
O1—Ni1—O4—C20 | −142.6 (5) | C11—C9—C8—N1 | 177.0 (5) |
O2—Ni1—O4—C20 | 136.8 (5) | C14—C15—C16—C17 | −0.2 (9) |
O2i—Ni1—O4—C20 | −43.2 (5) | C18—C17—C16—C15 | −0.2 (9) |
C13—N2—C12—C9 | 175.0 (5) | C2—C3—C4—C5 | −0.1 (10) |
Ni2—N2—C12—C9 | −59.7 (6) | C6—C5—C4—C3 | 1.1 (10) |
C8—N1—C7—C6 | 172.7 (5) | Ni1—O4—C20—O5 | 7.0 (10) |
Ni2—N1—C7—C6 | −59.6 (6) | Ni2i—O5—C20—O4 | −6.5 (9) |
Ni2—O1—C1—C2 | 133.0 (4) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4 | 0.93 | 2.52 | 3.242 (7) | 135 |
C8—H8A···O5i | 1.01 (5) | 2.56 (5) | 3.133 (6) | 116 (3) |
C12—H12A···O5i | 1.04 (6) | 2.56 (5) | 3.156 (8) | 116 (4) |
C18—H18···O4 | 0.93 | 2.52 | 3.228 (6) | 133 |
C21—H21···O4 | 0.89 (2) | 2.59 (3) | 3.353 (7) | 144 (4) |
Symmetry code: (i) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni3(C19H24N2O2)2(CHO2)2(C3H7NO)2] |
Mr | 1037.10 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 10.289 (2), 14.054 (5), 17.005 (4) |
β (°) | 103.433 (19) |
V (Å3) | 2391.7 (11) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 1.88 |
Crystal size (mm) | 0.2 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.720, 0.828 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5007, 4740, 2200 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.623 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.150, 1.03 |
No. of reflections | 4740 |
No. of parameters | 343 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.43, −0.49 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4 | 0.93 | 2.52 | 3.242 (7) | 135 |
C8—H8A···O5i | 1.01 (5) | 2.56 (5) | 3.133 (6) | 116 (3) |
C12—H12A···O5i | 1.04 (6) | 2.56 (5) | 3.156 (8) | 116 (4) |
C18—H18···O4 | 0.93 | 2.52 | 3.228 (6) | 133 |
C21—H21···O4 | 0.89 (2) | 2.59 (3) | 3.353 (7) | 144 (4) |
Symmetry code: (i) −x, −y, −z. |
ONNO type Schiff base ligands have been known since as early as 1946 (Barkelew & Calvin, 1946; Martell et al., 1958). Schiff-bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most transition metals (Drew et al., 1985; Fukuhara et al., 1990). Oxygen-bridged polynuclear complexes of the transition series are of interest because of their magnetic properties (Barandika et al., 1999; Ribas et al., 1999; Du et al., 2005). The ONNO type ligand stereochemistry around the metal ions and the structure of the O-atom bridges influence the magnetic exchange interactions. These complexes may be homo or heteronuclear. Polynuclear metal complexes of Schiff-base ligands have been the subject on considerable interest in our laboratory, e.g. [NiZnI2(LH2)(dmf)] (Tatar, 2002), [Ni{Ni(LH2)(O2CMe)(dmf)}2] (Tatar & Atakol, 2002), [Ni(LH2)N3(dmf)H2O and Ni(DMLH2)N3(dmf)] (Durmuş et al., 2005). Where LH2 is N,N'-bis(salicylidene)-1,3-propanediamine.
In this study, bis-N,N'(salicylidene)-2,2'-dimethyl-1,3-propanediamine was reduced by using NaBH4 in MeOH and we obtained an ONNO type ligand. The title molecule was prepared by initating a reaction between the ONNO ligand and nickel(II)-formato in dmf. The crystal and molecular structure of the title homotrinuclear complex has been determined. Recently details of a similar complex were reported literature (Reglinski et al., 2006).
In the title complex (Fig. 1), the central Ni1 atom, which is located on an inversion centre, has a distorted octahedral coordination environment, formed by four O atoms from two DMLH2 ligands in the equatorial plane [Ni1—O1 = 2.075 (3), Ni1—O2 = 2.076 (3) Å] and two O atoms of two –O2CH groups located at the axial positions [Ni1—O4 = 2.160 (3) Å]. The bond angles around Ni1 angles range between 99.66 (12) and 80.34 (12)°.
The terminal Ni2 atoms also have distorted octahedral coordination environments formed by two O and two N atoms from DMLH2 ligands in the equatorial plane and bond distances ranging between 2.037 (3) - 2.098 (4) Å. The distance of atom Ni2 from the O1/O2/N1/N2 mean plane is 0.0546 (8) Å. The dihedral angle between the planes O1—Ni2—O2 and N1—Ni2—N2 is 4.3 (2)°. The axial positions are occupied by atoms O3 and O5i [symmetry code: (i) -x, -y, -z] from a dmf molecule and an –O2CH group, respectively. This coordination involves a fairly long axial Ni2—O3 bond of 2.147 (3) Å. The Ni2 coordination involves bond angles ranging between 81.85 (12) and 93.54 (16)°.
The conformation of the rings in the title molecule were analyzed using PLATON (Spek, 2003). The Cremer & Pople puckering parameter (Cremer & Pople, 1975) of Q(2) = 0.262 (2) Å is for the Ni1—O1—Ni2—O2 ring and the dihedral angle between the planes O1—Ni1—O2 and O1—Ni2—O2 is 19.36 (12)°. The six-membered Ni2/N1/C8/C9/C12/N2 ring is in a (C) chair form (Q = 0.607 (6) Å, θ = 3.1 (5)° and φ = 168 (10)°). The Cremer & Pople puckering parameters of the Ni1—O1—Ni2—O5i—C20i—O4i (symmetry code: (i) -x, -y, -z) ring are Q = 1.045 (3) Å, θ = 128.4 (2), φ = 239.7 (3) °, showing this six-membered ring is an E (envelope) form. The crystal structure is stabilized by weak C—H···O hydrogen bonds.