Download citation
Download citation
link to html
In the title complex, [Zn(NCS)2(C13H10N2O)], the ZnII ion is in a distorted tetra­hdral ZnN2Cl2 coordination environment. In the crystal structure, there is a weak π–π stacking inter­action between adjacent 1,10-phenanthroline rings, with a pyridine centroid–centroid distance of 3.6620 (15) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808011793/lh2603sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808011793/lh2603Isup2.hkl
Contains datablock I

CCDC reference: 690818

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.036
  • wR factor = 0.098
  • Data-to-parameter ratio = 17.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.92 PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.61 mm PLAT230_ALERT_2_C Hirshfeld Test Diff for S2 - C2 .. 6.54 su PLAT230_ALERT_2_C Hirshfeld Test Diff for S3 - C14 .. 6.01 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.919 Tmax scaled 0.501 Tmin scaled 0.385
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Derivatives of 1,10-phenanthroline play a pivotal role in the area of modern coordination chemistry (e.g. Zhang et al. 2006 and important references cited within), but no structures of complexes with 2-methoxy-1,10-phenanthroline as a ligand have been reported. Herein we report the crystal structure of the title complex (I).

The molecular structure of (I) is shown in Fig. 1. In this mononuclear complex atom Zn1 is in a distorted tetrahedral coordination geometry (Table 1). In the crystal structure, there are weak π-π stacking interactions between symmetry related 1,10-phenanthroline ligands, with the relevant distances being Cg1···Cg1i = 3.6620 (15) Å and a perpendicular distance of 3.563 Å [symmetry code: (i) 1/2-x, 3/2-y, 1-z; Cg1 is the centroid of the N1/C1/C3/C4/C5/C15 ring].

Related literature top

For a related structure, see: Zhang et al. (2006). For related literature, see: McMorran & Steel (2002).

Experimental top

A methanol solution (15ml) of Zn(ClO4).6H2O (0.2951 g, 0.792 mmol) was added into a 10 ml methanol solution containing 2-methoxy-1,10-phenanthroline (0.1666 g, 0.792 mmol), and the mixture was stirred for a few minutes. Then a 10 ml methanol solution of NaSCN (0.1296 g, 1.60 mmol) was added to the above mixture. Yellow single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement top

H atoms were placed in calculated positions (C—H = 0.96 Å for methyl group and C—H = 0.93 Å for other H atoms) and refined as riding with Uiso = 1.5 Ueq(C) for methyl H and Uiso = 1.2 Ueq(C) for other H.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level.
(2-Methoxy-1,10-phenanthroline-κ2N,N')bis(thiocyanato-κN)zinc(II) top
Crystal data top
[Zn(NCS)2(C13H10N2O)]F(000) = 1584
Mr = 391.76Dx = 1.560 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4025 reflections
a = 26.360 (5) Åθ = 2.2–27.6°
b = 8.5949 (16) ŵ = 1.73 mm1
c = 14.814 (3) ÅT = 298 K
β = 96.266 (2)°Bar, yellow
V = 3336.3 (10) Å30.61 × 0.42 × 0.40 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
3616 independent reflections
Radiation source: fine-focus sealed tube2974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3326
Tmin = 0.418, Tmax = 0.545k = 910
9311 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.2305P]
where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Zn(NCS)2(C13H10N2O)]V = 3336.3 (10) Å3
Mr = 391.76Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.360 (5) ŵ = 1.73 mm1
b = 8.5949 (16) ÅT = 298 K
c = 14.814 (3) Å0.61 × 0.42 × 0.40 mm
β = 96.266 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3616 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2974 reflections with I > 2σ(I)
Tmin = 0.418, Tmax = 0.545Rint = 0.040
9311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
3616 reflectionsΔρmin = 0.49 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.130923 (10)1.01266 (3)0.392499 (16)0.04081 (11)
S20.07232 (4)1.52220 (8)0.35198 (6)0.0700 (2)
S30.15576 (3)0.73246 (10)0.13159 (4)0.0627 (2)
N10.19776 (7)0.98293 (19)0.47711 (12)0.0374 (4)
N20.10343 (6)0.8750 (2)0.48692 (10)0.0372 (4)
C50.19054 (7)0.8893 (2)0.54870 (12)0.0350 (4)
N30.10454 (8)1.2204 (3)0.38239 (13)0.0557 (5)
O10.02497 (6)0.8745 (2)0.41868 (12)0.0593 (4)
C40.22974 (8)0.8481 (3)0.61569 (13)0.0415 (5)
C80.13985 (8)0.8311 (2)0.55315 (13)0.0363 (4)
C60.21868 (10)0.7477 (3)0.68714 (15)0.0510 (6)
H60.24460.72050.73200.061*
C120.05651 (8)0.8226 (3)0.48815 (15)0.0446 (5)
N40.13885 (8)0.9127 (3)0.27851 (13)0.0580 (5)
C140.14584 (8)0.8383 (3)0.21771 (14)0.0424 (5)
C90.13065 (9)0.7316 (3)0.62413 (15)0.0435 (5)
C20.09073 (8)1.3458 (3)0.37012 (13)0.0422 (5)
C70.17119 (10)0.6909 (3)0.69101 (15)0.0530 (6)
H70.16500.62440.73810.064*
C110.04328 (10)0.7227 (3)0.55773 (17)0.0552 (6)
H110.00990.68780.55800.066*
C30.27856 (9)0.9092 (3)0.60652 (16)0.0517 (6)
H30.30590.88540.64940.062*
C100.07972 (10)0.6789 (3)0.62360 (16)0.0545 (6)
H100.07130.61300.66950.065*
C150.28561 (10)1.0030 (3)0.53490 (19)0.0543 (7)
H150.31771.04350.52860.065*
C10.24425 (9)1.0379 (3)0.47095 (17)0.0471 (5)
H10.24951.10200.42230.057*
C130.02649 (9)0.8142 (4)0.4045 (2)0.0721 (8)
H13A0.02540.70270.40120.108*
H13B0.04330.85480.34870.108*
H13C0.04490.84500.45400.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03960 (18)0.04250 (18)0.04019 (16)0.00072 (11)0.00369 (11)0.00223 (10)
S20.0862 (6)0.0478 (4)0.0775 (5)0.0193 (4)0.0155 (4)0.0028 (3)
S30.0606 (4)0.0723 (5)0.0568 (4)0.0133 (3)0.0135 (3)0.0126 (3)
N10.0323 (10)0.0394 (10)0.0409 (9)0.0019 (7)0.0053 (7)0.0012 (7)
N20.0320 (9)0.0377 (10)0.0427 (9)0.0020 (8)0.0078 (7)0.0029 (7)
C50.0357 (11)0.0319 (10)0.0383 (10)0.0010 (9)0.0080 (8)0.0052 (8)
N30.0631 (14)0.0480 (13)0.0566 (12)0.0108 (11)0.0095 (10)0.0064 (9)
O10.0332 (9)0.0696 (12)0.0735 (11)0.0053 (8)0.0016 (7)0.0038 (9)
C40.0399 (12)0.0424 (12)0.0419 (11)0.0026 (10)0.0027 (9)0.0043 (9)
C80.0378 (11)0.0344 (11)0.0380 (10)0.0001 (9)0.0099 (8)0.0028 (8)
C60.0518 (15)0.0577 (15)0.0419 (12)0.0095 (12)0.0021 (10)0.0045 (10)
C120.0355 (12)0.0456 (13)0.0533 (12)0.0043 (10)0.0072 (9)0.0080 (10)
N40.0637 (14)0.0639 (14)0.0467 (11)0.0039 (12)0.0065 (9)0.0073 (11)
C140.0345 (11)0.0474 (13)0.0448 (12)0.0044 (10)0.0024 (9)0.0073 (10)
C90.0524 (14)0.0397 (12)0.0406 (11)0.0023 (10)0.0145 (9)0.0000 (9)
C20.0395 (12)0.0512 (14)0.0369 (10)0.0001 (11)0.0089 (8)0.0035 (9)
C70.0645 (17)0.0512 (15)0.0451 (12)0.0054 (12)0.0135 (11)0.0098 (11)
C110.0421 (13)0.0618 (16)0.0648 (15)0.0143 (12)0.0205 (11)0.0046 (12)
C30.0390 (12)0.0560 (15)0.0572 (13)0.0013 (11)0.0072 (10)0.0045 (12)
C100.0574 (15)0.0576 (15)0.0522 (13)0.0120 (13)0.0220 (11)0.0036 (11)
C150.0366 (13)0.0585 (17)0.0672 (17)0.0106 (11)0.0034 (12)0.0008 (12)
C10.0373 (13)0.0486 (13)0.0561 (13)0.0088 (11)0.0083 (10)0.0019 (10)
C130.0303 (13)0.086 (2)0.099 (2)0.0058 (14)0.0020 (13)0.0092 (17)
Geometric parameters (Å, º) top
Zn1—N31.916 (2)C6—C71.351 (3)
Zn1—N41.926 (2)C6—H60.9300
Zn1—N22.0254 (16)C12—C111.414 (3)
Zn1—N12.0636 (19)N4—C141.136 (3)
S2—C21.606 (3)C9—C101.416 (3)
S3—C141.611 (2)C9—C71.419 (3)
N1—C11.326 (3)C7—H70.9300
N1—C51.361 (3)C11—C101.346 (4)
N2—C121.319 (3)C11—H110.9300
N2—C81.349 (3)C3—C151.361 (4)
C5—C41.398 (3)C3—H30.9300
C5—C81.435 (3)C10—H100.9300
N3—C21.145 (3)C15—C11.397 (4)
O1—C121.328 (3)C15—H150.9300
O1—C131.446 (3)C1—H10.9300
C4—C31.410 (3)C13—H13A0.9600
C4—C61.421 (3)C13—H13B0.9600
C8—C91.397 (3)C13—H13C0.9600
N3—Zn1—N4114.85 (9)N4—C14—S3179.9 (3)
N3—Zn1—N2116.36 (8)C8—C9—C10115.7 (2)
N4—Zn1—N2115.23 (9)C8—C9—C7119.8 (2)
N3—Zn1—N1116.20 (8)C10—C9—C7124.5 (2)
N4—Zn1—N1108.07 (8)N3—C2—S2178.9 (2)
N2—Zn1—N181.62 (7)C6—C7—C9120.8 (2)
C1—N1—C5118.2 (2)C6—C7—H7119.6
C1—N1—Zn1130.42 (16)C9—C7—H7119.6
C5—N1—Zn1111.33 (14)C10—C11—C12119.0 (2)
C12—N2—C8119.23 (18)C10—C11—H11120.5
C12—N2—Zn1128.04 (15)C12—C11—H11120.5
C8—N2—Zn1112.68 (13)C15—C3—C4119.9 (2)
N1—C5—C4123.20 (19)C15—C3—H3120.0
N1—C5—C8116.87 (18)C4—C3—H3120.0
C4—C5—C8119.93 (18)C11—C10—C9121.0 (2)
C2—N3—Zn1174.4 (2)C11—C10—H10119.5
C12—O1—C13119.4 (2)C9—C10—H10119.5
C5—C4—C3116.7 (2)C3—C15—C1119.5 (2)
C5—C4—C6119.1 (2)C3—C15—H15120.2
C3—C4—C6124.2 (2)C1—C15—H15120.2
N2—C8—C9123.38 (19)N1—C1—C15122.4 (2)
N2—C8—C5117.48 (17)N1—C1—H1118.8
C9—C8—C5119.14 (19)C15—C1—H1118.8
C7—C6—C4121.2 (2)O1—C13—H13A109.5
C7—C6—H6119.4O1—C13—H13B109.5
C4—C6—H6119.4H13A—C13—H13B109.5
N2—C12—O1112.55 (19)O1—C13—H13C109.5
N2—C12—C11121.6 (2)H13A—C13—H13C109.5
O1—C12—C11125.8 (2)H13B—C13—H13C109.5
C14—N4—Zn1171.4 (2)
N3—Zn1—N1—C164.6 (2)C4—C5—C8—C91.0 (3)
N4—Zn1—N1—C166.2 (2)C5—C4—C6—C70.4 (3)
N2—Zn1—N1—C1179.9 (2)C3—C4—C6—C7178.8 (2)
N3—Zn1—N1—C5116.32 (14)C8—N2—C12—O1179.57 (18)
N4—Zn1—N1—C5112.90 (14)Zn1—N2—C12—O12.3 (3)
N2—Zn1—N1—C51.00 (13)C8—N2—C12—C110.7 (3)
N3—Zn1—N2—C1266.0 (2)Zn1—N2—C12—C11177.98 (16)
N4—Zn1—N2—C1272.75 (19)C13—O1—C12—N2173.2 (2)
N1—Zn1—N2—C12178.84 (19)C13—O1—C12—C117.1 (4)
N3—Zn1—N2—C8116.55 (14)N2—C8—C9—C100.6 (3)
N4—Zn1—N2—C8104.70 (15)C5—C8—C9—C10179.83 (19)
N1—Zn1—N2—C81.40 (13)N2—C8—C9—C7179.9 (2)
C1—N1—C5—C40.2 (3)C5—C8—C9—C70.6 (3)
Zn1—N1—C5—C4179.00 (16)C4—C6—C7—C90.7 (4)
C1—N1—C5—C8179.68 (19)C8—C9—C7—C60.2 (4)
Zn1—N1—C5—C80.5 (2)C10—C9—C7—C6179.3 (2)
N1—C5—C4—C30.2 (3)N2—C12—C11—C100.8 (4)
C8—C5—C4—C3179.70 (19)O1—C12—C11—C10179.5 (2)
N1—C5—C4—C6178.99 (19)C5—C4—C3—C150.1 (3)
C8—C5—C4—C60.5 (3)C6—C4—C3—C15179.1 (2)
C12—N2—C8—C90.1 (3)C12—C11—C10—C90.2 (4)
Zn1—N2—C8—C9177.64 (16)C8—C9—C10—C110.5 (3)
C12—N2—C8—C5179.27 (18)C7—C9—C10—C11180.0 (2)
Zn1—N2—C8—C51.6 (2)C4—C3—C15—C10.0 (4)
N1—C5—C8—N20.7 (3)C5—N1—C1—C150.1 (3)
C4—C5—C8—N2179.77 (18)Zn1—N1—C1—C15178.98 (17)
N1—C5—C8—C9178.51 (17)C3—C15—C1—N10.1 (4)

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C13H10N2O)]
Mr391.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)26.360 (5), 8.5949 (16), 14.814 (3)
β (°) 96.266 (2)
V3)3336.3 (10)
Z8
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.61 × 0.42 × 0.40
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.418, 0.545
No. of measured, independent and
observed [I > 2σ(I)] reflections
9311, 3616, 2974
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.06
No. of reflections3616
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.49

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N31.916 (2)Zn1—N22.0254 (16)
Zn1—N41.926 (2)Zn1—N12.0636 (19)
N3—Zn1—N4114.85 (9)N3—Zn1—N1116.20 (8)
N3—Zn1—N2116.36 (8)N4—Zn1—N1108.07 (8)
N4—Zn1—N2115.23 (9)N2—Zn1—N181.62 (7)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds