Download citation
Download citation
link to html
In the essentially planar title mol­ecule, C10H9BrN4S, the C=N double bond is in a trans configuration. In the crystal structure, the S atom acts as a hydrogen-bond acceptor for the aromatic NH, aliphatic NH and terminal NH2 groups of three symmetry-related mol­ecules, forming a weak hydrogen-bonded layer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680801101X/lh2609sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680801101X/lh2609Isup2.hkl
Contains datablock I

CCDC reference: 689004

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.025
  • wR factor = 0.066
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.90 PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 20 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT716_ALERT_1_C H...A Unknown or Inconsistent Label .......... H1<I>N< PLAT716_ALERT_1_C H...A Unknown or Inconsistent Label .......... H3<I>N< PLAT716_ALERT_1_C H...A Unknown or Inconsistent Label .......... H4<I>N< PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.904 Tmax scaled 0.467 Tmin scaled 0.344 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Indole-3-carboxaldehyde thiosemicarbazone and its substituted analogs possess useful medicinal properties; such activity has been known for a long time (Doyle et al., 1956; French & Blanz, 1966; Fukukawa et al., 1966; Libermann et al., 1953; Usi, 1968; Weller et al., 1954). The compounds, in the form of their metal derivatives, have been assesses for similar activity.

In the title compound (I) (Fig. 1), the double-bonded sulfur atom is a hydrogen-bond acceptor for the aromatic -N-H, aliphatic -N-H and terminal -NH2 groups of three adjacent molecules, forming a weak hydrogen-bonded layer structure.

Related literature top

For a previous synthesis of the title compound, see: Dubey & Babu (2006). For related literature, see: Doyle et al. (1956); French & Blanz (1966); Fukukawa et al. (1966); Libermann et al. (1953); Usi (1968); Weller et al. (1954).

Experimental top

5-Bromoindole-3-carboxaldehyde (0.3 g, 1.3 mmol) and thiosemicarbazide (0.12 g, 1.3 mmol) were heated in ethanol (50 ml) for an hour. The solvent was removed and the product and recrystallized from ethanol.

Refinement top

Carbon-bound H atoms were placed in calculated positions, and were included in the refinement in the riding model approximation. The nitrogen-bound H atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule drawn using 70% probabilty ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius.
5-Bromo-1H-indole-3-carboxaldehyde thiosemicarbazone top
Crystal data top
C10H9BrN4SZ = 2
Mr = 297.18F(000) = 296
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7731 (2) ÅCell parameters from 6604 reflections
b = 8.7551 (2) Åθ = 4.0–28.3°
c = 10.6539 (2) ŵ = 3.81 mm1
α = 69.280 (1)°T = 100 K
β = 79.969 (1)°Block, yellow
γ = 72.886 (1)°0.30 × 0.20 × 0.20 mm
V = 563.00 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
2563 independent reflections
Radiation source: fine-focus sealed tube2281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 68
Tmin = 0.381, Tmax = 0.516k = 1111
6176 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
2563 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.36 e Å3
4 restraintsΔρmin = 0.40 e Å3
Crystal data top
C10H9BrN4Sγ = 72.886 (1)°
Mr = 297.18V = 563.00 (2) Å3
Triclinic, P1Z = 2
a = 6.7731 (2) ÅMo Kα radiation
b = 8.7551 (2) ŵ = 3.81 mm1
c = 10.6539 (2) ÅT = 100 K
α = 69.280 (1)°0.30 × 0.20 × 0.20 mm
β = 79.969 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2563 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2281 reflections with I > 2σ(I)
Tmin = 0.381, Tmax = 0.516Rint = 0.025
6176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0244 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
2563 reflectionsΔρmin = 0.40 e Å3
161 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.51693 (4)0.13022 (2)0.31237 (2)0.02102 (9)
S10.01187 (9)0.22591 (6)1.06142 (5)0.01534 (12)
N10.2717 (3)0.8577 (2)0.27383 (17)0.0153 (4)
N20.1383 (3)0.4698 (2)0.68281 (16)0.0116 (3)
N30.0718 (3)0.4342 (2)0.81750 (16)0.0118 (3)
N40.1492 (3)0.1567 (2)0.83268 (18)0.0169 (4)
C10.1846 (3)0.8475 (3)0.4006 (2)0.0151 (4)
H10.12660.94150.43200.018*
C20.3383 (3)0.6981 (2)0.2626 (2)0.0122 (4)
C30.4355 (3)0.6471 (3)0.1529 (2)0.0142 (4)
H30.46410.72650.06870.017*
C40.4889 (3)0.4765 (3)0.1711 (2)0.0131 (4)
H40.55730.43590.09900.016*
C50.4422 (3)0.3633 (2)0.2960 (2)0.0127 (4)
C60.3464 (3)0.4108 (2)0.40581 (19)0.0118 (4)
H60.31840.33000.48930.014*
C70.2917 (3)0.5832 (2)0.38933 (19)0.0109 (4)
C80.1921 (3)0.6825 (2)0.4770 (2)0.0120 (4)
C90.1249 (3)0.6266 (2)0.6176 (2)0.0127 (4)
H90.06930.70740.66330.015*
C100.0822 (3)0.2737 (2)0.8937 (2)0.0123 (4)
H1N0.254 (5)0.953 (2)0.207 (2)0.028 (7)*
H3N0.037 (4)0.510 (2)0.858 (2)0.013 (6)*
H4N10.137 (4)0.0533 (17)0.876 (2)0.023 (7)*
H4N20.173 (5)0.190 (4)0.7452 (11)0.035 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02971 (15)0.01243 (12)0.02039 (12)0.00512 (9)0.00410 (9)0.00765 (8)
S10.0217 (3)0.0111 (2)0.0101 (2)0.0029 (2)0.00152 (19)0.00200 (18)
N10.0190 (10)0.0104 (8)0.0119 (8)0.0022 (7)0.0015 (7)0.0005 (6)
N20.0105 (8)0.0144 (8)0.0100 (8)0.0056 (6)0.0021 (6)0.0034 (6)
N30.0154 (9)0.0112 (8)0.0091 (7)0.0032 (7)0.0020 (6)0.0051 (6)
N40.0239 (10)0.0117 (8)0.0144 (8)0.0050 (7)0.0044 (7)0.0056 (7)
C10.0176 (11)0.0133 (9)0.0127 (9)0.0021 (8)0.0005 (8)0.0045 (8)
C20.0120 (10)0.0108 (9)0.0134 (9)0.0032 (7)0.0023 (8)0.0025 (7)
C30.0121 (10)0.0167 (10)0.0119 (9)0.0036 (8)0.0015 (8)0.0022 (7)
C40.0109 (10)0.0174 (10)0.0111 (9)0.0028 (8)0.0020 (7)0.0049 (7)
C50.0113 (10)0.0106 (9)0.0165 (9)0.0031 (7)0.0014 (8)0.0042 (7)
C60.0102 (10)0.0124 (9)0.0117 (9)0.0030 (7)0.0017 (7)0.0021 (7)
C70.0090 (10)0.0132 (9)0.0103 (9)0.0028 (7)0.0012 (7)0.0032 (7)
C80.0114 (10)0.0116 (9)0.0131 (9)0.0035 (8)0.0011 (7)0.0037 (7)
C90.0107 (10)0.0137 (9)0.0133 (9)0.0024 (8)0.0003 (8)0.0049 (7)
C100.0103 (10)0.0129 (9)0.0130 (9)0.0029 (7)0.0001 (7)0.0038 (7)
Geometric parameters (Å, º) top
Br1—C51.9032 (19)C1—H10.9500
S1—C101.699 (2)C2—C31.388 (3)
N1—C11.359 (3)C2—C71.418 (3)
N1—C21.378 (3)C3—C41.379 (3)
N1—H1N0.878 (10)C3—H30.9500
N2—C91.284 (3)C4—C51.399 (3)
N2—N31.378 (2)C4—H40.9500
N3—C101.339 (3)C5—C61.372 (3)
N3—H3N0.876 (10)C6—C71.398 (3)
N4—C101.331 (3)C6—H60.9500
N4—H4N10.880 (10)C7—C81.447 (3)
N4—H4N20.873 (10)C8—C91.437 (3)
C1—C81.376 (3)C9—H90.9500
C1—N1—C2109.25 (17)C3—C4—H4120.1
C1—N1—H1N122.5 (19)C5—C4—H4120.1
C2—N1—H1N126.2 (18)C6—C5—C4123.94 (18)
C9—N2—N3115.12 (17)C6—C5—Br1118.76 (15)
C10—N3—N2119.25 (16)C4—C5—Br1117.30 (15)
C10—N3—H3N117.5 (16)C5—C6—C7117.04 (18)
N2—N3—H3N122.8 (16)C5—C6—H6121.5
C10—N4—H4N1119.9 (17)C7—C6—H6121.5
C10—N4—H4N2118.1 (19)C6—C7—C2119.09 (17)
H4N1—N4—H4N2120 (3)C6—C7—C8134.17 (18)
N1—C1—C8110.69 (18)C2—C7—C8106.75 (17)
N1—C1—H1124.7C1—C8—C9124.92 (18)
C8—C1—H1124.7C1—C8—C7105.86 (17)
N1—C2—C3129.70 (18)C9—C8—C7129.10 (18)
N1—C2—C7107.45 (17)N2—C9—C8121.41 (18)
C3—C2—C7122.85 (18)N2—C9—H9119.3
C4—C3—C2117.27 (18)C8—C9—H9119.3
C4—C3—H3121.4N4—C10—N3117.36 (18)
C2—C3—H3121.4N4—C10—S1122.58 (16)
C3—C4—C5119.81 (18)N3—C10—S1120.06 (15)
C9—N2—N3—C10179.30 (19)C3—C2—C7—C60.3 (3)
C2—N1—C1—C80.5 (3)N1—C2—C7—C80.4 (2)
C1—N1—C2—C3180.0 (2)C3—C2—C7—C8179.9 (2)
C1—N1—C2—C70.6 (2)N1—C1—C8—C9176.0 (2)
N1—C2—C3—C4178.9 (2)N1—C1—C8—C70.2 (3)
C7—C2—C3—C40.6 (3)C6—C7—C8—C1179.4 (2)
C2—C3—C4—C50.8 (3)C2—C7—C8—C10.2 (2)
C3—C4—C5—C60.8 (3)C6—C7—C8—C93.4 (4)
C3—C4—C5—Br1179.01 (16)C2—C7—C8—C9176.2 (2)
C4—C5—C6—C70.6 (3)N3—N2—C9—C8178.80 (19)
Br1—C5—C6—C7179.25 (15)C1—C8—C9—N2179.4 (2)
C5—C6—C7—C20.3 (3)C7—C8—C9—N24.0 (4)
C5—C6—C7—C8179.8 (2)N2—N3—C10—N42.8 (3)
N1—C2—C7—C6179.18 (18)N2—N3—C10—S1177.10 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···S1i0.88 (1)2.60 (2)3.390 (2)150 (3)
N3—H3n···S1ii0.88 (1)2.65 (1)3.508 (2)167 (2)
N4—H4n1···S1iii0.88 (1)2.74 (1)3.569 (2)158 (2)
Symmetry codes: (i) x, y+1, z1; (ii) x, y+1, z+2; (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC10H9BrN4S
Mr297.18
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.7731 (2), 8.7551 (2), 10.6539 (2)
α, β, γ (°)69.280 (1), 79.969 (1), 72.886 (1)
V3)563.00 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.81
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.381, 0.516
No. of measured, independent and
observed [I > 2σ(I)] reflections
6176, 2563, 2281
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.06
No. of reflections2563
No. of parameters161
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···S1i0.88 (1)2.60 (2)3.390 (2)150 (3)
N3—H3n···S1ii0.88 (1)2.65 (1)3.508 (2)167 (2)
N4—H4n1···S1iii0.88 (1)2.74 (1)3.569 (2)158 (2)
Symmetry codes: (i) x, y+1, z1; (ii) x, y+1, z+2; (iii) x, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds