Download citation
Download citation
link to html
In the title compound, [Ni(C38H38N10)](NO3)2·2H2O, the NiII ion is located on a crystallographic twofold rotation axis and is in a distorted octa­hedral coordination environment. The crystal structure is stablized by inter­molecular N—H...O and C—H...O hydrogen bonds, and weak C—H...π inter­actions. The O atoms of the unique nitrate ion are disordered over two sites with occupancies of 0.63 (1) and 0.37 (1). In addition, the O atom of the unique solvent water mol­ecule is disorded over two sites with equal occupancies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808031553/lh2699sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808031553/lh2699Isup2.hkl
Contains datablock I

CCDC reference: 709665

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.005 Å
  • H-atom completeness 91%
  • Disorder in solvent or counterion
  • R factor = 0.056
  • wR factor = 0.133
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT432_ALERT_2_B Short Inter X...Y Contact C9 .. O3' .. 2.91 Ang.
Author Response: O3' is a minor component of disorder. Short C...O distances of this sort are not unusual.
PLAT221_ALERT_4_B Large Solvent/Anion  O     Ueq(max)/Ueq(min) ...       5.00 Ratio
Author Response: This is owing to the disoder of the O atoms of the nitrate ion


Alert level C PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.56 PLAT410_ALERT_2_C Short Intra H...H Contact H2B .. H4B .. 1.90 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact C5 .. O3' .. 2.95 Ang.
Author Response: O3' is a minor component of disorder. Short C...O distances of this sort are not unusual.
PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings    Differ ....          ?
Author Response: H atoms of water molecules were not located or included in the refinement but are included in the formula

PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ ....          ?
PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)...          ?
PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct...          1
PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged ....        H3A
PLAT244_ALERT_4_C Low   'Solvent' Ueq as Compared to Neighbors for         N6

Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C38 H42 N12 Ni1 O8 Atom count from the _atom_site data: C38 H38 N12 Ni1 O8 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C38 H42 N12 Ni O8 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 152.00 152.00 0.00 H 168.00 152.00 16.00 N 48.00 48.00 0.00 Ni 4.00 4.00 0.00 O 32.00 32.00 0.00 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 65 PLAT302_ALERT_4_G Anion/Solvent Disorder ......................... 44.00 Perc. PLAT793_ALERT_4_G Check the Absolute Configuration of C3 ..... R
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

N,N,N',N'-Tetrakis(2-benzimidazolymethyl) cyclohexane-1,2-diamine (CTB) is a polybenzimidazole ligand, which has the advantage that the basicity of the coordinating group approximates that of histidine (pKb: histidine = 7.96 and benzimidazole = 8.47; Main, 1992). Recently, studies of ligand CTB and its metal coordination compounds have been widely carried out (Li et al.,2005; Zhao et al., 2005). In a continuation of this work, the title compound, (I), was prepared as part of a series of syntheses to produce new benzimidazole derivatives. We report the crystal stucture of the title compound herein.

In the molecule structure of (I), the NiII ion is located on a crystallographic twofold rotation axis and is is coordinated by four benzimidazolyl(bzim) N atoms and two amino N atoms of the ligand CTB, in a distorted octahedral environment (Fig.1). The amino N atoms are slightly further away from the NiII ion than the benzimidazolyl N atoms. The Ni-N bond lengths are similar to the values reported in a related structure (Oki et al.,1996). As shown in Fig. 2, the crystal structure is stablized by intermolecular N—H···O, C—H···O hydrogen bonds and weak C—H···π interactions.

Related literature top

For background information, see: Oki et al. (1996); Hendriks et al. (1982); Main (1992); Zhao et al. (2005). For the structure of the free ligand of the title compound, see: Li et al. (2005).

Experimental top

All reagents and solvents were used as obtained without further purification. The ligand CTB was prepared according to literature methods (Hendriks et al., 1982). Compound (I) was synthesized by refluxing stoichiometric quantities (1:1 molar ratio) of CTB (0.64 g, 1 mmol) and nickel(II) dinitrate hexahydrate (0.29 g, 1 mmol) in 95% ethanol (30 ml) at 333 K for 6 h. The solution was cooled to room temperature, filtered and evaporated to obtain the product (yield 72%). Crystals of (I) were grown from an ethanol solution by slow evaporation.

Refinement top

In (I), the nitrate O atoms are disordered over two positions with the final refined occupancies of 0.63 (1):0.37 (1). Water atom O4 is also disordered over two positions with both the occupancies being set to 0.5. H atoms bonded to water molecules were not located and were not included in the refinement but are included in the molecular formula. All H atoms (except for H3A) were included in geometrical positions with C—H=0.97 Å (methylene), 0.93Å (aromatic), 0.86Å (imine) and all the Uisovalues were set 1.2 times of their carrier atoms. The positional parameters of atom H3A were refined.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The nitrate anions, water molecules and H atoms are omitted for clarity [symmetry code: (a) -x, y, -z+3/2].
[Figure 2] Fig. 2. Part of the crystal structure showing the linking of molecules by H-bonding and weak C—H···π interactions as dashed lines.
[N,N,N',N'-Tetrakis(benzimidazol-2- ylmethyl)cyclohexane-1,2-diamine]nickel(II) dinitrate dihydrate top
Crystal data top
[Ni(C38H38N10)](NO3)2·2H2OF(000) = 1784
Mr = 853.55Dx = 1.447 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2061 reflections
a = 15.3395 (16) Åθ = 2.4–22.1°
b = 13.1695 (14) ŵ = 0.57 mm1
c = 19.606 (2) ÅT = 292 K
β = 98.501 (2)°Plate, purple
V = 3917.2 (7) Å30.32 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3847 independent reflections
Radiation source: fine-focus sealed tube2618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1817
Tmin = 0.840, Tmax = 0.946k = 1016
10917 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0618P)2]
where P = (Fo2 + 2Fc2)/3
3847 reflections(Δ/σ)max = 0.001
303 parametersΔρmax = 0.43 e Å3
65 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C38H38N10)](NO3)2·2H2OV = 3917.2 (7) Å3
Mr = 853.55Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.3395 (16) ŵ = 0.57 mm1
b = 13.1695 (14) ÅT = 292 K
c = 19.606 (2) Å0.32 × 0.20 × 0.10 mm
β = 98.501 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3847 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2618 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.946Rint = 0.074
10917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05665 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.43 e Å3
3847 reflectionsΔρmin = 0.34 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.06922 (5)0.75000.0383 (2)
N10.08499 (16)0.1952 (2)0.79130 (13)0.0411 (7)
N20.03564 (16)0.0758 (2)0.65276 (12)0.0420 (7)
N30.01367 (17)0.1461 (2)0.54912 (12)0.0461 (7)
H30.00830.18520.51580.055*
N40.11459 (17)0.0078 (2)0.71196 (12)0.0419 (7)
N50.25584 (18)0.0113 (3)0.66910 (14)0.0552 (8)
H50.30630.04010.65860.066*
N60.8994 (3)0.3077 (5)0.4093 (3)0.139 (2)
O10.9736 (6)0.2879 (13)0.4445 (5)0.268 (8)0.630 (9)
O20.8880 (3)0.3273 (6)0.3471 (3)0.119 (3)0.630 (9)
O30.8392 (5)0.3165 (5)0.4456 (4)0.142 (3)0.630 (9)
O1'0.9621 (5)0.2465 (7)0.4281 (4)0.058 (3)0.370 (9)
O2'0.9055 (8)0.4029 (8)0.4173 (8)0.161 (7)0.370 (9)
O3'0.8270 (19)0.2712 (14)0.377 (3)0.29 (12)*0.370 (9)
O40.0215 (8)0.4055 (10)0.9433 (5)0.169 (6)0.50 (2)
O4'0.0237 (12)0.491 (2)0.9646 (10)0.279 (12)0.50 (2)
C10.0479 (3)0.4797 (3)0.7444 (2)0.0738 (12)
H1A0.07650.54120.76350.089*
H1B0.05120.47840.69540.089*
C20.0954 (2)0.3874 (3)0.7790 (2)0.0609 (10)
H2A0.15600.38730.77040.073*
H2B0.09580.39160.82840.073*
C30.0508 (2)0.2889 (3)0.75205 (18)0.0454 (8)
H3A0.063 (2)0.280 (2)0.7048 (16)0.054*
C40.0837 (2)0.2029 (3)0.86709 (16)0.0494 (9)
H4A0.13940.17900.89170.059*
H4B0.07670.27340.87950.059*
C50.1735 (2)0.1638 (3)0.77788 (18)0.0492 (9)
H5A0.21890.20390.80520.059*
H5B0.17870.17220.72950.059*
C60.0106 (2)0.1420 (3)0.61190 (15)0.0412 (8)
C70.0944 (2)0.0319 (3)0.61274 (15)0.0412 (8)
C80.1581 (2)0.0419 (3)0.62782 (19)0.0570 (10)
H80.16780.07350.67070.068*
C90.2069 (3)0.0668 (3)0.5766 (2)0.0644 (11)
H90.25020.11650.58520.077*
C100.1936 (3)0.0204 (3)0.51282 (19)0.0658 (11)
H100.22890.03860.48010.079*
C110.1299 (2)0.0515 (3)0.49675 (17)0.0561 (10)
H110.12040.08230.45360.067*
C120.0804 (2)0.0764 (3)0.54747 (15)0.0441 (8)
C130.1819 (2)0.0548 (3)0.70208 (16)0.0453 (8)
C140.2356 (2)0.0880 (3)0.65533 (18)0.0546 (10)
C150.2841 (3)0.1652 (4)0.6196 (2)0.0793 (14)
H150.34320.15660.60150.095*
C160.2408 (3)0.2551 (4)0.6122 (2)0.0862 (15)
H160.27100.30840.58830.103*
C170.1518 (3)0.2677 (3)0.6401 (2)0.0800 (14)
H170.12480.32980.63460.096*
C180.1031 (3)0.1913 (3)0.67524 (18)0.0601 (10)
H180.04390.20020.69310.072*
C190.1463 (2)0.1002 (3)0.68280 (16)0.0468 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0387 (4)0.0453 (4)0.0307 (3)0.0000.0044 (2)0.000
N10.0380 (15)0.0490 (17)0.0366 (14)0.0011 (13)0.0062 (11)0.0024 (13)
N20.0414 (15)0.0507 (17)0.0342 (14)0.0041 (14)0.0066 (11)0.0015 (14)
N30.0536 (17)0.0550 (18)0.0292 (14)0.0030 (15)0.0044 (12)0.0085 (13)
N40.0433 (16)0.0469 (17)0.0347 (15)0.0039 (14)0.0028 (12)0.0051 (13)
N50.0393 (17)0.071 (2)0.0544 (19)0.0096 (16)0.0027 (14)0.0030 (17)
N60.087 (4)0.119 (5)0.203 (8)0.000 (4)0.007 (5)0.038 (5)
O10.179 (10)0.317 (15)0.290 (14)0.021 (10)0.025 (9)0.206 (12)
O20.079 (4)0.176 (7)0.097 (4)0.031 (4)0.003 (3)0.091 (5)
O30.127 (6)0.125 (6)0.191 (7)0.023 (5)0.082 (5)0.025 (5)
O1'0.052 (5)0.076 (6)0.044 (4)0.027 (4)0.005 (3)0.023 (4)
O2'0.115 (9)0.170 (13)0.184 (13)0.027 (9)0.025 (8)0.000 (10)
O40.239 (11)0.123 (10)0.149 (8)0.023 (7)0.043 (7)0.076 (6)
O4'0.311 (17)0.28 (2)0.247 (17)0.064 (15)0.042 (12)0.007 (16)
C10.084 (3)0.050 (2)0.088 (3)0.011 (2)0.013 (3)0.001 (2)
C20.061 (2)0.053 (2)0.069 (3)0.011 (2)0.012 (2)0.003 (2)
C30.0481 (19)0.045 (2)0.0440 (19)0.0006 (17)0.0101 (16)0.0002 (17)
C40.047 (2)0.059 (2)0.0403 (19)0.0071 (18)0.0007 (15)0.0039 (17)
C50.0388 (19)0.058 (2)0.050 (2)0.0037 (17)0.0064 (15)0.0022 (18)
C60.0418 (18)0.047 (2)0.0339 (17)0.0018 (16)0.0043 (14)0.0007 (16)
C70.0434 (18)0.047 (2)0.0335 (17)0.0016 (16)0.0075 (14)0.0021 (15)
C80.060 (2)0.063 (3)0.049 (2)0.013 (2)0.0106 (18)0.0008 (19)
C90.063 (2)0.073 (3)0.059 (2)0.017 (2)0.0133 (19)0.008 (2)
C100.060 (3)0.094 (3)0.047 (2)0.002 (2)0.0188 (19)0.017 (2)
C110.059 (2)0.075 (3)0.0358 (18)0.004 (2)0.0118 (17)0.0019 (19)
C120.0461 (19)0.051 (2)0.0345 (17)0.0066 (18)0.0051 (14)0.0027 (16)
C130.0402 (19)0.059 (2)0.0372 (18)0.0065 (18)0.0069 (14)0.0005 (17)
C140.052 (2)0.068 (3)0.044 (2)0.016 (2)0.0081 (17)0.0011 (19)
C150.073 (3)0.094 (4)0.069 (3)0.042 (3)0.005 (2)0.005 (3)
C160.105 (4)0.079 (4)0.073 (3)0.048 (3)0.010 (3)0.014 (3)
C170.121 (4)0.055 (3)0.067 (3)0.024 (3)0.023 (3)0.009 (2)
C180.076 (3)0.058 (3)0.046 (2)0.008 (2)0.0063 (19)0.0029 (19)
C190.057 (2)0.053 (2)0.0319 (17)0.0085 (18)0.0091 (15)0.0018 (16)
Geometric parameters (Å, º) top
Ni1—N22.061 (2)C2—H2B0.9700
Ni1—N2i2.062 (2)C3—C3i1.549 (6)
Ni1—N42.071 (3)C3—H3A0.98 (3)
Ni1—N4i2.071 (3)C4—C6i1.485 (4)
Ni1—N1i2.190 (3)C4—H4A0.9700
Ni1—N12.190 (3)C4—H4B0.9700
N1—C51.479 (4)C5—C13i1.489 (5)
N1—C41.493 (4)C5—H5A0.9700
N1—C31.506 (4)C5—H5B0.9700
N2—C61.318 (4)C6—C4i1.485 (4)
N2—C71.404 (4)C7—C81.379 (5)
N3—C61.339 (4)C7—C121.395 (4)
N3—C121.378 (4)C8—C91.378 (5)
N3—H30.8600C8—H80.9300
N4—C131.313 (4)C9—C101.378 (5)
N4—C191.400 (4)C9—H90.9300
N5—C131.348 (4)C10—C111.364 (5)
N5—C141.379 (5)C10—H100.9300
N5—H50.8600C11—C121.378 (4)
N6—O21.233 (6)C11—H110.9300
N6—O31.252 (6)C13—C5i1.489 (5)
N6—O2'1.265 (8)C14—C151.387 (5)
N6—O1'1.267 (7)C14—C191.405 (5)
N6—O11.268 (7)C15—C161.375 (7)
N6—O3'1.286 (9)C15—H150.9300
O4'—O4'ii1.68 (4)C16—C171.403 (6)
C1—C1i1.519 (8)C16—H160.9300
C1—C21.524 (5)C17—C181.376 (5)
C1—H1A0.9700C17—H170.9300
C1—H1B0.9700C18—C191.389 (5)
C2—C31.524 (5)C18—H180.9300
C2—H2A0.9700
N2—Ni1—N2i175.20 (15)C2—C3—C3i114.5 (2)
N2—Ni1—N490.83 (10)N1—C3—H3A106.6 (19)
N2i—Ni1—N491.53 (10)C2—C3—H3A106.6 (19)
N2—Ni1—N4i91.53 (10)C3i—C3—H3A106.6 (19)
N2i—Ni1—N4i90.82 (10)C6i—C4—N1111.2 (3)
N4—Ni1—N4i121.31 (16)C6i—C4—H4A109.4
N2—Ni1—N1i81.44 (10)N1—C4—H4A109.4
N2i—Ni1—N1i94.90 (10)C6i—C4—H4B109.4
N4—Ni1—N1i79.11 (10)N1—C4—H4B109.4
N4i—Ni1—N1i158.69 (11)H4A—C4—H4B108.0
N2—Ni1—N194.90 (10)N1—C5—C13i105.6 (3)
N2i—Ni1—N181.43 (10)N1—C5—H5A110.6
N4—Ni1—N1158.69 (10)C13i—C5—H5A110.6
N4i—Ni1—N179.11 (10)N1—C5—H5B110.6
N1i—Ni1—N181.47 (14)C13i—C5—H5B110.6
C5—N1—C4110.1 (2)H5A—C5—H5B108.8
C5—N1—C3113.4 (2)N2—C6—N3112.8 (3)
C4—N1—C3113.5 (3)N2—C6—C4i123.3 (3)
C5—N1—Ni1103.5 (2)N3—C6—C4i123.8 (3)
C4—N1—Ni1108.93 (19)C8—C7—C12120.1 (3)
C3—N1—Ni1106.76 (18)C8—C7—N2131.6 (3)
C6—N2—C7105.4 (3)C12—C7—N2108.3 (3)
C6—N2—Ni1113.4 (2)C9—C8—C7117.1 (3)
C7—N2—Ni1141.2 (2)C9—C8—H8121.5
C6—N3—C12107.6 (3)C7—C8—H8121.5
C6—N3—H3126.2C8—C9—C10122.2 (4)
C12—N3—H3126.2C8—C9—H9118.9
C13—N4—C19105.5 (3)C10—C9—H9118.9
C13—N4—Ni1110.6 (2)C11—C10—C9121.4 (3)
C19—N4—Ni1142.9 (2)C11—C10—H10119.3
C13—N5—C14107.4 (3)C9—C10—H10119.3
C13—N5—H5126.3C10—C11—C12116.8 (3)
C14—N5—H5126.3C10—C11—H11121.6
O2—N6—O3122.3 (5)C12—C11—H11121.6
O2—N6—O2'85.0 (9)C11—C12—N3131.8 (3)
O3—N6—O2'83.4 (9)C11—C12—C7122.4 (3)
O2—N6—O1'114.3 (7)N3—C12—C7105.8 (3)
O3—N6—O1'119.1 (7)N4—C13—N5113.0 (3)
O2'—N6—O1'123.7 (6)N4—C13—C5i122.1 (3)
O2—N6—O1124.5 (6)N5—C13—C5i124.8 (3)
O3—N6—O1112.8 (6)N5—C14—C15132.4 (4)
O2'—N6—O195.3 (11)N5—C14—C19105.5 (3)
O2'—N6—O3'118.3 (7)C15—C14—C19122.0 (4)
O1'—N6—O3'117.9 (7)C16—C15—C14116.9 (4)
O1—N6—O3'146.2 (13)C16—C15—H15121.5
C1i—C1—C2110.1 (3)C14—C15—H15121.5
C1i—C1—H1A109.6C15—C16—C17121.2 (5)
C2—C1—H1A109.6C15—C16—H16119.4
C1i—C1—H1B109.6C17—C16—H16119.4
C2—C1—H1B109.6C18—C17—C16122.3 (5)
H1A—C1—H1B108.1C18—C17—H17118.9
C3—C2—C1111.4 (3)C16—C17—H17118.9
C3—C2—H2A109.4C17—C18—C19116.9 (4)
C1—C2—H2A109.4C17—C18—H18121.6
C3—C2—H2B109.4C19—C18—H18121.6
C1—C2—H2B109.4C18—C19—N4130.6 (3)
H2A—C2—H2B108.0C18—C19—C14120.8 (4)
N1—C3—C2114.5 (3)N4—C19—C14108.5 (3)
N1—C3—C3i107.3 (2)
N2—Ni1—N1—C555.5 (2)Ni1—N1—C5—C13i44.1 (3)
N2i—Ni1—N1—C5127.6 (2)C7—N2—C6—N30.9 (4)
N4—Ni1—N1—C5160.6 (2)Ni1—N2—C6—N3179.5 (2)
N4i—Ni1—N1—C535.10 (19)C7—N2—C6—C4i177.3 (3)
N1i—Ni1—N1—C5136.1 (2)Ni1—N2—C6—C4i2.3 (4)
N2—Ni1—N1—C4172.7 (2)C12—N3—C6—N20.9 (4)
N2i—Ni1—N1—C410.5 (2)C12—N3—C6—C4i177.3 (3)
N4—Ni1—N1—C482.3 (3)C6—N2—C7—C8179.7 (4)
N4i—Ni1—N1—C482.0 (2)Ni1—N2—C7—C80.2 (6)
N1i—Ni1—N1—C4106.8 (2)C6—N2—C7—C120.5 (4)
N2—Ni1—N1—C364.4 (2)Ni1—N2—C7—C12180.0 (3)
N2i—Ni1—N1—C3112.4 (2)C12—C7—C8—C91.3 (5)
N4—Ni1—N1—C340.6 (3)N2—C7—C8—C9178.5 (3)
N4i—Ni1—N1—C3155.1 (2)C7—C8—C9—C100.3 (6)
N1i—Ni1—N1—C316.12 (14)C8—C9—C10—C111.3 (6)
N4—Ni1—N2—C674.0 (2)C9—C10—C11—C120.8 (6)
N4i—Ni1—N2—C6164.6 (2)C10—C11—C12—N3178.2 (4)
N1i—Ni1—N2—C64.9 (2)C10—C11—C12—C70.8 (5)
N1—Ni1—N2—C685.4 (2)C6—N3—C12—C11178.2 (4)
N4—Ni1—N2—C7105.4 (3)C6—N3—C12—C70.5 (4)
N4i—Ni1—N2—C715.9 (3)C8—C7—C12—C111.9 (5)
N1i—Ni1—N2—C7175.7 (4)N2—C7—C12—C11178.0 (3)
N1—Ni1—N2—C795.1 (3)C8—C7—C12—N3179.8 (3)
N2—Ni1—N4—C1398.7 (2)N2—C7—C12—N30.0 (4)
N2i—Ni1—N4—C1377.1 (2)C19—N4—C13—N50.4 (4)
N4i—Ni1—N4—C13169.0 (2)Ni1—N4—C13—N5171.9 (2)
N1i—Ni1—N4—C1317.6 (2)C19—N4—C13—C5i176.2 (3)
N1—Ni1—N4—C137.0 (4)Ni1—N4—C13—C5i4.6 (4)
N2—Ni1—N4—C1967.7 (3)C14—N5—C13—N40.7 (4)
N2i—Ni1—N4—C19116.5 (3)C14—N5—C13—C5i175.7 (3)
N4i—Ni1—N4—C1924.6 (3)C13—N5—C14—C15175.8 (4)
N1i—Ni1—N4—C19148.8 (3)C13—N5—C14—C190.7 (4)
N1—Ni1—N4—C19173.5 (3)N5—C14—C15—C16176.1 (4)
C1i—C1—C2—C357.5 (5)C19—C14—C15—C160.1 (6)
C5—N1—C3—C273.2 (4)C14—C15—C16—C170.4 (6)
C4—N1—C3—C253.5 (4)C15—C16—C17—C180.8 (7)
Ni1—N1—C3—C2173.5 (2)C16—C17—C18—C190.7 (6)
C5—N1—C3—C3i158.5 (3)C17—C18—C19—N4176.0 (3)
C4—N1—C3—C3i74.8 (3)C17—C18—C19—C140.1 (5)
Ni1—N1—C3—C3i45.2 (3)C13—N4—C19—C18176.4 (3)
C1—C2—C3—N1171.0 (3)Ni1—N4—C19—C189.6 (6)
C1—C2—C3—C3i46.4 (5)C13—N4—C19—C140.1 (3)
C5—N1—C4—C6i126.7 (3)Ni1—N4—C19—C14166.7 (3)
C3—N1—C4—C6i104.9 (3)N5—C14—C19—C18177.2 (3)
Ni1—N1—C4—C6i13.8 (3)C15—C14—C19—C180.3 (5)
C4—N1—C5—C13i72.2 (3)N5—C14—C19—N40.5 (4)
C3—N1—C5—C13i159.4 (3)C15—C14—C19—N4176.5 (3)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1iii0.861.942.774 (10)165
N5—H5···O2iv0.862.142.923 (7)151
C4—H4B···O40.972.373.268 (12)154
C11—H11···Cg1v0.932.733.542147
C16—H16···Cg2vi0.932.793.680160
Symmetry codes: (iii) x1, y, z; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C38H38N10)](NO3)2·2H2O
Mr853.55
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)15.3395 (16), 13.1695 (14), 19.606 (2)
β (°) 98.501 (2)
V3)3917.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.32 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.840, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
10917, 3847, 2618
Rint0.074
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.133, 0.95
No. of reflections3847
No. of parameters303
No. of restraints65
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N22.061 (2)Ni1—N12.190 (3)
Ni1—N42.071 (3)
N2—Ni1—N2i175.20 (15)N4—Ni1—N1i79.11 (10)
N2—Ni1—N490.83 (10)N2—Ni1—N194.90 (10)
N2—Ni1—N4i91.53 (10)N4—Ni1—N1158.69 (10)
N2i—Ni1—N4i90.82 (10)N1i—Ni1—N181.47 (14)
N2—Ni1—N1i81.44 (10)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1ii0.861.942.774 (10)164.7
N5—H5···O2iii0.862.142.923 (7)150.6
C4—H4B···O40.972.373.268 (12)153.6
C11—H11···Cg1iv0.932.7273.542146.8
C16—H16···Cg2v0.932.7933.680160.3
Symmetry codes: (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z+1; (v) x1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds