Download citation
Download citation
link to html
In the title crystal structure, [Cd(NCS)(NO3)(C11H9N5)]n, the unique CdII ion is coordinated in a distorted penta­gonal–bipyramidal environment. The axial thio­cyanate ligands act in a μ1,3-bridging mode to connect symmetry-related CdII ions into one-dimensional chains along [010]. In addition, there are inter­molecular C—H...O contacts between chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808032297/lh2703sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808032297/lh2703Isup2.hkl
Contains datablock I

CCDC reference: 709505

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.032
  • wR factor = 0.074
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for N6
Alert level C Value of measurement temperature given = 298.000 Value of melting point given = 0.000 PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 -- C1 .. 5.89 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cd1 -- O2 .. 6.09 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cd1 -- O3 .. 6.81 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N7 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 95 N6 -C1 -S1 -CD1 18.00 0.00 1.555 1.555 1.555 2.655
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Both the 2,6-bis(pyrazolyl)pyridine and thiocyanate ligands play an important role in modern coordination chemistry (Halcrow 2005; Shi et al. 2006), and our interest in complexes formed with these ligands led us to prepare the title complex and determine its crystal structure (I).

As shown in Fig. 1 the CdII ion is coordinated in a distorted pentagonal–bipyramidal environment with the 2,6-bis(pyrazolyl)pyridine and nitrate anion acting as chelating tridentate and bidentate ligands, respectively. The axial thiocyantate ligands bridge symmetry-related CdII ions [with a Cd···Cd separation of 6.1817 (10) Å] to form a one-dimensional `zigzag' chain along the b axis (Fig. 2). In addition, the crystal structure contains C—H···O and C—H···S short contacts between chains.

Related literature top

For background information, see: Halcrow (2005); Shi et al. (2006).

Experimental top

A 15 ml methanol solution containing 2,6-bis(pyrazolyl)pyridine (0.4140 g, 0.196 mmol) was added to 8 ml H2O solution of Cd(NO3)26H2O (0.0689 g, 0.200 mmol) and NaSCN (0.0324 g, 0.400 mmol), and the mixture was stirred for a few minutes. Colorless single crystals were obtained after the filtrate was allowed to stand at room temperature for a month.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of part of the structure of (I), with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 1/2; (ii) -x + 3/2, y - 1/2, -z + 1/2.]
[Figure 2] Fig. 2. Part of the one-dimensional chain of (I).
catena-Poly[[[2,6-bis(pyrazol-1-yl-κN2)pyridine-κN1](nitrato- κ2O,O')cadmium(II)]-µ-thiocyanato-κ2N:S] top
Crystal data top
[Cd(NCS)(NO3)(C11H9N5)]F(000) = 872
Mr = 443.72Dx = 1.923 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2732 reflections
a = 8.4161 (15) Åθ = 2.2–24.8°
b = 11.817 (2) ŵ = 1.59 mm1
c = 15.631 (3) ÅT = 298 K
β = 99.673 (2)°Block, colourless
V = 1532.5 (5) Å30.18 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3335 independent reflections
Radiation source: fine-focus sealed tube2710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 107
Tmin = 0.763, Tmax = 0.845k = 1514
8813 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0324P)2]
where P = (Fo2 + 2Fc2)/3
3335 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
[Cd(NCS)(NO3)(C11H9N5)]V = 1532.5 (5) Å3
Mr = 443.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4161 (15) ŵ = 1.59 mm1
b = 11.817 (2) ÅT = 298 K
c = 15.631 (3) Å0.18 × 0.15 × 0.11 mm
β = 99.673 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3335 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2710 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.845Rint = 0.034
8813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.074H-atom parameters constrained
S = 1.02Δρmax = 0.53 e Å3
3335 reflectionsΔρmin = 0.35 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8278 (4)0.8449 (3)0.3362 (2)0.0413 (8)
C20.3464 (4)0.7893 (3)0.1478 (2)0.0507 (9)
H20.30420.76890.19680.061*
C30.2736 (5)0.8650 (3)0.0850 (3)0.0582 (11)
H30.17690.90340.08400.070*
C40.3722 (5)0.8708 (3)0.0265 (3)0.0550 (10)
H40.35690.91510.02340.066*
C50.6374 (4)0.7813 (2)0.01605 (19)0.0399 (8)
C60.6570 (5)0.8277 (3)0.0627 (2)0.0558 (10)
H60.57650.87080.09550.067*
C70.8005 (6)0.8073 (3)0.0903 (2)0.0654 (12)
H70.81870.83860.14230.078*
C80.9175 (5)0.7420 (3)0.0429 (2)0.0596 (11)
H81.01530.72860.06120.071*
C90.8833 (4)0.6968 (3)0.0337 (2)0.0428 (8)
C101.1325 (5)0.5770 (3)0.0743 (3)0.0666 (12)
H101.18040.58610.02530.080*
C111.1898 (5)0.5134 (3)0.1447 (3)0.0705 (12)
H111.28340.47010.15380.085*
C121.0793 (5)0.5266 (3)0.2001 (3)0.0633 (11)
H121.08850.49230.25430.076*
Cd10.69811 (3)0.631846 (17)0.194115 (13)0.03553 (9)
N10.9587 (4)0.5939 (2)0.16692 (19)0.0501 (7)
N20.9920 (4)0.6253 (2)0.08807 (19)0.0468 (7)
N30.7484 (3)0.7163 (2)0.06248 (15)0.0370 (6)
N40.4991 (3)0.8004 (2)0.05286 (16)0.0389 (6)
N50.4831 (3)0.7503 (2)0.12873 (16)0.0416 (6)
N60.7831 (5)0.7729 (3)0.29035 (19)0.0716 (12)
N70.6367 (3)0.5128 (2)0.34211 (16)0.0410 (6)
O10.6028 (3)0.4666 (2)0.40633 (16)0.0704 (8)
O20.7776 (3)0.5144 (2)0.32709 (14)0.0483 (6)
O30.5296 (3)0.5612 (2)0.28825 (14)0.0552 (6)
S10.89559 (11)0.94486 (6)0.40588 (5)0.0430 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.0320 (17)0.0409 (17)0.0047 (15)0.0013 (15)0.0078 (14)
C20.049 (2)0.0420 (19)0.061 (2)0.0077 (17)0.0092 (18)0.0019 (16)
C30.042 (2)0.045 (2)0.083 (3)0.0052 (17)0.007 (2)0.0069 (19)
C40.056 (2)0.0379 (19)0.063 (2)0.0029 (18)0.015 (2)0.0093 (16)
C50.052 (2)0.0279 (15)0.0362 (16)0.0140 (15)0.0035 (15)0.0005 (13)
C60.074 (3)0.048 (2)0.0410 (19)0.017 (2)0.0016 (19)0.0085 (16)
C70.094 (3)0.064 (3)0.0368 (19)0.031 (3)0.007 (2)0.0046 (18)
C80.069 (3)0.061 (2)0.055 (2)0.026 (2)0.029 (2)0.0149 (19)
C90.050 (2)0.0376 (18)0.0404 (17)0.0173 (17)0.0064 (16)0.0060 (14)
C100.047 (2)0.063 (3)0.095 (3)0.014 (2)0.027 (2)0.032 (2)
C110.041 (2)0.053 (2)0.115 (4)0.005 (2)0.006 (2)0.024 (3)
C120.047 (2)0.057 (2)0.080 (3)0.010 (2)0.007 (2)0.010 (2)
Cd10.04344 (16)0.03132 (14)0.03132 (13)0.00301 (10)0.00483 (10)0.00214 (9)
N10.0439 (18)0.0509 (16)0.0541 (18)0.0074 (15)0.0047 (14)0.0011 (14)
N20.0382 (17)0.0452 (16)0.0589 (18)0.0105 (13)0.0133 (14)0.0136 (13)
N30.0421 (17)0.0308 (13)0.0372 (13)0.0067 (12)0.0037 (12)0.0000 (11)
N40.0430 (17)0.0294 (13)0.0402 (14)0.0014 (12)0.0045 (12)0.0026 (11)
N50.0474 (18)0.0340 (14)0.0419 (15)0.0001 (13)0.0032 (13)0.0025 (11)
N60.116 (3)0.0365 (17)0.0525 (18)0.0005 (18)0.015 (2)0.0097 (14)
N70.0462 (18)0.0433 (15)0.0339 (14)0.0003 (14)0.0076 (13)0.0010 (12)
O10.078 (2)0.0841 (19)0.0511 (15)0.0113 (16)0.0165 (14)0.0281 (14)
O20.0494 (15)0.0532 (15)0.0416 (11)0.0051 (12)0.0056 (11)0.0075 (9)
O30.0491 (15)0.0758 (17)0.0407 (13)0.0098 (13)0.0080 (11)0.0087 (12)
S10.0561 (6)0.0331 (4)0.0364 (4)0.0018 (4)0.0015 (4)0.0006 (3)
Geometric parameters (Å, º) top
C1—N61.135 (4)C10—C111.352 (6)
C1—S11.642 (4)C10—N21.362 (5)
C2—N51.319 (4)C10—H100.9300
C2—C31.391 (5)C11—C121.383 (6)
C2—H20.9300C11—H110.9300
C3—C41.336 (6)C12—N11.325 (4)
C3—H30.9300C12—H120.9300
C4—N41.362 (4)Cd1—N62.279 (3)
C4—H40.9300Cd1—N12.346 (3)
C5—N31.327 (4)Cd1—O32.361 (2)
C5—C61.383 (4)Cd1—N52.379 (3)
C5—N41.400 (4)Cd1—N32.388 (2)
C6—C71.370 (6)Cd1—O22.495 (2)
C6—H60.9300Cd1—S1i2.7447 (9)
C7—C81.367 (5)N1—N21.360 (4)
C7—H70.9300N4—N51.352 (3)
C8—C91.385 (5)N7—O11.218 (3)
C8—H80.9300N7—O21.247 (3)
C9—N31.310 (4)N7—O31.262 (3)
C9—N21.418 (4)S1—Cd1ii2.7447 (9)
N6—C1—S1177.5 (3)O3—Cd1—N589.01 (9)
N5—C2—C3111.3 (4)N6—Cd1—N3100.47 (10)
N5—C2—H2124.3N1—Cd1—N367.50 (9)
C3—C2—H2124.3O3—Cd1—N3153.74 (9)
C4—C3—C2105.4 (4)N5—Cd1—N367.41 (9)
C4—C3—H3127.3N6—Cd1—O281.17 (9)
C2—C3—H3127.3N1—Cd1—O285.22 (9)
C3—C4—N4107.9 (3)O3—Cd1—O252.36 (8)
C3—C4—H4126.1N5—Cd1—O2139.77 (9)
N4—C4—H4126.1N3—Cd1—O2152.71 (9)
N3—C5—C6122.5 (4)N6—Cd1—S1i173.33 (8)
N3—C5—N4115.2 (3)N1—Cd1—S1i86.04 (7)
C6—C5—N4122.3 (3)O3—Cd1—S1i85.71 (6)
C7—C6—C5117.0 (4)N5—Cd1—S1i95.98 (6)
C7—C6—H6121.5N3—Cd1—S1i85.49 (6)
C5—C6—H6121.5O2—Cd1—S1i92.16 (6)
C8—C7—C6121.4 (4)C12—N1—N2105.0 (3)
C8—C7—H7119.3C12—N1—Cd1136.2 (3)
C6—C7—H7119.3N2—N1—Cd1116.9 (2)
C7—C8—C9116.8 (4)N1—N2—C10110.1 (3)
C7—C8—H8121.6N1—N2—C9119.7 (3)
C9—C8—H8121.6C10—N2—C9130.1 (4)
N3—C9—C8123.2 (3)C9—N3—C5119.0 (3)
N3—C9—N2114.0 (3)C9—N3—Cd1120.8 (2)
C8—C9—N2122.8 (3)C5—N3—Cd1120.2 (2)
C11—C10—N2107.8 (4)N5—N4—C4110.1 (3)
C11—C10—H10126.1N5—N4—C5120.2 (2)
N2—C10—H10126.1C4—N4—C5129.6 (3)
C10—C11—C12105.1 (4)C2—N5—N4105.3 (3)
C10—C11—H11127.4C2—N5—Cd1137.6 (2)
C12—C11—H11127.4N4—N5—Cd1117.0 (2)
N1—C12—C11111.9 (4)C1—N6—Cd1177.7 (3)
N1—C12—H12124.0O1—N7—O2121.5 (3)
C11—C12—H12124.0O1—N7—O3120.9 (3)
N6—Cd1—N193.43 (12)O2—N7—O3117.6 (3)
N6—Cd1—O390.12 (11)N7—O2—Cd191.99 (17)
N1—Cd1—O3136.31 (9)N7—O3—Cd198.02 (19)
N6—Cd1—N589.13 (10)C1—S1—Cd1ii99.61 (11)
N1—Cd1—N5134.53 (10)
N5—C2—C3—C40.1 (4)N6—Cd1—N3—C587.3 (2)
C2—C3—C4—N40.5 (4)N1—Cd1—N3—C5176.7 (2)
N3—C5—C6—C72.4 (5)O3—Cd1—N3—C524.9 (3)
N4—C5—C6—C7177.1 (3)N5—Cd1—N3—C52.70 (19)
C5—C6—C7—C81.4 (5)O2—Cd1—N3—C5178.35 (18)
C6—C7—C8—C90.6 (5)S1i—Cd1—N3—C595.7 (2)
C7—C8—C9—N31.8 (5)C3—C4—N4—N50.7 (4)
C7—C8—C9—N2178.5 (3)C3—C4—N4—C5176.5 (3)
N2—C10—C11—C120.4 (4)N3—C5—N4—N52.6 (4)
C10—C11—C12—N10.3 (4)C6—C5—N4—N5178.0 (3)
C11—C12—N1—N20.1 (4)N3—C5—N4—C4172.9 (3)
C11—C12—N1—Cd1162.7 (3)C6—C5—N4—C46.6 (5)
N6—Cd1—N1—C1290.2 (3)C3—C2—N5—N40.3 (4)
O3—Cd1—N1—C123.6 (4)C3—C2—N5—Cd1175.3 (2)
N5—Cd1—N1—C12177.6 (3)C4—N4—N5—C20.6 (3)
N3—Cd1—N1—C12169.9 (4)C5—N4—N5—C2176.9 (3)
O2—Cd1—N1—C129.4 (3)C4—N4—N5—Cd1176.07 (19)
S1i—Cd1—N1—C1283.1 (3)C5—N4—N5—Cd10.2 (3)
N6—Cd1—N1—N2108.5 (2)N6—Cd1—N5—C272.3 (3)
O3—Cd1—N1—N2157.76 (18)N1—Cd1—N5—C2166.3 (3)
N5—Cd1—N1—N216.3 (3)O3—Cd1—N5—C217.8 (3)
N3—Cd1—N1—N28.6 (2)N3—Cd1—N5—C2174.1 (3)
O2—Cd1—N1—N2170.7 (2)O2—Cd1—N5—C22.8 (4)
S1i—Cd1—N1—N278.2 (2)S1i—Cd1—N5—C2103.4 (3)
C12—N1—N2—C100.1 (4)N6—Cd1—N5—N4102.9 (2)
Cd1—N1—N2—C10166.9 (2)N1—Cd1—N5—N49.0 (3)
C12—N1—N2—C9178.6 (3)O3—Cd1—N5—N4166.94 (19)
Cd1—N1—N2—C911.9 (3)N3—Cd1—N5—N41.21 (18)
C11—C10—N2—N10.4 (4)O2—Cd1—N5—N4178.12 (16)
C11—C10—N2—C9178.3 (3)S1i—Cd1—N5—N481.36 (19)
N3—C9—N2—N17.0 (4)O1—N7—O2—Cd1177.4 (3)
C8—C9—N2—N1172.7 (3)O3—N7—O2—Cd12.5 (3)
N3—C9—N2—C10171.5 (3)N6—Cd1—O2—N795.51 (19)
C8—C9—N2—C108.8 (5)N1—Cd1—O2—N7170.26 (18)
C8—C9—N3—C50.9 (4)O3—Cd1—O2—N71.52 (16)
N2—C9—N3—C5179.3 (2)N5—Cd1—O2—N717.5 (2)
C8—C9—N3—Cd1178.9 (2)N3—Cd1—O2—N7168.76 (17)
N2—C9—N3—Cd11.3 (3)S1i—Cd1—O2—N784.41 (17)
C6—C5—N3—C91.3 (4)O1—N7—O3—Cd1177.2 (3)
N4—C5—N3—C9178.2 (3)O2—N7—O3—Cd12.7 (3)
C6—C5—N3—Cd1176.8 (2)N6—Cd1—O3—N777.21 (19)
N4—C5—N3—Cd13.7 (3)N1—Cd1—O3—N717.9 (2)
N6—Cd1—N3—C994.7 (2)N5—Cd1—O3—N7166.34 (18)
N1—Cd1—N3—C95.3 (2)N3—Cd1—O3—N7168.29 (17)
O3—Cd1—N3—C9153.0 (2)O2—Cd1—O3—N71.52 (16)
N5—Cd1—N3—C9179.3 (2)S1i—Cd1—O3—N797.59 (17)
O2—Cd1—N3—C93.7 (3)N6—C1—S1—Cd1ii179 (100)
S1i—Cd1—N3—C982.3 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1iii0.932.503.412 (5)167
C4—H4···O2iv0.932.473.370 (4)164
C7—H7···O3v0.932.523.312 (5)143
C10—H10···S1v0.932.833.723 (4)160
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+3/2, z1/2; (v) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(NCS)(NO3)(C11H9N5)]
Mr443.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.4161 (15), 11.817 (2), 15.631 (3)
β (°) 99.673 (2)
V3)1532.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.18 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.763, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
8813, 3335, 2710
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.02
No. of reflections3335
No. of parameters217
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.35

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N62.279 (3)Cd1—N32.388 (2)
Cd1—N12.346 (3)Cd1—O22.495 (2)
Cd1—O32.361 (2)Cd1—S1i2.7447 (9)
Cd1—N52.379 (3)
N6—Cd1—N193.43 (12)N1—Cd1—O285.22 (9)
N6—Cd1—O390.12 (11)O3—Cd1—O252.36 (8)
N1—Cd1—O3136.31 (9)N5—Cd1—O2139.77 (9)
N6—Cd1—N589.13 (10)N3—Cd1—O2152.71 (9)
N1—Cd1—N5134.53 (10)N6—Cd1—S1i173.33 (8)
O3—Cd1—N589.01 (9)N1—Cd1—S1i86.04 (7)
N6—Cd1—N3100.47 (10)O3—Cd1—S1i85.71 (6)
N1—Cd1—N367.50 (9)N5—Cd1—S1i95.98 (6)
O3—Cd1—N3153.74 (9)N3—Cd1—S1i85.49 (6)
N5—Cd1—N367.41 (9)O2—Cd1—S1i92.16 (6)
N6—Cd1—O281.17 (9)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.932.503.412 (5)167.4
C4—H4···O2iii0.932.473.370 (4)164.2
C7—H7···O3iv0.932.523.312 (5)142.5
C10—H10···S1iv0.932.833.723 (4)160.2
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds