Download citation
Download citation
link to html
The title mol­ecule, C22H8F14N2O4, lies across a crystallographic inversion center with the naphthalene diimide core essentially planar (mean deviation from plane is 0.0583 Å). The CF2 groups in the perfluorobutyl chains are in an energetically favorable all trans conformation. In the crystal structure, mol­ecules are packed in slightly displaced layers so that the side chains overlap the aromatic naphthalene diimide rings, thus minimizing any possible π–π overlap.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808036738/lh2728sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808036738/lh2728Isup2.hkl
Contains datablock I

CCDC reference: 712434

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.067
  • wR factor = 0.223
  • Data-to-parameter ratio = 11.0

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 293.000 Value of melting point given = 0.000 PLAT022_ALERT_3_C Ratio Unique / Expected Reflections too Low .... 0.90 PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 43 Perc. PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96
Author Response: ... The crystals were weakly diffracting, but we were unable to get better quality crystals. Diffraction data were collected on various crystals, best data set results are reported here.
PLAT242_ALERT_2_C Check Low       Ueq as Compared to Neighbors for        C10
PLAT242_ALERT_2_C Check Low       Ueq as Compared to Neighbors for        C11
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ...          8
PLAT234_ALERT_4_C Large Hirshfeld Difference F4     --  C10     ..       0.10  Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference F7     --  C11     ..       0.13  Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference N1     --  C7      ..       0.13  Ang.

Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Amongst n-type semiconductors used in organic thin film transistors, perylene diimides (PDIs) and naphthalene diimides (NDIs) have attracted considerable attention. The π -orbital wavefunctions in these systems form nodes at the two nitrogen positions in the imide rings. Indeed, it has been shown that semiconducting properties and device performance of these materials is very sensitive to the nature of substituents on the diimide nitrogen atoms. The title compound N,N'-Bis(1H,1H-perfluorobutyl) naphthalene- 1,4,5,8-tetracarboxylic acid diimide(I) has been shown to exhibit good n-type semiconducting behavior and OTFTs made incorporating I can be operated in air. The latter property has been ascribed to the denser packing of fluorinated alkyl chains in thin film.

Naphthalene diimide (NDI) and perylene diimide (PDI) based systems have been studied extensively (Chesterfield, et al., 2004a; Chesterfield et al., 2004b; Facceti et al., 2008; Jones, et al., 2004; Katz, et al., 2000a; Katz, et al., 2000b). We report here the structure of the title diimide molecule (I) (Fig. 1 and Fig 2). In the crystal structure, molecules are packed in slightly displaced layers so that the side chains overlap the aromatic naphthalene diimide rings, thus resulting in minimizing any possible π-π overlap (Fig .3).

Related literature top

For general background on the semic-conducting properties and use of this class of materials in organic thin-film transistor applications, see: Chesterfield et al. (2004a,b); Facceti et al. (2008); Jones et al. (2004); Katz et al. (2000a,b); Kazmaier & Hoffmann (1994); Klebe et al. (1989); Shukla et al. (2008); Wurthner (2004).

Experimental top

The method described in Katz et al., 2000a, was followed for preparation of the title compound (I). Crystals of title (I) appeared during powder X-ray diffraction data collection of the dry lot sample. The crystals were weakly diffracting, but we were unable to get better quality crystals. Diffraction data were collected on various crystals, and the results of structure determination using best data set results are reported here.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Materials Studio (Accelrys, 2002); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. A diagram illustrating planar naphthalene diimide core and trans configuration of perfluorobutyl chains on diiimide N atoms.
[Figure 3] Fig. 3. Unit cell packing showing layered structure.
N,N'-Bis(2,2,3,3,4,4,4-heptafluorobutyl)naphthalene-1,4:5,8- tetracarboximide top
Crystal data top
C22H8F14N2O4Z = 1
Mr = 630.30F(000) = 312
Triclinic, P1Dx = 1.904 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1910 (5) ÅCell parameters from 4558 reflections
b = 10.1459 (12) Åθ = 1.0–26.7°
c = 11.5988 (15) ŵ = 0.21 mm1
α = 66.693 (4)°T = 293 K
β = 79.064 (4)°Needle, pink
γ = 89.115 (7)°0.15 × 0.10 × 0.05 mm
V = 549.64 (11) Å3
Data collection top
Nonius KappaCCD
diffractometer
909 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 26.6°, θmin = 4.1°
Detector resolution: 9 pixels mm-1h = 66
ϕ and ω scansk = 1211
3049 measured reflectionsl = 1412
2094 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3623P]
where P = (Fo2 + 2Fc2)/3
2094 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H8F14N2O4γ = 89.115 (7)°
Mr = 630.30V = 549.64 (11) Å3
Triclinic, P1Z = 1
a = 5.1910 (5) ÅMo Kα radiation
b = 10.1459 (12) ŵ = 0.21 mm1
c = 11.5988 (15) ÅT = 293 K
α = 66.693 (4)°0.15 × 0.10 × 0.05 mm
β = 79.064 (4)°
Data collection top
Nonius KappaCCD
diffractometer
909 reflections with I > 2σ(I)
3049 measured reflectionsRint = 0.057
2094 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 0.93Δρmax = 0.23 e Å3
2094 reflectionsΔρmin = 0.23 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1050 (6)0.4145 (3)0.7561 (3)0.0814 (11)
F20.1713 (6)0.5174 (3)0.8788 (3)0.0828 (12)
F30.5849 (6)0.3623 (4)0.9393 (3)0.0873 (12)
F40.5572 (7)0.2684 (3)0.8049 (3)0.0883 (12)
F50.3622 (7)0.0974 (4)1.0537 (3)0.0931 (12)
F60.0806 (7)0.2472 (4)1.0654 (4)0.1050 (15)
F70.0800 (9)0.1477 (4)0.9346 (4)0.1234 (17)
O10.2493 (8)0.6081 (4)0.4924 (4)0.0742 (12)
O20.5194 (8)0.8024 (4)0.7439 (4)0.0725 (12)
N10.3566 (7)0.6967 (4)0.6298 (4)0.0484 (11)
C10.2325 (10)0.7037 (5)0.5308 (5)0.0528 (14)
C20.0799 (9)0.8305 (5)0.4790 (5)0.0467 (12)
C30.0607 (10)0.8401 (5)0.3865 (5)0.0562 (14)
H30.05570.76790.35590.067*
C40.2109 (10)0.9584 (5)0.3386 (5)0.0541 (14)
H40.30580.96370.27670.065*
C50.0752 (9)0.9387 (5)0.5243 (4)0.0440 (12)
C60.2199 (9)0.9345 (5)0.6184 (5)0.0482 (13)
C70.3779 (10)0.8079 (5)0.6691 (5)0.0523 (14)
C80.4892 (9)0.5658 (5)0.6912 (5)0.0537 (14)
H8A0.63550.58910.72240.064*
H8B0.55800.52570.62920.064*
C90.2958 (10)0.4562 (6)0.8023 (5)0.0544 (14)
C100.4188 (10)0.3238 (5)0.8827 (5)0.0550 (14)
C110.2281 (13)0.2022 (6)0.9871 (6)0.0676 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.061 (2)0.082 (2)0.086 (2)0.0057 (16)0.0279 (18)0.0114 (19)
F20.091 (2)0.063 (2)0.074 (2)0.0213 (17)0.0167 (18)0.0222 (18)
F30.074 (2)0.098 (3)0.083 (3)0.0005 (18)0.0340 (18)0.021 (2)
F40.108 (3)0.077 (2)0.070 (2)0.0396 (19)0.0012 (19)0.0278 (19)
F50.107 (3)0.071 (2)0.078 (2)0.025 (2)0.018 (2)0.0064 (19)
F60.101 (3)0.087 (3)0.082 (3)0.023 (2)0.026 (2)0.007 (2)
F70.147 (4)0.081 (3)0.125 (4)0.039 (3)0.057 (3)0.008 (3)
O10.095 (3)0.070 (3)0.073 (3)0.031 (2)0.024 (2)0.042 (2)
O20.079 (3)0.067 (3)0.080 (3)0.0131 (19)0.038 (2)0.029 (2)
N10.054 (2)0.040 (2)0.051 (3)0.0061 (18)0.010 (2)0.018 (2)
C10.059 (3)0.046 (3)0.052 (3)0.009 (3)0.006 (3)0.021 (3)
C20.049 (3)0.048 (3)0.044 (3)0.003 (2)0.002 (2)0.023 (3)
C30.068 (3)0.051 (3)0.057 (3)0.006 (3)0.015 (3)0.028 (3)
C40.064 (3)0.058 (3)0.047 (3)0.005 (3)0.016 (2)0.026 (3)
C50.045 (3)0.044 (3)0.038 (3)0.001 (2)0.002 (2)0.014 (2)
C60.046 (3)0.051 (3)0.041 (3)0.003 (2)0.003 (2)0.014 (3)
C70.051 (3)0.052 (3)0.044 (3)0.000 (2)0.004 (3)0.012 (3)
C80.050 (3)0.055 (3)0.051 (3)0.009 (2)0.010 (2)0.017 (3)
C90.053 (3)0.056 (3)0.057 (4)0.010 (3)0.010 (3)0.026 (3)
C100.060 (3)0.058 (3)0.054 (3)0.014 (3)0.011 (3)0.031 (3)
C110.085 (4)0.056 (4)0.058 (4)0.003 (3)0.024 (4)0.015 (3)
Geometric parameters (Å, º) top
F1—C91.357 (6)C2—C51.389 (6)
F2—C91.341 (6)C3—C41.402 (7)
F3—C101.325 (6)C3—H30.9300
F4—C101.338 (6)C4—C6i1.360 (7)
F5—C111.321 (6)C4—H40.9300
F6—C111.294 (7)C5—C61.425 (6)
F7—C111.314 (6)C5—C5i1.435 (9)
O1—C11.213 (6)C6—C4i1.360 (7)
O2—C71.223 (6)C6—C71.491 (7)
N1—C71.387 (6)C8—C91.522 (7)
N1—C11.398 (6)C8—H8A0.9700
N1—C81.467 (6)C8—H8B0.9700
C1—C21.477 (7)C9—C101.513 (7)
C2—C31.380 (7)C10—C111.539 (8)
C7—N1—C1124.8 (4)N1—C8—C9109.7 (4)
C7—N1—C8117.3 (5)N1—C8—H8A109.7
C1—N1—C8117.8 (4)C9—C8—H8A109.7
O1—C1—N1120.4 (5)N1—C8—H8B109.7
O1—C1—C2123.0 (5)C9—C8—H8B109.7
N1—C1—C2116.6 (5)H8A—C8—H8B108.2
C3—C2—C5120.2 (5)F2—C9—F1105.5 (4)
C3—C2—C1119.6 (5)F2—C9—C10108.6 (4)
C5—C2—C1120.2 (5)F1—C9—C10108.7 (4)
C2—C3—C4120.1 (5)F2—C9—C8110.1 (4)
C2—C3—H3119.9F1—C9—C8109.2 (4)
C4—C3—H3119.9C10—C9—C8114.3 (4)
C6i—C4—C3120.9 (5)F3—C10—F4107.7 (4)
C6i—C4—H4119.6F3—C10—C9109.0 (4)
C3—C4—H4119.6F4—C10—C9108.5 (4)
C2—C5—C6122.3 (5)F3—C10—C11107.7 (5)
C2—C5—C5i120.6 (6)F4—C10—C11107.2 (5)
C6—C5—C5i117.2 (6)C9—C10—C11116.4 (5)
C4i—C6—C5121.0 (5)F6—C11—F7109.6 (6)
C4i—C6—C7121.4 (5)F6—C11—F5108.2 (5)
C5—C6—C7117.7 (5)F7—C11—F5107.3 (5)
O2—C7—N1121.5 (5)F6—C11—C10111.6 (5)
O2—C7—C6120.7 (5)F7—C11—C10110.2 (5)
N1—C7—C6117.8 (5)F5—C11—C10109.8 (5)
C7—N1—C1—O1171.2 (4)C4i—C6—C7—N1173.8 (4)
C8—N1—C1—O14.5 (7)C5—C6—C7—N15.4 (6)
C7—N1—C1—C29.8 (7)C7—N1—C8—C995.1 (5)
C8—N1—C1—C2174.5 (4)C1—N1—C8—C988.9 (5)
O1—C1—C2—C32.8 (8)N1—C8—C9—F250.4 (6)
N1—C1—C2—C3176.1 (4)N1—C8—C9—F165.0 (6)
O1—C1—C2—C5178.0 (5)N1—C8—C9—C10173.0 (5)
N1—C1—C2—C53.1 (7)F2—C9—C10—F359.0 (5)
C5—C2—C3—C40.6 (7)F1—C9—C10—F3173.3 (4)
C1—C2—C3—C4178.6 (4)C8—C9—C10—F364.4 (6)
C2—C3—C4—C6i0.4 (8)F2—C9—C10—F4176.0 (4)
C3—C2—C5—C6179.1 (4)F1—C9—C10—F469.7 (5)
C1—C2—C5—C61.7 (7)C8—C9—C10—F452.6 (6)
C3—C2—C5—C5i0.0 (8)F2—C9—C10—C1163.0 (6)
C1—C2—C5—C5i179.2 (5)F1—C9—C10—C1151.3 (7)
C2—C5—C6—C4i179.8 (4)C8—C9—C10—C11173.5 (5)
C5i—C5—C6—C4i1.1 (8)F3—C10—C11—F665.9 (6)
C2—C5—C6—C70.6 (7)F4—C10—C11—F6178.4 (5)
C5i—C5—C6—C7179.7 (5)C9—C10—C11—F656.8 (7)
C1—N1—C7—O2169.7 (5)F3—C10—C11—F7172.1 (5)
C8—N1—C7—O26.0 (7)F4—C10—C11—F756.4 (6)
C1—N1—C7—C611.0 (7)C9—C10—C11—F765.2 (7)
C8—N1—C7—C6173.3 (4)F3—C10—C11—F554.1 (7)
C4i—C6—C7—O25.5 (7)F4—C10—C11—F561.6 (6)
C5—C6—C7—O2175.3 (4)C9—C10—C11—F5176.8 (5)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H8F14N2O4
Mr630.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.1910 (5), 10.1459 (12), 11.5988 (15)
α, β, γ (°)66.693 (4), 79.064 (4), 89.115 (7)
V3)549.64 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3049, 2094, 909
Rint0.057
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.223, 0.93
No. of reflections2094
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXTL (Sheldrick, 2008) and Materials Studio (Accelrys, 2002), publCIF (Westrip, 2008).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds