Download citation
Download citation
link to html
In the title compound, [Zn4(C11H9N2O2)4(C7H5O2)4]·2(CH3)2CO·CH3OH, the tetra­nuclear mol­ecule lies on a fourfold inversion axis. ZnII ions and μ3-O atoms in the cubane core occupy alternating vertices, forming two inter­penetrating tetra­hedra. Each ZnII ion is further coordinated by two N atoms from two different (py)2C(OH)O ligands (py is pyrid­yl) and one O atom from a monodentate benzoate ligand, forming a distorted octa­hedral environment. The (py)2C(OH)O ligand acts in an η1313 manner, forming two five-membered ZnNCCO chelating rings with two different ZnII atoms sharing a common C—O bond, and an alkoxide-type bond to a third ZnII ion. There are four symmetry-related intra­molecular O—H...O hydrogen bonds between the two types of ligands. In the asymmetric unit, there is a half-occupancy acetone solvent mol­ecule and a half-occupancy methanol solvent molecule that lies on a twofold rotation axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809017772/lh2815sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809017772/lh2815Isup2.hkl
Contains datablock I

CCDC reference: 738085

Key indicators

  • Single-crystal X-ray study
  • T = 170 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in solvent or counterion
  • R factor = 0.034
  • wR factor = 0.110
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT432_ALERT_2_B Short Inter X...Y Contact O2S .. C1S .. 2.90 Ang. PLAT432_ALERT_2_B Short Inter X...Y Contact O2S .. C1S .. 2.90 Ang.
Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.30 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.53 Ratio PLAT415_ALERT_2_C Short Inter D-H..H-X H9 .. H2S .. 2.12 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O2S .. C3S .. 3.00 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O2S .. C3S .. 3.00 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact C3S .. C21S .. 3.12 Ang. PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 4.00 Ratio PLAT076_ALERT_1_C Occupancy 0.50 less than 1.0 for Sp.pos . O2S PLAT076_ALERT_1_C Occupancy 0.50 less than 1.0 for Sp.pos . C21S PLAT952_ALERT_1_C Reported and Calculated Lmax Values Differ by .. 2
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C316 H288 N32 O76 Zn16 Atom count from _chemical_formula_moiety:C79 H72 N8 O19 Zn4 REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 28.29 From the CIF: _reflns_number_total 4628 From the CIF: _diffrn_reflns_limit_ max hkl 18. 18. 48. From the CIF: _diffrn_reflns_limit_ min hkl -18. -9. -48. TEST1: Expected hkl limits for theta max Calculated maximum hkl 19. 19. 50. Calculated minimum hkl -19. -19. -50. REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.29 From the CIF: _reflns_number_total 4628 Count of symmetry unique reflns 2628 Completeness (_total/calc) 176.10% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2000 Fraction of Friedel pairs measured 0.761 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 5 PLAT066_ALERT_1_G Predicted and Reported Transmissions Identical . ? PLAT302_ALERT_4_G Note Anion/Solvent Disorder .................... 50.00 Perc. PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 6
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Transition metal ions have, recently, received attention as the major cationic contributors to the inorganic composition of natural water and biological fluids (Daniele, et al., 2008). While the main interest is focused on the interaction of transition metal ions with biologically active molecules such as amino acids, proteins, sugars and nucleotides, the study on the interaction of the transition metal ions with fulvic acids and humic acids, mainly found in soil, is in incipient stages. As models to examine the interaction, therefore, we have previously used copper(II) benzoate as a building block and reported the structures of copper(II) benzoates with quinoxaline, 6-methylquinoline, and 3-methylquinoline (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008). In this work, we have employed zinc(II) benzoate as a building block and di-2-pyridyl ketone as a ligand. We report herein the structure of the product of zinc(II) benzoate with di-2-pyridyl ketone.

The crystal structure contains tetranuclear [Zn4(O2CPh)4{(py)2C(OH)O}4] molecules (Fig. 1), similar to the corresponding Mn4 cubane compound (Stoumpos, et al., 2008). The tetramolecular molecule lies on a fourfold inversion center and hence the asymmetric unit contains a quarter of a molecule. ZnII ions and µ3-O atoms in the cubane [ZnII43-OR)4]4+ core occupy alternate vertices. Thus, the molecule consists of two interpenetrating tetrahedra: one contains four µ3-O atoms originating from the (py)2C(OH)O ligands, and the other contains four ZnII atoms. Each ZnII center is coordinated by two N atoms from two different (py)2C(OH)O ligands and one O atom from a monodentate PhCO2- ligand to form a distorted octahedral geometry. The (py)2C(OH)O ligands acts as η1:η3:η13 to form two five-membered ZnNCCO chelating rings with two different ZnII ions sharing a common C—O edge and an alkoxide-type bond to a third ZnII ion. This ligation mode is common for the hydrated di-2-pyridyl ketone, (py)2C(OH)O- (Papaefstathiou & Perlepes, 2002; Papatriantafyllopoulou, et al., 2007). There are intramolecular hydrogen bonds interactions between the protonated O atom of the (py)2C(OH)O ligand and the uncoordinated O atom of the monodentate PhCO2 group.

Related literature top

For background to transition metal ions as the major cationic contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008); For related crystal structures, see: Lee et al. (2008); Park et al. (2008); Yu et al. (2008); Stoumpos et al. (2008); Papaefstathiou & Perlepes (2002); Papatriantafyllopoulou et al., (2007).

Experimental top

38.0 mg (0.125 mmol) of Zn(NO3)2.6H2O and 35.5 mg (0.25 mmol) of C6H5COONH4 were dissolved in 4 ml water and carefully layered by 4 ml solution of a mixture of acetone, methanol and ethanol (2/2/2) of di-2-pyridyl ketone ligand (46.1 mg, 0.25 mmol). Crystals of the title compound suitable for X-ray analysis were obtained in a few weeks.

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.93–0.98 Å and O—H = 0.82 Å. They were included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl and O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Partially labeled molecular structure of the title complex. Displacement ellipsoids areshown at the 30% probability level. The green dotted lines represent hydrogen bonds. Solvent molecules are not shown.
Tetrabenzoatotetrakis(µ3-hydroxydi-2-pyridylmethanolato)tetrazinc(II)– acetone–methanol (1/2/1) top
Crystal data top
[Zn4(C11H9N2O2)4(C7H5O2)4]·2C3H6O·CH4ODx = 1.458 Mg m3
Mr = 6795.70Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42dCell parameters from 8208 reflections
Hall symbol: I -4 2bwθ = 2.8–27.0°
a = 14.3201 (4) ŵ = 1.30 mm1
c = 37.730 (2) ÅT = 170 K
V = 7737.1 (5) Å3Polyhedron, colorless
Z = 10.10 × 0.08 × 0.05 mm
F(000) = 3496
Data collection top
Bruker SMART CCD
diffractometer
4628 independent reflections
Radiation source: fine-focus sealed tube4279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1818
Tmin = 0.883, Tmax = 0.937k = 918
22787 measured reflectionsl = 4848
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.4409P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4628 reflectionsΔρmax = 1.37 e Å3
245 parametersΔρmin = 0.42 e Å3
5 restraintsAbsolute structure: Flack (1983), 2045 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (13)
Crystal data top
[Zn4(C11H9N2O2)4(C7H5O2)4]·2C3H6O·CH4OZ = 1
Mr = 6795.70Mo Kα radiation
Tetragonal, I42dµ = 1.30 mm1
a = 14.3201 (4) ÅT = 170 K
c = 37.730 (2) Å0.10 × 0.08 × 0.05 mm
V = 7737.1 (5) Å3
Data collection top
Bruker SMART CCD
diffractometer
4628 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4279 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.937Rint = 0.029
22787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.110Δρmax = 1.37 e Å3
S = 1.09Δρmin = 0.42 e Å3
4628 reflectionsAbsolute structure: Flack (1983), 2045 Friedel pairs
245 parametersAbsolute structure parameter: 0.002 (13)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.61621 (2)0.51226 (2)0.470190 (8)0.01677 (10)
O10.50301 (15)0.59983 (13)0.47540 (5)0.0177 (4)
O20.53176 (14)0.75354 (15)0.45808 (6)0.0237 (5)
H2O0.59080.74290.45750.036*
O30.73924 (15)0.58089 (15)0.47172 (6)0.0257 (4)
O40.71640 (16)0.73233 (17)0.46138 (9)0.0390 (6)
N10.58789 (18)0.55925 (18)0.41603 (6)0.0197 (5)
N20.67260 (17)0.38313 (19)0.45377 (6)0.0204 (5)
C10.6300 (2)0.5287 (2)0.38641 (8)0.0262 (6)
H10.67120.47680.38810.031*
C20.6162 (3)0.5691 (3)0.35381 (9)0.0366 (8)
H20.64650.54550.33330.044*
C30.5566 (3)0.6455 (3)0.35178 (10)0.0404 (10)
H30.54480.67480.32960.049*
C40.5141 (3)0.6789 (3)0.38253 (8)0.0331 (8)
H40.47410.73180.38180.040*
C50.5320 (2)0.6328 (2)0.41431 (8)0.0210 (6)
C60.4901 (2)0.6676 (2)0.44992 (7)0.0187 (5)
C70.6154 (2)0.3128 (2)0.44535 (7)0.0192 (5)
C80.6484 (2)0.2278 (2)0.43286 (9)0.0256 (6)
H80.60640.17830.42770.031*
C90.7445 (3)0.2165 (2)0.42796 (10)0.0325 (8)
H90.76850.16040.41810.039*
C100.8032 (2)0.2871 (3)0.43751 (10)0.0330 (8)
H100.86890.27970.43530.040*
C110.7658 (2)0.3707 (2)0.45060 (9)0.0280 (7)
H110.80690.41970.45740.034*
C120.7640 (2)0.6651 (2)0.47105 (9)0.0227 (6)
C130.8626 (2)0.6836 (2)0.48381 (8)0.0237 (6)
C140.9023 (2)0.7726 (2)0.48046 (11)0.0341 (8)
H140.86760.82180.46990.041*
C150.9924 (3)0.7888 (3)0.49264 (12)0.0461 (10)
H151.01960.84890.49000.055*
C161.0423 (3)0.7181 (3)0.50846 (13)0.0474 (11)
H161.10390.72950.51680.057*
C171.0032 (3)0.6313 (3)0.51216 (11)0.0398 (8)
H171.03740.58290.52340.048*
C180.9141 (2)0.6138 (3)0.49960 (9)0.0306 (7)
H180.88820.55300.50190.037*
O1S0.9292 (16)1.1086 (15)0.3972 (6)0.218 (6)*0.50
C1S0.9466 (13)1.0280 (17)0.3923 (6)0.218 (6)*0.50
C2S0.965 (2)0.972 (2)0.4275 (8)0.218 (6)*0.50
H2S11.02590.98860.43720.328*0.50
H2S20.96340.90450.42240.328*0.50
H2S30.91600.98650.44480.328*0.50
C3S0.9503 (19)0.975 (2)0.3559 (7)0.218 (6)*0.50
H3S10.89560.93400.35370.328*0.50
H3S21.00730.93700.35470.328*0.50
H3S30.95041.02010.33640.328*0.50
O2S0.75001.0096 (11)0.37500.110 (5)*0.50
H2S0.71971.02920.35740.164*0.25
C21S0.75000.9049 (11)0.37500.139 (10)*0.50
H21A0.79990.88210.35950.208*0.25
H21B0.68960.88210.36640.208*0.25
H21C0.76050.88210.39920.208*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01658 (17)0.01739 (17)0.01634 (15)0.00064 (12)0.00086 (12)0.00068 (12)
O10.0189 (9)0.0175 (9)0.0167 (9)0.0029 (8)0.0001 (8)0.0034 (7)
O20.0206 (10)0.0193 (10)0.0311 (11)0.0009 (9)0.0009 (8)0.0005 (9)
O30.0216 (11)0.0258 (11)0.0296 (11)0.0035 (9)0.0013 (9)0.0002 (10)
O40.0214 (11)0.0262 (13)0.0693 (19)0.0015 (9)0.0062 (11)0.0019 (12)
N10.0201 (12)0.0213 (12)0.0176 (11)0.0003 (9)0.0009 (9)0.0007 (9)
N20.0182 (12)0.0232 (12)0.0199 (11)0.0025 (11)0.0015 (9)0.0025 (10)
C10.0244 (15)0.0299 (16)0.0244 (14)0.0035 (13)0.0059 (12)0.0000 (12)
C20.044 (2)0.044 (2)0.0218 (15)0.0112 (18)0.0101 (15)0.0016 (14)
C30.050 (2)0.048 (2)0.0227 (16)0.0158 (19)0.0113 (16)0.0114 (15)
C40.0378 (19)0.0376 (18)0.0238 (15)0.0120 (16)0.0058 (14)0.0085 (13)
C50.0206 (14)0.0214 (14)0.0211 (14)0.0008 (12)0.0015 (10)0.0043 (11)
C60.0199 (14)0.0168 (13)0.0194 (12)0.0026 (12)0.0006 (11)0.0040 (10)
C70.0206 (14)0.0207 (13)0.0163 (12)0.0010 (12)0.0005 (11)0.0006 (10)
C80.0267 (15)0.0255 (16)0.0245 (15)0.0056 (13)0.0002 (12)0.0017 (12)
C90.0317 (18)0.0298 (17)0.0361 (18)0.0124 (15)0.0060 (15)0.0024 (14)
C100.0231 (16)0.0371 (19)0.0388 (19)0.0086 (14)0.0068 (14)0.0018 (15)
C110.0214 (15)0.0312 (17)0.0315 (17)0.0005 (13)0.0033 (12)0.0037 (14)
C120.0192 (14)0.0267 (15)0.0221 (14)0.0017 (11)0.0049 (12)0.0030 (13)
C130.0204 (15)0.0263 (16)0.0246 (14)0.0009 (12)0.0040 (12)0.0069 (12)
C140.0275 (18)0.0260 (17)0.049 (2)0.0028 (14)0.0040 (14)0.0056 (14)
C150.0283 (18)0.0291 (18)0.081 (3)0.0061 (16)0.001 (2)0.0103 (19)
C160.0218 (17)0.048 (2)0.072 (3)0.0035 (16)0.0083 (18)0.020 (2)
C170.0292 (17)0.038 (2)0.052 (2)0.0050 (16)0.0075 (17)0.0062 (17)
C180.0270 (16)0.0290 (16)0.0357 (17)0.0039 (14)0.0012 (13)0.0028 (14)
Geometric parameters (Å, º) top
Zn1—O32.018 (2)C9—C101.365 (5)
Zn1—O12.059 (2)C9—H90.9500
Zn1—O1i2.0776 (19)C10—C111.401 (5)
Zn1—N22.111 (3)C10—H100.9500
Zn1—N12.189 (2)C11—H110.9500
Zn1—O1ii2.351 (2)C12—C131.515 (4)
O1—C61.378 (3)C13—C181.378 (5)
O1—Zn1iii2.0777 (19)C13—C141.401 (5)
O1—Zn1ii2.352 (2)C14—C151.389 (5)
O2—C61.402 (4)C14—H140.9500
O2—H2O0.8587C15—C161.376 (6)
O3—C121.257 (4)C15—H150.9500
O4—C121.235 (4)C16—C171.371 (6)
N1—C51.325 (4)C16—H160.9500
N1—C11.343 (4)C17—C181.384 (5)
N2—C71.336 (4)C17—H170.9500
N2—C111.352 (4)C18—H180.9500
C1—C21.374 (5)O1S—C1S1.195 (10)
C1—H10.9500C1S—C2S1.57 (2)
C2—C31.391 (5)C1S—C3S1.57 (2)
C2—H20.9500C2S—H2S10.9800
C3—C41.394 (5)C2S—H2S20.9800
C3—H30.9500C2S—H2S30.9800
C4—C51.392 (4)C3S—H3S10.9800
C4—H40.9500C3S—H3S20.9800
C5—C61.553 (4)C3S—H3S30.9800
C6—C7ii1.546 (4)O2S—C21S1.499 (2)
C7—C81.388 (4)O2S—H2S0.8400
C7—C6ii1.546 (4)C21S—H21A0.9800
C8—C91.398 (5)C21S—H21B0.9800
C8—H80.9500C21S—H21C0.9800
O3—Zn1—O1112.83 (9)C7—C8—H8120.6
O3—Zn1—O1i96.98 (9)C9—C8—H8120.6
O1—Zn1—O1i83.16 (8)C10—C9—C8119.1 (3)
O3—Zn1—N295.80 (9)C10—C9—H9120.5
O1—Zn1—N2149.64 (9)C8—C9—H9120.5
O1i—Zn1—N2103.94 (9)C9—C10—C11119.4 (3)
O3—Zn1—N192.22 (9)C9—C10—H10120.3
O1—Zn1—N175.88 (9)C11—C10—H10120.3
O1i—Zn1—N1159.01 (9)N2—C11—C10121.4 (3)
N2—Zn1—N193.79 (10)N2—C11—H11119.3
O3—Zn1—O1ii164.53 (8)C10—C11—H11119.3
O1—Zn1—O1ii80.57 (8)O4—C12—O3126.7 (3)
O1i—Zn1—O1ii76.33 (8)O4—C12—C13118.1 (3)
N2—Zn1—O1ii72.80 (8)O3—C12—C13115.2 (3)
N1—Zn1—O1ii98.82 (8)C18—C13—C14118.8 (3)
C6—O1—Zn1117.87 (17)C18—C13—C12120.6 (3)
C6—O1—Zn1iii126.55 (17)C14—C13—C12120.6 (3)
Zn1—O1—Zn1iii104.24 (9)C15—C14—C13119.9 (4)
C6—O1—Zn1ii108.97 (17)C15—C14—H14120.0
Zn1—O1—Zn1ii98.51 (8)C13—C14—H14120.1
Zn1iii—O1—Zn1ii94.78 (7)C16—C15—C14120.2 (4)
C6—O2—H2O104.9C16—C15—H15119.9
C12—O3—Zn1135.5 (2)C14—C15—H15119.9
C5—N1—C1119.3 (3)C17—C16—C15119.9 (4)
C5—N1—Zn1113.71 (19)C17—C16—H16120.0
C1—N1—Zn1126.4 (2)C15—C16—H16120.0
C7—N2—C11119.1 (3)C16—C17—C18120.5 (4)
C7—N2—Zn1119.66 (19)C16—C17—H17119.8
C11—N2—Zn1121.3 (2)C18—C17—H17119.8
N1—C1—C2122.9 (3)C13—C18—C17120.6 (4)
N1—C1—H1118.6C13—C18—H18119.7
C2—C1—H1118.5C17—C18—H18119.7
C1—C2—C3118.0 (3)O1S—C1S—C2S114 (2)
C1—C2—H2121.0O1S—C1S—C3S128 (2)
C3—C2—H2121.0C2S—C1S—C3S119 (2)
C2—C3—C4119.4 (3)C1S—C2S—H2S1109.5
C2—C3—H3120.3C1S—C2S—H2S2109.4
C4—C3—H3120.3H2S1—C2S—H2S2109.5
C5—C4—C3118.3 (3)C1S—C2S—H2S3109.5
C5—C4—H4120.9H2S1—C2S—H2S3109.5
C3—C4—H4120.9H2S2—C2S—H2S3109.5
N1—C5—C4122.0 (3)C1S—C3S—H3S1109.5
N1—C5—C6116.5 (2)C1S—C3S—H3S2109.4
C4—C5—C6121.4 (3)H3S1—C3S—H3S2109.5
O1—C6—O2114.1 (2)C1S—C3S—H3S3109.5
O1—C6—C7ii109.6 (2)H3S1—C3S—H3S3109.5
O2—C6—C7ii106.3 (2)H3S2—C3S—H3S3109.5
O1—C6—C5109.0 (2)C21S—O2S—H2S109.5
O2—C6—C5107.9 (2)O2S—C21S—H21A109.00
C7ii—C6—C5109.8 (2)O2S—C21S—H21B109.00
N2—C7—C8122.1 (3)H21A—C21S—H21B110.00
N2—C7—C6ii115.9 (2)O2S—C21S—H21C109.00
C8—C7—C6ii122.0 (3)H21A—C21S—H21C109.00
C7—C8—C9118.8 (3)H21B—C21S—H21C109.00
Symmetry codes: (i) y, x+1, z+1; (ii) x+1, y+1, z; (iii) y+1, x, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O40.861.812.664 (3)172

Experimental details

Crystal data
Chemical formula[Zn4(C11H9N2O2)4(C7H5O2)4]·2C3H6O·CH4O
Mr6795.70
Crystal system, space groupTetragonal, I42d
Temperature (K)170
a, c (Å)14.3201 (4), 37.730 (2)
V3)7737.1 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.10 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.883, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
22787, 4628, 4279
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.110, 1.09
No. of reflections4628
No. of parameters245
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 0.42
Absolute structureFlack (1983), 2045 Friedel pairs
Absolute structure parameter0.002 (13)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O40.861.812.664 (3)172
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds