Download citation
Download citation
link to html
In the title compound, C23H28N2O5, the 4,5-dihydro­isoxazole ring adopts a slight envelope conformation and the dioxolane ring is in a twisted conformation. The mol­ecular structure, in the vicinity of the benzyl group, may be influenced by an intra­molecular C—H...O hydrogen bond which generates an S(7) ring motif. In the crystal structure, mol­ecules are linked via weak inter­molecular C—H...O hydrogen bonds, forming extended chains along the b axis. Further stabilization is provided by weak C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809044675/lh2930sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809044675/lh2930Isup2.hkl
Contains datablock I

CCDC reference: 754479

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.040
  • wR factor = 0.099
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Alert level C SHFSU01_ALERT_2_C Test not performed. _refine_ls_shift/su_max and _refine_ls_shift/esd_max not present. Absolute value of the parameter shift to su ratio given 0.001 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 19
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 34.04 From the CIF: _reflns_number_total 4621 Count of symmetry unique reflns 4640 Completeness (_total/calc) 99.59% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_4_G The Model has Chirality at C11 (Verify) .... S PLAT791_ALERT_4_G The Model has Chirality at C14 (Verify) .... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Natural products containing pyrrolidinone carbon skeletons continue to attract the interest of chemists and biologists due to their challenging structures and remarkable biological properties (Iida et al., 1986; Matkhalikova et al., 1969; Reddy & Rao, 2006; Reiner, 2007; Royles, 1996). Amongst these, polychlorinated pyrrolidinone i.e. dysidamide analogues extracted from the marine sponge, Lamellodysidea herbacea, display remarkable biological activities (Sauleau & Bourguet-Kondracki, 2005). We have synthesized the title compound, which may act as an essential intermediate in the synthesis of dysidamide and its crystal structure is reported herein.

The molecular structure of the title compound is shown in Fig. 1. The 4,5-dihydroisoxazole ring (O3/N2/C11–C13) adopts an envelope conformation with atom C11 displaced from the mean plane by 0.045 (1) Å; the puckering parameters (Cremer & Pople, 1975) are Q = 0.0730 (13) Å and Θ = 330.2 (11)° whereas the conformation of dioxolane ring (O4/O5/C14–C16) is twisted, as reflected by the puckering parameters, Q = 0.3405 (13) Å and Θ = 82.9 (2)°, with torsion angle C16–O5–C15–C14 being -36.76 (12) °. The molecular structure is stabilized by an intramolecular C1—H1A···O1 hydrogen bond which generates an S(7) ring motif (Bernstein et al., 1995). Bond lengths and angles are within normal ranges, and comparable to a closely related structure (Bathich et al., 2009).

In the solid state (Fig. 2), the molecules are linked via intermolecular C14—H14A···O1i hydrogen bonds to form one-dimensional chains along the b-axis and are further consolidated by C–H···π (Table 1) interactions.

Related literature top

For general background to and applications of pyrrolidinone derivatives, see: Iida et al. (1986); Matkhalikova et al. (1969); Reddy & Rao (2006); Reiner (2007); Royles (1996); Sauleau & Bourguet-Kondracki (2005). For a related structure, see: Bathich et al. (2009). For a description of hydrogen-bond motifs, see: Bernstein et al. (1995). For the definition of ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of C1–C6 ring.

Experimental top

935 mg (4.25 mmol) of the hydroximoyl chloride at 273 K was dissolved in 100 ml of diethyl ether and 650 mg (2.84 mmol) of N-protected-5-methylene-pyrrolidine-2,4-dione was added. To this mixture 9.35 ml (0.5 M, 4.675 mmol) of triethylamine solution in ether was added dropwise at a rate of 8 to 10 drops/min over 4h and stirred overnight. The mixture was then quenched by addition of 100ml HCl (2 N) and partitioned against ether (4 x 60 ml). The combined organic phases were washed with NaHCO3 (100 ml) and water (2 x 100 ml), then dried with MgSO4, and concentrated in vacuo (15 mbar) to give a yellow oil. Crystallization from diethyl ether gave the analytically and spectroscopically pure spiroisoxazoline (880 mg, 75 %) as colourless crystals. M.p. 403–404 K.

Refinement top

All H atoms were placed in the calculated positions, with C–H = 0.93–0.98 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. In the absence of significant anomalous dispersion, 3651 Friedel pairs were merged for the final refinement.

Structure description top

Natural products containing pyrrolidinone carbon skeletons continue to attract the interest of chemists and biologists due to their challenging structures and remarkable biological properties (Iida et al., 1986; Matkhalikova et al., 1969; Reddy & Rao, 2006; Reiner, 2007; Royles, 1996). Amongst these, polychlorinated pyrrolidinone i.e. dysidamide analogues extracted from the marine sponge, Lamellodysidea herbacea, display remarkable biological activities (Sauleau & Bourguet-Kondracki, 2005). We have synthesized the title compound, which may act as an essential intermediate in the synthesis of dysidamide and its crystal structure is reported herein.

The molecular structure of the title compound is shown in Fig. 1. The 4,5-dihydroisoxazole ring (O3/N2/C11–C13) adopts an envelope conformation with atom C11 displaced from the mean plane by 0.045 (1) Å; the puckering parameters (Cremer & Pople, 1975) are Q = 0.0730 (13) Å and Θ = 330.2 (11)° whereas the conformation of dioxolane ring (O4/O5/C14–C16) is twisted, as reflected by the puckering parameters, Q = 0.3405 (13) Å and Θ = 82.9 (2)°, with torsion angle C16–O5–C15–C14 being -36.76 (12) °. The molecular structure is stabilized by an intramolecular C1—H1A···O1 hydrogen bond which generates an S(7) ring motif (Bernstein et al., 1995). Bond lengths and angles are within normal ranges, and comparable to a closely related structure (Bathich et al., 2009).

In the solid state (Fig. 2), the molecules are linked via intermolecular C14—H14A···O1i hydrogen bonds to form one-dimensional chains along the b-axis and are further consolidated by C–H···π (Table 1) interactions.

For general background to and applications of pyrrolidinone derivatives, see: Iida et al. (1986); Matkhalikova et al. (1969); Reddy & Rao (2006); Reiner (2007); Royles (1996); Sauleau & Bourguet-Kondracki (2005). For a related structure, see: Bathich et al. (2009). For a description of hydrogen-bond motifs, see: Bernstein et al. (1995). For the definition of ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of C1–C6 ring.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. A weak intramolecular interaction is shown as dashed line.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound viewed along the a axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
6-Benzyl-3-(1,4-dioxaspiro[4.5]decan-2-yl)-8,8-dimethyl-1-oxa-2,6- diazaspiro[4.4]nonan-7,9-dione top
Crystal data top
C23H28N2O5F(000) = 880
Mr = 412.47Dx = 1.346 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9915 reflections
a = 9.8666 (2) Åθ = 2.1–33.4°
b = 11.1565 (3) ŵ = 0.10 mm1
c = 18.4884 (4) ÅT = 100 K
V = 2035.14 (8) Å3Block, colourless
Z = 40.49 × 0.23 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4621 independent reflections
Radiation source: fine-focus sealed tube4013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 34.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1215
Tmin = 0.931, Tmax = 0.985k = 1716
26273 measured reflectionsl = 2927
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.053P)2 + 0.1506P]
where P = (Fo2 + 2Fc2)/3
4621 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C23H28N2O5V = 2035.14 (8) Å3
Mr = 412.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.8666 (2) ŵ = 0.10 mm1
b = 11.1565 (3) ÅT = 100 K
c = 18.4884 (4) Å0.49 × 0.23 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4621 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4013 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.985Rint = 0.034
26273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
4621 reflectionsΔρmin = 0.26 e Å3
273 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23832 (10)0.26330 (9)0.40562 (6)0.0196 (2)
O20.22502 (11)0.36138 (13)0.40410 (7)0.0325 (3)
O30.05398 (10)0.52460 (9)0.31291 (5)0.0187 (2)
O40.14033 (10)0.38771 (9)0.09244 (5)0.0196 (2)
O50.36514 (10)0.35805 (9)0.06709 (5)0.01736 (19)
N10.09667 (11)0.35996 (10)0.32684 (6)0.0143 (2)
N20.11326 (13)0.55491 (11)0.24486 (6)0.0186 (2)
C10.41547 (14)0.44109 (13)0.31359 (8)0.0190 (3)
H1A0.42190.37480.34390.023*
C20.51858 (15)0.52627 (15)0.31315 (8)0.0227 (3)
H2A0.59290.51730.34360.027*
C30.51064 (16)0.62426 (15)0.26739 (9)0.0250 (3)
H3A0.57960.68110.26720.030*
C40.39985 (15)0.63778 (13)0.22180 (8)0.0224 (3)
H4A0.39510.70310.19060.027*
C50.29601 (14)0.55362 (13)0.22283 (8)0.0183 (2)
H5A0.22150.56340.19260.022*
C60.30241 (13)0.45449 (12)0.26879 (7)0.0156 (2)
C70.19254 (14)0.36013 (12)0.26595 (7)0.0165 (2)
H7A0.23540.28200.26360.020*
H7B0.14160.37100.22160.020*
C80.12761 (13)0.30580 (11)0.39112 (7)0.0146 (2)
C90.00312 (13)0.30177 (12)0.43963 (7)0.0149 (2)
C100.10534 (14)0.35446 (13)0.39145 (7)0.0188 (3)
C110.04302 (13)0.39495 (12)0.31910 (7)0.0155 (2)
C120.11909 (14)0.34641 (12)0.25325 (7)0.0169 (2)
H12A0.20140.30500.26730.020*
H12B0.06270.29270.22500.020*
C130.14980 (14)0.45896 (12)0.21270 (7)0.0158 (2)
C140.21716 (14)0.46231 (12)0.14013 (7)0.0171 (2)
H14A0.22060.54460.12170.021*
C150.35852 (14)0.40534 (13)0.13854 (7)0.0185 (3)
H15A0.42870.46470.14660.022*
H15B0.36680.34240.17450.022*
C160.23247 (14)0.31499 (12)0.05037 (7)0.0158 (2)
C170.21576 (14)0.18392 (12)0.07127 (7)0.0174 (2)
H17A0.12110.16160.06700.021*
H17B0.24250.17330.12140.021*
C180.30090 (15)0.10213 (12)0.02350 (7)0.0193 (3)
H18A0.28040.01930.03500.023*
H18B0.39610.11560.03370.023*
C190.27448 (16)0.12392 (13)0.05699 (8)0.0217 (3)
H19A0.33550.07480.08550.026*
H19B0.18230.10070.06870.026*
C200.29553 (16)0.25566 (13)0.07607 (8)0.0210 (3)
H20A0.38990.27680.06870.025*
H20B0.27410.26820.12670.025*
C210.20631 (15)0.33598 (13)0.02966 (7)0.0196 (3)
H21A0.22440.41920.04130.023*
H21B0.11180.31980.04030.023*
C220.02114 (16)0.37625 (15)0.50857 (8)0.0241 (3)
H22A0.05820.36860.53830.036*
H22B0.09880.34790.53470.036*
H22C0.03410.45890.49590.036*
C230.02932 (16)0.17141 (13)0.45856 (9)0.0242 (3)
H23A0.11180.16820.48600.036*
H23B0.03990.12590.41490.036*
H23C0.04340.13830.48670.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0155 (4)0.0204 (5)0.0228 (5)0.0023 (4)0.0010 (4)0.0025 (4)
O20.0156 (5)0.0515 (8)0.0306 (6)0.0057 (5)0.0042 (5)0.0077 (6)
O30.0239 (5)0.0135 (4)0.0186 (4)0.0025 (4)0.0067 (4)0.0024 (4)
O40.0170 (5)0.0228 (5)0.0190 (4)0.0046 (4)0.0003 (4)0.0048 (4)
O50.0158 (4)0.0199 (4)0.0164 (4)0.0033 (4)0.0021 (4)0.0030 (4)
N10.0132 (5)0.0163 (5)0.0134 (5)0.0007 (4)0.0000 (4)0.0004 (4)
N20.0215 (6)0.0161 (5)0.0182 (5)0.0012 (4)0.0035 (4)0.0004 (4)
C10.0174 (6)0.0222 (6)0.0175 (6)0.0005 (5)0.0017 (5)0.0007 (5)
C20.0168 (6)0.0278 (7)0.0235 (7)0.0030 (5)0.0013 (5)0.0047 (6)
C30.0192 (7)0.0224 (7)0.0334 (8)0.0042 (5)0.0067 (6)0.0037 (6)
C40.0228 (7)0.0163 (6)0.0280 (7)0.0013 (5)0.0091 (6)0.0015 (5)
C50.0179 (6)0.0178 (6)0.0193 (6)0.0018 (5)0.0026 (5)0.0008 (5)
C60.0158 (6)0.0160 (5)0.0151 (5)0.0001 (4)0.0035 (5)0.0029 (4)
C70.0186 (6)0.0165 (5)0.0145 (5)0.0026 (5)0.0032 (5)0.0030 (4)
C80.0160 (6)0.0125 (5)0.0154 (5)0.0006 (4)0.0002 (5)0.0007 (4)
C90.0148 (6)0.0155 (6)0.0144 (5)0.0006 (4)0.0011 (5)0.0009 (4)
C100.0162 (6)0.0209 (6)0.0192 (6)0.0012 (5)0.0002 (5)0.0009 (5)
C110.0145 (6)0.0155 (5)0.0165 (6)0.0012 (4)0.0023 (5)0.0004 (5)
C120.0193 (6)0.0129 (5)0.0186 (6)0.0014 (4)0.0051 (5)0.0009 (4)
C130.0168 (6)0.0138 (5)0.0168 (6)0.0009 (4)0.0016 (5)0.0004 (4)
C140.0221 (6)0.0142 (5)0.0150 (5)0.0009 (5)0.0023 (5)0.0002 (4)
C150.0185 (6)0.0201 (6)0.0168 (6)0.0032 (5)0.0017 (5)0.0028 (5)
C160.0143 (6)0.0169 (5)0.0161 (6)0.0012 (4)0.0004 (5)0.0006 (4)
C170.0167 (6)0.0177 (6)0.0178 (6)0.0003 (5)0.0014 (5)0.0022 (5)
C180.0190 (6)0.0160 (6)0.0228 (6)0.0014 (5)0.0004 (5)0.0000 (5)
C190.0244 (7)0.0205 (6)0.0201 (6)0.0018 (5)0.0003 (6)0.0036 (5)
C200.0252 (7)0.0218 (6)0.0162 (6)0.0004 (5)0.0023 (5)0.0007 (5)
C210.0236 (7)0.0195 (6)0.0155 (6)0.0029 (5)0.0011 (5)0.0006 (5)
C220.0239 (7)0.0290 (7)0.0193 (6)0.0045 (6)0.0026 (6)0.0071 (6)
C230.0243 (7)0.0155 (6)0.0329 (8)0.0021 (5)0.0076 (6)0.0027 (6)
Geometric parameters (Å, º) top
O1—C81.2207 (16)C11—C121.5293 (18)
O2—C101.2063 (18)C12—C131.4935 (18)
O3—N21.4281 (15)C12—H12A0.9700
O3—C111.4550 (16)C12—H12B0.9700
O4—C141.4300 (17)C13—C141.4978 (18)
O4—C161.4456 (16)C14—C151.533 (2)
O5—C151.4239 (16)C14—H14A0.9800
O5—C161.4282 (17)C15—H15A0.9700
N1—C81.3676 (17)C15—H15B0.9700
N1—C111.4396 (17)C16—C211.5200 (19)
N1—C71.4705 (16)C16—C171.5214 (19)
N2—C131.2765 (17)C17—C181.5227 (19)
C1—C21.392 (2)C17—H17A0.9700
C1—C61.3974 (19)C17—H17B0.9700
C1—H1A0.9300C18—C191.530 (2)
C2—C31.385 (2)C18—H18A0.9700
C2—H2A0.9300C18—H18B0.9700
C3—C41.389 (2)C19—C201.526 (2)
C3—H3A0.9300C19—H19A0.9700
C4—C51.390 (2)C19—H19B0.9700
C4—H4A0.9300C20—C211.521 (2)
C5—C61.3961 (19)C20—H20A0.9700
C5—H5A0.9300C20—H20B0.9700
C6—C71.5120 (19)C21—H21A0.9700
C7—H7A0.9700C21—H21B0.9700
C7—H7B0.9700C22—H22A0.9600
C8—C91.5216 (18)C22—H22B0.9600
C9—C101.5113 (19)C22—H22C0.9600
C9—C231.530 (2)C23—H23A0.9600
C9—C221.532 (2)C23—H23B0.9600
C10—C111.5399 (19)C23—H23C0.9600
N2—O3—C11109.58 (10)O4—C14—C15103.25 (10)
C14—O4—C16108.96 (10)C13—C14—C15114.24 (11)
C15—O5—C16106.46 (10)O4—C14—H14A110.5
C8—N1—C11114.83 (11)C13—C14—H14A110.5
C8—N1—C7121.48 (11)C15—C14—H14A110.5
C11—N1—C7122.64 (11)O5—C15—C14102.31 (11)
C13—N2—O3109.12 (11)O5—C15—H15A111.3
C2—C1—C6120.46 (13)C14—C15—H15A111.3
C2—C1—H1A119.8O5—C15—H15B111.3
C6—C1—H1A119.8C14—C15—H15B111.3
C3—C2—C1120.08 (14)H15A—C15—H15B109.2
C3—C2—H2A120.0O5—C16—O4105.73 (10)
C1—C2—H2A120.0O5—C16—C21108.34 (11)
C2—C3—C4120.08 (14)O4—C16—C21109.29 (11)
C2—C3—H3A120.0O5—C16—C17111.57 (11)
C4—C3—H3A120.0O4—C16—C17109.54 (11)
C3—C4—C5119.91 (14)C21—C16—C17112.15 (11)
C3—C4—H4A120.0C16—C17—C18111.64 (11)
C5—C4—H4A120.0C16—C17—H17A109.3
C4—C5—C6120.68 (13)C18—C17—H17A109.3
C4—C5—H5A119.7C16—C17—H17B109.3
C6—C5—H5A119.7C18—C17—H17B109.3
C5—C6—C1118.79 (13)H17A—C17—H17B108.0
C5—C6—C7119.86 (12)C17—C18—C19112.02 (12)
C1—C6—C7121.23 (12)C17—C18—H18A109.2
N1—C7—C6115.81 (10)C19—C18—H18A109.2
N1—C7—H7A108.3C17—C18—H18B109.2
C6—C7—H7A108.3C19—C18—H18B109.2
N1—C7—H7B108.3H18A—C18—H18B107.9
C6—C7—H7B108.3C20—C19—C18110.78 (12)
H7A—C7—H7B107.4C20—C19—H19A109.5
O1—C8—N1124.21 (13)C18—C19—H19A109.5
O1—C8—C9125.55 (12)C20—C19—H19B109.5
N1—C8—C9110.18 (11)C18—C19—H19B109.5
C10—C9—C8102.28 (11)H19A—C19—H19B108.1
C10—C9—C23110.89 (12)C21—C20—C19110.98 (12)
C8—C9—C23109.38 (11)C21—C20—H20A109.4
C10—C9—C22111.19 (12)C19—C20—H20A109.4
C8—C9—C22112.38 (11)C21—C20—H20B109.4
C23—C9—C22110.46 (12)C19—C20—H20B109.4
O2—C10—C9127.14 (14)H20A—C20—H20B108.0
O2—C10—C11122.72 (13)C16—C21—C20111.10 (11)
C9—C10—C11110.08 (11)C16—C21—H21A109.4
N1—C11—O3110.40 (11)C20—C21—H21A109.4
N1—C11—C12116.94 (11)C16—C21—H21B109.4
O3—C11—C12104.65 (11)C20—C21—H21B109.4
N1—C11—C10102.50 (11)H21A—C21—H21B108.0
O3—C11—C10109.28 (11)C9—C22—H22A109.5
C12—C11—C10113.06 (11)C9—C22—H22B109.5
C13—C12—C11101.63 (11)H22A—C22—H22B109.5
C13—C12—H12A111.4C9—C22—H22C109.5
C11—C12—H12A111.4H22A—C22—H22C109.5
C13—C12—H12B111.4H22B—C22—H22C109.5
C11—C12—H12B111.4C9—C23—H23A109.5
H12A—C12—H12B109.3C9—C23—H23B109.5
N2—C13—C12114.45 (11)H23A—C23—H23B109.5
N2—C13—C14121.45 (12)C9—C23—H23C109.5
C12—C13—C14124.11 (11)H23A—C23—H23C109.5
O4—C14—C13107.61 (11)H23B—C23—H23C109.5
C11—O3—N2—C135.71 (15)O2—C10—C11—N1175.05 (16)
C6—C1—C2—C30.9 (2)C9—C10—C11—N12.28 (14)
C1—C2—C3—C40.0 (2)O2—C10—C11—O367.84 (19)
C2—C3—C4—C50.8 (2)C9—C10—C11—O3114.84 (12)
C3—C4—C5—C60.7 (2)O2—C10—C11—C1248.3 (2)
C4—C5—C6—C10.26 (19)C9—C10—C11—C12129.05 (12)
C4—C5—C6—C7176.37 (12)N1—C11—C12—C13115.85 (13)
C2—C1—C6—C51.07 (19)O3—C11—C12—C136.62 (13)
C2—C1—C6—C7177.13 (13)C10—C11—C12—C13125.45 (12)
C8—N1—C7—C681.76 (15)O3—N2—C13—C121.00 (16)
C11—N1—C7—C6110.56 (14)O3—N2—C13—C14179.24 (11)
C5—C6—C7—N1106.45 (14)C11—C12—C13—N23.71 (16)
C1—C6—C7—N177.53 (16)C11—C12—C13—C14176.04 (12)
C11—N1—C8—O1175.16 (13)C16—O4—C14—C13136.03 (11)
C7—N1—C8—O16.6 (2)C16—O4—C14—C1514.88 (13)
C11—N1—C8—C92.36 (15)N2—C13—C14—O4125.12 (14)
C7—N1—C8—C9170.94 (11)C12—C13—C14—O454.62 (17)
O1—C8—C9—C10173.96 (13)N2—C13—C14—C15120.89 (14)
N1—C8—C9—C103.52 (14)C12—C13—C14—C1559.38 (17)
O1—C8—C9—C2356.35 (18)C16—O5—C15—C1436.76 (12)
N1—C8—C9—C23121.13 (13)O4—C14—C15—O531.35 (13)
O1—C8—C9—C2266.72 (18)C13—C14—C15—O5147.89 (11)
N1—C8—C9—C22115.80 (13)C15—O5—C16—O428.29 (13)
C8—C9—C10—O2173.71 (16)C15—O5—C16—C21145.36 (11)
C23—C9—C10—O257.2 (2)C15—O5—C16—C1790.72 (12)
C22—C9—C10—O266.1 (2)C14—O4—C16—O57.12 (14)
C8—C9—C10—C113.47 (14)C14—O4—C16—C21123.54 (12)
C23—C9—C10—C11120.00 (12)C14—O4—C16—C17113.23 (12)
C22—C9—C10—C11116.68 (13)O5—C16—C17—C1868.70 (14)
C8—N1—C11—O3116.37 (12)O4—C16—C17—C18174.58 (11)
C7—N1—C11—O375.20 (15)C21—C16—C17—C1853.04 (16)
C8—N1—C11—C12124.19 (13)C16—C17—C18—C1952.92 (16)
C7—N1—C11—C1244.24 (17)C17—C18—C19—C2054.69 (17)
C8—N1—C11—C100.06 (14)C18—C19—C20—C2156.37 (17)
C7—N1—C11—C10168.49 (11)O5—C16—C21—C2068.58 (14)
N2—O3—C11—N1118.92 (11)O4—C16—C21—C20176.67 (11)
N2—O3—C11—C127.71 (14)C17—C16—C21—C2054.99 (16)
N2—O3—C11—C10129.07 (11)C19—C20—C21—C1656.61 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.932.483.1440 (18)129
C14—H14A···O1i0.982.503.4692 (17)171
C15—H15A···Cgii0.972.893.6484 (15)136
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H28N2O5
Mr412.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.8666 (2), 11.1565 (3), 18.4884 (4)
V3)2035.14 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.49 × 0.23 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.931, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
26273, 4621, 4013
Rint0.034
(sin θ/λ)max1)0.788
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.06
No. of reflections4621
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.93002.48003.1440 (18)129.00
C14—H14A···O1i0.98002.50003.4692 (17)171.20
C15—H15A···Cgii0.97002.89003.6484 (15)136
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds