Download citation
Download citation
link to html
The central part of the title centrosymmetric dinuclear complex, [Zn2(C7H5O2)4(C9H12N2)2], has a paddle-wheel conformation with four benzoate ligands bridging two symmetry-related ZnII ions. The distorted square-pyramidal coordination environment around the ZnII ion is completed by an N atom from a 4-(pyrrolidin-1-yl)pyridine ligand. The Zn...Zn separation of 2.9826 (12) Å does not represent a formal direct metal–metal bond. The ZnII ion is displaced by 0.381 (1) Å from the mean plane of the four basal O atoms. Two of the C atoms of the pyrrolidine ring are disordered over two sites with refined occupancies of 0.53 (2) and 0.47 (2).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809052714/lh2962sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809052714/lh2962Isup2.hkl
Contains datablock I

CCDC reference: 766678

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • Disorder in main residue
  • R factor = 0.053
  • wR factor = 0.179
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s) ....... 2
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O22 -- C21_a .. 5.15 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C22 -- C27 .. 5.74 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C24 -- C25 .. 6.95 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C15 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C22 PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C22 -C27 1.37 Ang. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 9 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 19 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 2
Alert level G PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large.. 0.11 PLAT301_ALERT_3_G Note: Main Residue Disorder ................... 6.00 Perc. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7 PLAT128_ALERT_4_G Non-standard setting of Space-group P21/c .... P21/n PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, great attention has been paid to transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). Some biologically active molecules that have potential interactions with transition metal ions are amino acids, proteins, sugars, nucleotides, fulvic acids and humic acids. In particular, the study on the interaction of transition metal ions with fulvic acids and humic acids, mainly found in soil, is being extensively investigated. As models to examine these interactions we have previously used copper(II) and zinc(II) benzoates as building blocks and reported the structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, di-2-pyridylketone, andtrans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al., 2009; Yu, et al., 2009; Song, et al., 2009). The related paddle-wheel type structures for Zn complexes have been previouly reported (Necefoglu, et al., 2002; Zeleňák, et al.,2004; Kamakar, et al., 2006; Ohmura, et al., 2005). In this work, we have employed zinc(II) benzoate as a building block and 4-(pyrrolidin-1-yl)pyridine as a ligand. We report herein the structure of the title complex.

The molecular structure of the title complex is shown in Fig. 1. The asymmetric unit contains half of the complex with the formula unit being generated by an inversion center. The central part of the complex had a paddle-wheel type conformation four benzoate ligands bridging two symmetry related ZnII ions. The distorted square-pyramidal coordination environment around the unique ZnII ion is completed by an N atom from a 4-(pyrrolidin-1-yl)pyridine ligand. The ZnII ion is displaced by 0.381 (1) Å from the mean plane of the four basal oxygen atoms.

Related literature top

For crystal structures containing the [Zn2(O2CPh)4] unit, see: Necefoglu et al. (2002); Zeleňák et al. (2004); Karmakar et al. (2006); Ohmura et al. (2005). For the crystal structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, di-2-pyridyl ketone and trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, see: Lee et al. (2008); Yu et al. (2008,2009); Park et al. (2008); Shin et al. (2009); Yu et al. (2009); Song et al. (2009). For transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004).

Experimental top

30.4 mg (0.1 mmol) of Zn(NO3)2.6H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml H2O and carefully layered by 4 ml me thanol solution of 4-(pyrrolidin-1-yl)pyridine (30.3 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.93 Å (pyridine) and 0.97 Å (pyrrolidine). They were included in the refinement in a riding-motion approximation with Uĩso~(H) = 1.2U~eq~(C). The atoms C37/C37A and C38/C38A are disorder components both with refined occupancies of 0.53 (2) and 0.47 (2).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity. The disordered part of pyrrol group is shown by green bonds [Symmetry code: (i) -x, -y + 1, -z].
Tetra-µ-benzoato-bis{[4-(pyrrolidin-1-yl)pyridine]zinc(II)} top
Crystal data top
[Zn2(C7H5O2)4(C9H12N2)2]F(000) = 944
Mr = 911.59Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1481 reflections
a = 11.0021 (11) Åθ = 2.3–19.2°
b = 11.4303 (11) ŵ = 1.19 mm1
c = 16.9508 (16) ÅT = 293 K
β = 93.869 (2)°Plate, colorless
V = 2126.8 (4) Å30.08 × 0.08 × 0.01 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
4159 independent reflections
Radiation source: fine-focus sealed tube2284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1313
Tmin = 0.909, Tmax = 0.988k = 1314
11271 measured reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.1079P)2]
where P = (Fo2 + 2Fc2)/3
4159 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.94 e Å3
7 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Zn2(C7H5O2)4(C9H12N2)2]V = 2126.8 (4) Å3
Mr = 911.59Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.0021 (11) ŵ = 1.19 mm1
b = 11.4303 (11) ÅT = 293 K
c = 16.9508 (16) Å0.08 × 0.08 × 0.01 mm
β = 93.869 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4159 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2284 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.988Rint = 0.068
11271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0537 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 0.90Δρmax = 0.94 e Å3
4159 reflectionsΔρmin = 0.71 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.11885 (5)0.44449 (5)0.02560 (4)0.0380 (2)
O110.1576 (4)0.5331 (3)0.0760 (2)0.0524 (11)
O120.0192 (4)0.3879 (4)0.1160 (2)0.0574 (11)
O210.1591 (3)0.5941 (3)0.0872 (2)0.0528 (10)
O220.0201 (4)0.3274 (3)0.0446 (2)0.0562 (11)
N310.2720 (4)0.3488 (4)0.0436 (2)0.0389 (10)
N320.5772 (4)0.1339 (4)0.0637 (3)0.0494 (12)
C110.0949 (5)0.5977 (5)0.1189 (3)0.0409 (13)
C120.1545 (5)0.6638 (4)0.1822 (3)0.0428 (14)
C130.2792 (6)0.6570 (5)0.1882 (3)0.0556 (16)
H130.32500.60610.15540.067*
C140.3364 (7)0.7242 (6)0.2419 (4)0.072 (2)
H140.42070.72240.24360.086*
C150.2653 (9)0.7955 (7)0.2942 (5)0.089 (3)
H150.30250.83850.33250.107*
C160.1429 (8)0.8024 (6)0.2898 (4)0.074 (2)
H160.09740.85230.32360.089*
C170.0854 (6)0.7365 (5)0.2356 (3)0.0542 (15)
H170.00110.73970.23420.065*
C210.0822 (6)0.6758 (5)0.0839 (3)0.0444 (14)
C220.1148 (5)0.7854 (4)0.1296 (3)0.0384 (13)
C230.0408 (6)0.8808 (5)0.1229 (4)0.0638 (18)
H230.02970.87740.08940.077*
C240.0676 (7)0.9824 (6)0.1645 (5)0.084 (3)
H240.01741.04760.15800.101*
C250.1670 (8)0.9853 (6)0.2142 (5)0.082 (2)
H250.18351.05270.24380.098*
C260.2463 (7)0.8915 (6)0.2234 (4)0.0710 (19)
H260.31590.89500.25760.085*
C270.2173 (6)0.7926 (5)0.1794 (4)0.0579 (17)
H270.26950.72860.18380.069*
C310.3724 (5)0.3727 (5)0.0069 (3)0.0455 (14)
H310.37190.43910.02490.055*
C320.4768 (5)0.3064 (5)0.0126 (4)0.0531 (16)
H320.54410.32870.01420.064*
C330.4810 (5)0.2046 (5)0.0591 (3)0.0422 (13)
C340.3747 (5)0.1802 (5)0.0984 (4)0.0517 (16)
H340.37190.11520.13120.062*
C350.2759 (5)0.2528 (5)0.0879 (3)0.0478 (15)
H350.20660.23350.11360.057*
C360.6859 (5)0.1549 (5)0.0198 (4)0.0573 (17)
H36A0.72970.22350.03980.069*0.47 (2)
H36B0.66390.16560.03610.069*0.47 (2)
C370.7631 (14)0.0439 (11)0.0341 (9)0.054 (4)*0.47 (2)
H37A0.74160.01590.00500.065*0.47 (2)
H37B0.84950.06070.03400.065*0.47 (2)
C380.7273 (7)0.008 (2)0.1161 (9)0.067 (6)*0.47 (2)
H38A0.76850.05660.15670.080*0.47 (2)
H38B0.74670.07310.12680.080*0.47 (2)
C390.5882 (5)0.0289 (5)0.1122 (4)0.0607 (18)
H39A0.54410.03620.08720.073*0.47 (2)
H39B0.55950.04200.16430.073*0.47 (2)
H36C0.71130.23600.02380.069*0.53 (2)
H36D0.67100.13450.03550.069*0.53 (2)
C37A0.7824 (9)0.0733 (12)0.0611 (11)0.073 (5)*0.53 (2)
H37C0.83620.04250.02310.088*0.53 (2)
H37D0.83100.11560.10160.088*0.53 (2)
C38A0.7126 (9)0.0257 (12)0.0979 (11)0.063 (5)*0.53 (2)
H38C0.75390.05140.14730.076*0.53 (2)
H38D0.70340.09190.06220.076*0.53 (2)
H39C0.52310.02540.09710.073*0.53 (2)
H39D0.58390.04860.16760.073*0.53 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0382 (4)0.0339 (3)0.0421 (4)0.0065 (3)0.0043 (3)0.0011 (3)
O110.061 (3)0.051 (2)0.047 (2)0.011 (2)0.011 (2)0.017 (2)
O120.055 (3)0.064 (3)0.056 (3)0.007 (2)0.016 (2)0.016 (2)
O210.052 (3)0.040 (2)0.064 (3)0.007 (2)0.011 (2)0.010 (2)
O220.054 (3)0.050 (2)0.063 (3)0.002 (2)0.010 (2)0.014 (2)
N310.038 (3)0.038 (2)0.041 (3)0.005 (2)0.002 (2)0.005 (2)
N320.043 (3)0.052 (3)0.053 (3)0.016 (2)0.006 (2)0.010 (2)
C110.055 (4)0.034 (3)0.035 (3)0.005 (3)0.012 (3)0.003 (2)
C120.053 (4)0.037 (3)0.039 (3)0.004 (3)0.012 (3)0.004 (3)
C130.063 (4)0.061 (4)0.044 (3)0.008 (3)0.013 (3)0.005 (3)
C140.073 (5)0.076 (5)0.068 (5)0.023 (4)0.027 (4)0.015 (4)
C150.135 (8)0.071 (5)0.066 (5)0.035 (5)0.046 (6)0.000 (4)
C160.109 (7)0.066 (5)0.046 (4)0.005 (4)0.004 (4)0.018 (3)
C170.063 (4)0.051 (4)0.048 (4)0.004 (3)0.001 (3)0.008 (3)
C210.062 (4)0.035 (3)0.037 (3)0.002 (3)0.017 (3)0.004 (2)
C220.037 (3)0.041 (3)0.037 (3)0.007 (2)0.005 (3)0.005 (2)
C230.047 (4)0.049 (4)0.096 (5)0.006 (3)0.003 (4)0.018 (4)
C240.062 (5)0.060 (5)0.128 (7)0.012 (4)0.026 (5)0.038 (5)
C250.103 (7)0.052 (4)0.093 (6)0.013 (4)0.022 (5)0.028 (4)
C260.083 (5)0.068 (5)0.059 (4)0.015 (4)0.016 (4)0.013 (4)
C270.080 (5)0.038 (3)0.054 (4)0.000 (3)0.000 (4)0.002 (3)
C310.040 (3)0.046 (3)0.050 (3)0.003 (3)0.001 (3)0.015 (3)
C320.048 (4)0.055 (4)0.058 (4)0.004 (3)0.016 (3)0.012 (3)
C330.042 (3)0.041 (3)0.044 (3)0.009 (3)0.001 (3)0.001 (3)
C340.053 (4)0.043 (3)0.061 (4)0.011 (3)0.012 (3)0.017 (3)
C350.043 (3)0.043 (3)0.059 (4)0.005 (3)0.016 (3)0.011 (3)
C360.047 (4)0.064 (4)0.062 (4)0.015 (3)0.013 (3)0.006 (3)
C390.061 (4)0.050 (4)0.072 (4)0.017 (3)0.006 (4)0.009 (3)
C36A0.047 (4)0.064 (4)0.062 (4)0.015 (3)0.013 (3)0.006 (3)
C39A0.061 (4)0.050 (4)0.072 (4)0.017 (3)0.006 (4)0.009 (3)
Geometric parameters (Å, º) top
Zn1—N312.014 (4)C23—H230.9300
Zn1—O212.036 (4)C24—C251.335 (11)
Zn1—O122.048 (4)C24—H240.9300
Zn1—O222.053 (4)C25—C261.384 (11)
Zn1—O112.068 (4)C25—H250.9300
Zn1—Zn1i2.9826 (12)C26—C271.380 (8)
O11—C111.216 (6)C26—H260.9300
O12—C11i1.270 (6)C27—H270.9300
O21—C211.260 (6)C31—C321.374 (7)
O22—C21i1.268 (7)C31—H310.9300
N31—C351.329 (6)C32—C331.404 (7)
N31—C311.333 (6)C32—H320.9300
N32—C331.330 (6)C33—C341.412 (7)
N32—C391.454 (7)C34—C351.370 (7)
N32—C361.470 (7)C34—H340.9300
C11—O12i1.270 (6)C35—H350.9300
C11—C121.500 (7)C36—C371.536 (7)
C12—C131.384 (8)C36—H36A0.9700
C12—C171.413 (8)C36—H36B0.9700
C13—C141.375 (8)C37—C381.525 (10)
C13—H130.9300C37—H37A0.9700
C14—C151.403 (11)C37—H37B0.9700
C14—H140.9300C38—C391.545 (7)
C15—C161.356 (10)C38—H38A0.9700
C15—H150.9300C38—H38B0.9700
C16—C171.374 (8)C39—H39A0.9700
C16—H160.9300C39—H39B0.9700
C17—H170.9300C37A—C38A1.524 (10)
C21—O22i1.268 (7)C37A—H37C0.9700
C21—C221.504 (7)C37A—H37D0.9700
C22—C231.361 (8)C38A—H38C0.9700
C22—C271.364 (8)C38A—H38D0.9700
C23—C241.380 (9)
N31—Zn1—O21103.14 (17)C25—C24—H24120.6
N31—Zn1—O12101.53 (16)C23—C24—H24120.6
O21—Zn1—O1289.46 (17)C24—C25—C26122.3 (7)
N31—Zn1—O2297.95 (17)C24—C25—H25118.9
O21—Zn1—O22158.90 (16)C26—C25—H25118.9
O12—Zn1—O2286.50 (17)C27—C26—C25117.0 (7)
N31—Zn1—O11100.06 (16)C27—C26—H26121.5
O21—Zn1—O1188.04 (16)C25—C26—H26121.5
O12—Zn1—O11158.27 (16)C22—C27—C26122.3 (6)
O22—Zn1—O1188.11 (16)C22—C27—H27118.8
N31—Zn1—Zn1i169.40 (13)C26—C27—H27118.8
O21—Zn1—Zn1i87.02 (11)N31—C31—C32124.7 (5)
O12—Zn1—Zn1i81.31 (12)N31—C31—H31117.7
O22—Zn1—Zn1i71.90 (12)C32—C31—H31117.7
O11—Zn1—Zn1i77.01 (12)C31—C32—C33119.5 (5)
C11—O11—Zn1130.8 (4)C31—C32—H32120.2
C11i—O12—Zn1124.6 (4)C33—C32—H32120.2
C21—O21—Zn1118.5 (4)N32—C33—C32122.2 (5)
C21i—O22—Zn1137.7 (4)N32—C33—C34122.2 (5)
C35—N31—C31115.9 (4)C32—C33—C34115.6 (5)
C35—N31—Zn1122.0 (3)C35—C34—C33119.6 (5)
C31—N31—Zn1122.0 (4)C35—C34—H34120.2
C33—N32—C39124.8 (4)C33—C34—H34120.2
C33—N32—C36122.8 (5)N31—C35—C34124.7 (5)
C39—N32—C36112.4 (4)N31—C35—H35117.6
O11—C11—O12i125.3 (5)C34—C35—H35117.6
O11—C11—C12118.4 (5)N32—C36—C37104.2 (6)
O12i—C11—C12116.3 (5)N32—C36—H36A110.9
C13—C12—C17118.6 (5)C37—C36—H36A110.9
C13—C12—C11120.5 (6)N32—C36—H36B110.9
C17—C12—C11120.8 (5)C37—C36—H36B110.9
C14—C13—C12121.2 (7)H36A—C36—H36B108.9
C14—C13—H13119.4C38—C37—C36100.9 (9)
C12—C13—H13119.4C38—C37—H37A111.6
C13—C14—C15118.8 (7)C36—C37—H37A111.6
C13—C14—H14120.6C38—C37—H37B111.6
C15—C14—H14120.6C36—C37—H37B111.6
C16—C15—C14120.8 (6)H37A—C37—H37B109.4
C16—C15—H15119.6C37—C38—C39103.7 (8)
C14—C15—H15119.6C37—C38—H38A111.0
C15—C16—C17120.6 (7)C39—C38—H38A111.0
C15—C16—H16119.7C37—C38—H38B111.0
C17—C16—H16119.7C39—C38—H38B111.0
C16—C17—C12119.9 (6)H38A—C38—H38B109.0
C16—C17—H17120.0N32—C39—C38101.2 (8)
C12—C17—H17120.0N32—C39—H39A111.5
O21—C21—O22i124.9 (5)C38—C39—H39A111.5
O21—C21—C22117.3 (6)N32—C39—H39B111.5
O22i—C21—C22117.9 (5)C38—C39—H39B111.5
C23—C22—C27118.0 (5)H39A—C39—H39B109.3
C23—C22—C21120.2 (5)C38A—C37A—H37C110.4
C27—C22—C21121.8 (5)C38A—C37A—H37D110.4
C22—C23—C24121.6 (7)H37C—C37A—H37D108.6
C22—C23—H23119.2C37A—C38A—H38C111.0
C24—C23—H23119.2C37A—C38A—H38D111.0
C25—C24—C23118.8 (7)H38C—C38A—H38D109.0
N31—Zn1—O11—C11173.5 (5)C14—C15—C16—C172.3 (11)
O21—Zn1—O11—C1183.5 (5)C15—C16—C17—C122.2 (10)
O12—Zn1—O11—C110.1 (8)C13—C12—C17—C162.8 (9)
O22—Zn1—O11—C1175.8 (5)C11—C12—C17—C16175.6 (5)
Zn1i—Zn1—O11—C113.9 (5)Zn1—O21—C21—O22i0.0 (7)
N31—Zn1—O12—C11i162.7 (4)Zn1—O21—C21—C22179.7 (3)
O21—Zn1—O12—C11i94.0 (5)O21—C21—C22—C23174.1 (5)
O22—Zn1—O12—C11i65.2 (5)O22i—C21—C22—C235.6 (7)
O11—Zn1—O12—C11i10.7 (8)O21—C21—C22—C276.7 (7)
Zn1i—Zn1—O12—C11i7.0 (4)O22i—C21—C22—C27173.6 (5)
N31—Zn1—O21—C21176.1 (4)C27—C22—C23—C240.3 (9)
O12—Zn1—O21—C2182.2 (4)C21—C22—C23—C24179.5 (6)
O22—Zn1—O21—C213.3 (7)C22—C23—C24—C252.0 (12)
O11—Zn1—O21—C2176.2 (4)C23—C24—C25—C262.4 (13)
Zn1i—Zn1—O21—C210.8 (4)C24—C25—C26—C271.0 (12)
N31—Zn1—O22—C21i175.1 (5)C23—C22—C27—C261.1 (9)
O21—Zn1—O22—C21i4.4 (8)C21—C22—C27—C26178.1 (5)
O12—Zn1—O22—C21i83.8 (5)C25—C26—C27—C220.8 (10)
O11—Zn1—O22—C21i75.2 (5)C35—N31—C31—C320.5 (9)
Zn1i—Zn1—O22—C21i1.8 (5)Zn1—N31—C31—C32175.5 (5)
O21—Zn1—N31—C35110.2 (4)N31—C31—C32—C330.8 (10)
O12—Zn1—N31—C3518.1 (5)C39—N32—C33—C32178.5 (6)
O22—Zn1—N31—C3570.0 (4)C36—N32—C33—C321.1 (9)
O11—Zn1—N31—C35159.4 (4)C39—N32—C33—C343.7 (9)
Zn1i—Zn1—N31—C3586.5 (8)C36—N32—C33—C34176.7 (6)
O21—Zn1—N31—C3175.2 (5)C31—C32—C33—N32176.6 (6)
O12—Zn1—N31—C31167.3 (4)C31—C32—C33—C341.3 (9)
O22—Zn1—N31—C31104.7 (4)N32—C33—C34—C35176.4 (6)
O11—Zn1—N31—C3115.2 (5)C32—C33—C34—C351.6 (9)
Zn1i—Zn1—N31—C3188.1 (8)C31—N31—C35—C340.8 (9)
Zn1—O11—C11—O12i10.9 (9)Zn1—N31—C35—C34175.8 (5)
Zn1—O11—C11—C12171.0 (3)C33—C34—C35—N311.4 (10)
O11—C11—C12—C134.1 (8)C33—N32—C36—C37172.3 (9)
O12i—C11—C12—C13177.6 (5)C39—N32—C36—C378.1 (10)
O11—C11—C12—C17177.5 (5)N32—C36—C37—C3830.5 (16)
O12i—C11—C12—C170.7 (7)C36—C37—C38—C3942 (2)
C17—C12—C13—C143.6 (9)C33—N32—C39—C38162.0 (9)
C11—C12—C13—C14174.8 (5)C36—N32—C39—C3817.6 (10)
C12—C13—C14—C153.6 (9)C37—C38—C39—N3236.8 (17)
C13—C14—C15—C163.0 (11)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn2(C7H5O2)4(C9H12N2)2]
Mr911.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.0021 (11), 11.4303 (11), 16.9508 (16)
β (°) 93.869 (2)
V3)2126.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.08 × 0.08 × 0.01
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.909, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11271, 4159, 2284
Rint0.068
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.179, 0.90
No. of reflections4159
No. of parameters270
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.71

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds