Download citation
Download citation
link to html
The title dinuclear copper complex, [Cu2Br4(C28H32N6)], is located on an inversion center. The unique CuII ion is in a slightly distorted square-pyramidal environment in which the N atoms of a dipicolyl­amine group and a bromide ligand form the basal plane. The apical site is occupied by a second Br atom. While the Cu—N distances involving the pyridine N atoms are the same within experimental error, the Cu—N distance involving the tertiary N atom is slightly elongated. Due to the typical Jahn–Teller distortion of copper(II) complexes, the apical Cu—Br distance is elongated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810034537/lh5106sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810034537/lh5106Isup2.hkl
Contains datablock I

CCDC reference: 797596

Key indicators

  • Single-crystal X-ray study
  • T = 90 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.074
  • wR factor = 0.147
  • Data-to-parameter ratio = 20.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 10 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.90 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.71 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.62 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.54 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.51 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -1.63 eA-3
Alert level G PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 10.83 PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The described ligand N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine has been used as starting material for hydrothermal synthesis of metal-organic transition metal/molybdateoxide frameworks in the principal author's laboratory (Bartholomä, unpublished results). The dipicolylamine moiety has originally been used in our laboratory as metal chelating entity for binding of the M(CO)3 core (M = Re,99mTc) for radiopharmaceutical purposes. A different coordination mode has been observed for the M(CO)3 core in which the dipicolylamine metal chelate is coordinated in a facial manner (Bartholomä, 2009).

The title complex was prepared as part of a series with different cadmium and copper salts to study the coordination properties of the ligand with these metals without the interaction of metaloxide clusters (Bartholomä, 2010a,b,c). The crystalline sample obtained with copper chloride as metal source and N1,N1,N5,N5-tetrakis(pyridin-2-ylmethyl)pentane-1,5-diamine gave a structurally similar compound with a distorted square pyramidal coordination geometry of the copper atoms as observed for the described complex. The Cu—Npy distances of 1.986 (4) Å and 1.996 (4), and a Cu—Ntert distance of 2.076 (4) Å (Bartholomä, 2010d).

Crystal structures of the ligands N1,N1,N3,N3-tetrakis(2-pyridiniomethyl)-1,3-diaminopropane and N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine have been described recently (Fujihara, 2004; Mambanda, 2007). Superoxide dismutase activity of iron(II) complexes of N1,N1,N3,N3-tetrakis(2-pyridiniomethyl)-1,3-diaminopropane and related ligands has been investigated by Tamura et al. (2000). Studies on the thermodynamic and kinetic behaviour of the reaction of platinum(II) complexes of higher ligand homologues with chloride have been performed by Ertürk et al. (2007).

Related literature top

For crystallographic data of tetrakis(pyridin-2-yl-methyl)alkyl-diamine compounds, see: Fujihara et al. (2004) & Mambanda et al. (2007). For the superoxide dismutase activity of iron complexes, see: Tamura et al. (2000). For dinuclear Pt complexes of similar ligands, see: Ertürk et al. (2007). For the use of the dipicolylamine moiety for binding of the M(CO)3 core (M = Re,99m Tc) see: Bartholomä et al. (2009). For crystal structures closely related to the title compound, see: Bartholomä et al. (2010a,b,c,d).

Experimental top

N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine. An amount of 1.00 g (11.34 mmol) 1,4-diaminobutane was dissolved in 30 ml anhydrous dichloroethane under an inert atmosphere (argon) followed by the addition of 4.55 ml (47.65 mmol) pyridine-2-carboxaldehyde. The mixture was stirred for 15 min at r.t. and then cooled with an ice bath prior to the portionwise addition of 14.43 g (68.06 mmol) sodium triacetoxyborohydride (gas evolution, exothermic reaction). The reaction was stirred overnight allowing the temperature slowly to rise to room temperature. The reaction was quenched by the dropwise addition of saturated sodium bicarbonate solution and stirring was continued until the gas evolution ceased. The mixture was separated and the organic layer was further washed with saturated sodium bicarbonate solution, water and brine. The organic phase was dried with anhydrous sodium sulfate, filtered and the solvent removed under reduced pressure. The crude reaction mixture was then purified by silica gel column chromatography starting with chloroform and increasing gradient to chloroform:methanol 10:1 (v/v). Yield: 4.02 g (78%). 1H NMR (CDCl3): δ = 8.40 (m, 4H), 7.51 (m, 4H), 7.39 (d, J = 7.81 Hz, 4H), 7.02 (m, 4H), 3.67 (s, 8H), 2.39 (m, 4H), 1.42 (m, 4H) p.p.m..

Synthesis of metal complex. To 2 ml of an aqueous solution of copper bromide, two equivalents (50 mg, 0.11 mmol) of N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine in 2 ml methanol were added followed by the addition of 2 ml N,N-dimethylformamide. Single crystals were obtained after a week by slow evaporation of the solvents at room temperature.

Refinement top

All the H atoms were placed in idealized positions and refined in a riding-model approximation with C—Haryl = 0.95 Å, C—Hmethyl = 0.98Å and C—Hmethylene = 0.99Å and Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(Cmethylene/aryl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title complex. The displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms are omitted for clarity. Unlabeled atoms are related by the symmetry code (-x + 1, -y + 1, -z + 1).
[µ-N,N,N',N'-Tetrakis(2-pyridylmethyl)butane- 1,4-diamine]bis[dibromidocopper(II)] top
Crystal data top
[Cu2Br4(C28H32N6)]F(000) = 880
Mr = 899.32Dx = 2.002 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2666 reflections
a = 8.8613 (6) Åθ = 2.7–27.2°
b = 14.249 (1) ŵ = 6.81 mm1
c = 11.9488 (9) ÅT = 90 K
β = 98.588 (2)°Plates, green
V = 1491.80 (18) Å30.18 × 0.12 × 0.08 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
3623 independent reflections
Radiation source: fine-focus sealed tube3171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 512 pixels mm-1θmax = 28.1°, θmin = 2.2°
ϕ and ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1818
Tmin = 0.374, Tmax = 0.612l = 1515
14513 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.38 w = 1/[σ2(Fo2) + (0.042P)2 + 10.8322P]
where P = (Fo2 + 2Fc2)/3
3623 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 1.38 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Cu2Br4(C28H32N6)]V = 1491.80 (18) Å3
Mr = 899.32Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.8613 (6) ŵ = 6.81 mm1
b = 14.249 (1) ÅT = 90 K
c = 11.9488 (9) Å0.18 × 0.12 × 0.08 mm
β = 98.588 (2)°
Data collection top
Bruker APEX CCD
diffractometer
3623 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3171 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.612Rint = 0.052
14513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.38 w = 1/[σ2(Fo2) + (0.042P)2 + 10.8322P]
where P = (Fo2 + 2Fc2)/3
3623 reflectionsΔρmax = 1.38 e Å3
181 parametersΔρmin = 0.85 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.35669 (10)0.75522 (6)0.35899 (7)0.0111 (2)
Br10.21437 (9)0.82045 (5)0.15805 (6)0.01711 (19)
Br20.29274 (9)0.87831 (5)0.48204 (6)0.01847 (19)
N10.4360 (6)0.6374 (4)0.2878 (5)0.0087 (11)
N20.1789 (7)0.6693 (4)0.3702 (5)0.0101 (11)
N30.5695 (6)0.8000 (4)0.3456 (5)0.0099 (11)
C10.2983 (8)0.5899 (5)0.2279 (6)0.0138 (14)
H1A0.32140.52300.21570.017*
H1B0.26760.61950.15300.017*
C20.1707 (8)0.5972 (5)0.2964 (6)0.0118 (13)
C30.0522 (8)0.5333 (5)0.2869 (6)0.0161 (15)
H30.04700.48370.23340.019*
C40.0587 (9)0.5423 (5)0.3564 (7)0.0208 (16)
H40.14150.49940.35070.025*
C50.0474 (9)0.6153 (6)0.4350 (7)0.0214 (16)
H50.12010.62190.48540.026*
C60.0718 (8)0.6775 (5)0.4377 (6)0.0159 (14)
H60.07840.72840.48960.019*
C70.5359 (8)0.6749 (5)0.2094 (6)0.0136 (14)
H7A0.47290.70020.14060.016*
H7B0.60100.62420.18630.016*
C80.6340 (8)0.7514 (5)0.2682 (6)0.0132 (14)
C90.7788 (9)0.7733 (5)0.2435 (6)0.0169 (15)
H90.82060.73980.18660.020*
C100.8606 (8)0.8445 (5)0.3033 (6)0.0167 (15)
H100.96030.86000.28900.020*
C110.7950 (9)0.8930 (5)0.3845 (6)0.0186 (15)
H110.84920.94210.42670.022*
C120.6489 (9)0.8689 (5)0.4032 (6)0.0147 (14)
H120.60410.90240.45870.018*
C130.5282 (8)0.5732 (5)0.3704 (6)0.0111 (13)
H13A0.62090.60730.40520.013*
H13B0.56200.51930.32810.013*
C140.4471 (7)0.5353 (4)0.4650 (5)0.0096 (13)
H14A0.35060.50420.43230.011*
H14B0.42240.58750.51390.011*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0124 (4)0.0090 (4)0.0126 (4)0.0003 (3)0.0041 (3)0.0005 (3)
Br10.0196 (4)0.0162 (4)0.0155 (3)0.0032 (3)0.0024 (3)0.0062 (3)
Br20.0249 (4)0.0131 (3)0.0198 (4)0.0001 (3)0.0110 (3)0.0037 (3)
N10.009 (3)0.008 (3)0.011 (3)0.002 (2)0.004 (2)0.000 (2)
N20.014 (3)0.009 (3)0.008 (2)0.002 (2)0.003 (2)0.003 (2)
N30.010 (3)0.009 (3)0.011 (3)0.002 (2)0.003 (2)0.004 (2)
C10.018 (4)0.012 (3)0.012 (3)0.003 (3)0.003 (3)0.006 (3)
C20.013 (3)0.010 (3)0.011 (3)0.003 (3)0.003 (3)0.005 (2)
C30.017 (4)0.010 (3)0.018 (3)0.002 (3)0.006 (3)0.002 (3)
C40.013 (4)0.019 (4)0.032 (4)0.002 (3)0.005 (3)0.005 (3)
C50.014 (4)0.027 (4)0.025 (4)0.001 (3)0.007 (3)0.009 (3)
C60.014 (4)0.018 (4)0.015 (3)0.003 (3)0.003 (3)0.001 (3)
C70.014 (4)0.016 (3)0.013 (3)0.001 (3)0.009 (3)0.004 (3)
C80.019 (4)0.011 (3)0.010 (3)0.001 (3)0.003 (3)0.005 (3)
C90.018 (4)0.019 (4)0.016 (3)0.003 (3)0.007 (3)0.005 (3)
C100.011 (3)0.015 (3)0.024 (4)0.004 (3)0.002 (3)0.009 (3)
C110.019 (4)0.015 (3)0.020 (4)0.001 (3)0.002 (3)0.001 (3)
C120.021 (4)0.008 (3)0.016 (3)0.002 (3)0.003 (3)0.007 (3)
C130.010 (3)0.010 (3)0.015 (3)0.002 (3)0.005 (3)0.004 (2)
C140.007 (3)0.008 (3)0.013 (3)0.000 (2)0.001 (2)0.005 (2)
Geometric parameters (Å, º) top
Cu1—N22.015 (6)C5—C61.375 (11)
Cu1—N32.019 (6)C5—H50.9500
Cu1—N12.053 (5)C6—H60.9500
Cu1—Br22.4099 (11)C7—C81.502 (10)
Cu1—Br12.7045 (11)C7—H7A0.9900
N1—C71.482 (8)C7—H7B0.9900
N1—C11.482 (9)C8—C91.394 (10)
N1—C131.495 (8)C9—C101.382 (11)
N2—C61.340 (9)C9—H90.9500
N2—C21.349 (9)C10—C111.388 (11)
N3—C121.337 (9)C10—H100.9500
N3—C81.349 (9)C11—C121.389 (11)
C1—C21.496 (10)C11—H110.9500
C1—H1A0.9900C12—H120.9500
C1—H1B0.9900C13—C141.526 (9)
C2—C31.381 (10)C13—H13A0.9900
C3—C41.384 (11)C13—H13B0.9900
C3—H30.9500C14—C14i1.536 (12)
C4—C51.395 (12)C14—H14A0.9900
C4—H40.9500C14—H14B0.9900
N2—Cu1—N3161.0 (2)C6—C5—H5120.8
N2—Cu1—N181.4 (2)C4—C5—H5120.8
N3—Cu1—N181.0 (2)N2—C6—C5122.7 (7)
N2—Cu1—Br298.29 (16)N2—C6—H6118.7
N3—Cu1—Br297.22 (16)C5—C6—H6118.7
N1—Cu1—Br2166.96 (16)N1—C7—C8109.0 (5)
N2—Cu1—Br190.12 (16)N1—C7—H7A109.9
N3—Cu1—Br197.95 (15)C8—C7—H7A109.9
N1—Cu1—Br193.22 (16)N1—C7—H7B109.9
Br2—Cu1—Br199.82 (4)C8—C7—H7B109.9
C7—N1—C1112.7 (5)H7A—C7—H7B108.3
C7—N1—C13108.6 (5)N3—C8—C9121.9 (7)
C1—N1—C13111.7 (5)N3—C8—C7114.7 (6)
C7—N1—Cu1103.9 (4)C9—C8—C7123.4 (6)
C1—N1—Cu1105.4 (4)C10—C9—C8118.9 (7)
C13—N1—Cu1114.4 (4)C10—C9—H9120.6
C6—N2—C2119.0 (6)C8—C9—H9120.6
C6—N2—Cu1128.2 (5)C9—C10—C11119.0 (7)
C2—N2—Cu1112.7 (4)C9—C10—H10120.5
C12—N3—C8119.0 (6)C11—C10—H10120.5
C12—N3—Cu1128.1 (5)C10—C11—C12119.2 (7)
C8—N3—Cu1112.9 (5)C10—C11—H11120.4
N1—C1—C2109.8 (5)C12—C11—H11120.4
N1—C1—H1A109.7N3—C12—C11122.0 (7)
C2—C1—H1A109.7N3—C12—H12119.0
N1—C1—H1B109.7C11—C12—H12119.0
C2—C1—H1B109.7N1—C13—C14115.7 (5)
H1A—C1—H1B108.2N1—C13—H13A108.4
N2—C2—C3121.5 (7)C14—C13—H13A108.4
N2—C2—C1116.0 (6)N1—C13—H13B108.4
C3—C2—C1122.5 (6)C14—C13—H13B108.4
C2—C3—C4119.2 (7)H13A—C13—H13B107.4
C2—C3—H3120.4C13—C14—C14i108.6 (7)
C4—C3—H3120.4C13—C14—H14A110.0
C3—C4—C5119.2 (7)C14i—C14—H14A110.0
C3—C4—H4120.4C13—C14—H14B110.0
C5—C4—H4120.4C14i—C14—H14B110.0
C6—C5—C4118.3 (7)H14A—C14—H14B108.3
N2—Cu1—N1—C7151.6 (4)Cu1—N2—C2—C3176.6 (5)
N3—Cu1—N1—C735.6 (4)C6—N2—C2—C1177.1 (6)
Br2—Cu1—N1—C7118.9 (7)Cu1—N2—C2—C14.5 (7)
Br1—Cu1—N1—C762.0 (4)N1—C1—C2—N224.0 (8)
N2—Cu1—N1—C132.9 (4)N1—C1—C2—C3154.9 (6)
N3—Cu1—N1—C1154.3 (4)N2—C2—C3—C41.4 (10)
Br2—Cu1—N1—C1122.4 (7)C1—C2—C3—C4177.4 (7)
Br1—Cu1—N1—C156.7 (4)C2—C3—C4—C50.5 (11)
N2—Cu1—N1—C1390.2 (4)C3—C4—C5—C62.1 (11)
N3—Cu1—N1—C1382.6 (4)C2—N2—C6—C50.2 (10)
Br2—Cu1—N1—C130.7 (10)Cu1—N2—C6—C5178.0 (5)
Br1—Cu1—N1—C13179.8 (4)C4—C5—C6—N21.7 (11)
N3—Cu1—N2—C6137.8 (7)C1—N1—C7—C8158.0 (6)
N1—Cu1—N2—C6160.1 (6)C13—N1—C7—C877.8 (7)
Br2—Cu1—N2—C66.7 (6)Cu1—N1—C7—C844.4 (6)
Br1—Cu1—N2—C6106.7 (6)C12—N3—C8—C92.4 (10)
N3—Cu1—N2—C244.0 (9)Cu1—N3—C8—C9177.9 (5)
N1—Cu1—N2—C221.7 (4)C12—N3—C8—C7179.3 (6)
Br2—Cu1—N2—C2171.5 (4)Cu1—N3—C8—C70.3 (7)
Br1—Cu1—N2—C271.6 (4)N1—C7—C8—N330.7 (8)
N2—Cu1—N3—C12136.2 (7)N1—C7—C8—C9151.1 (6)
N1—Cu1—N3—C12158.5 (6)N3—C8—C9—C102.5 (10)
Br2—Cu1—N3—C128.4 (6)C7—C8—C9—C10179.4 (7)
Br1—Cu1—N3—C12109.4 (5)C8—C9—C10—C111.1 (10)
N2—Cu1—N3—C843.4 (9)C9—C10—C11—C120.2 (10)
N1—Cu1—N3—C821.0 (4)C8—N3—C12—C111.1 (10)
Br2—Cu1—N3—C8172.0 (4)Cu1—N3—C12—C11179.4 (5)
Br1—Cu1—N3—C871.0 (4)C10—C11—C12—N30.2 (10)
C7—N1—C1—C2151.4 (6)C7—N1—C13—C14174.3 (6)
C13—N1—C1—C286.1 (7)C1—N1—C13—C1460.8 (7)
Cu1—N1—C1—C238.8 (6)Cu1—N1—C13—C1458.8 (7)
C6—N2—C2—C31.8 (10)N1—C13—C14—C14i175.1 (6)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Br4(C28H32N6)]
Mr899.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)8.8613 (6), 14.249 (1), 11.9488 (9)
β (°) 98.588 (2)
V3)1491.80 (18)
Z2
Radiation typeMo Kα
µ (mm1)6.81
Crystal size (mm)0.18 × 0.12 × 0.08
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.374, 0.612
No. of measured, independent and
observed [I > 2σ(I)] reflections
14513, 3623, 3171
Rint0.052
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.147, 1.38
No. of reflections3623
No. of parameters181
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.042P)2 + 10.8322P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.38, 0.85

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N22.015 (6)Cu1—Br22.4099 (11)
Cu1—N32.019 (6)Cu1—Br12.7045 (11)
Cu1—N12.053 (5)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds