In the title compound, [Ni(C
5H
4N
3O
2)
2(H
2O)
2]·2H
2O, the Ni
II ion lies on an inversion center and is coordinated in an slightly distorted octahedral environment by two N,O-chelating 3-aminopyrazine-2-carboxylate (APZC) ligands in the equatorial plane and two
trans-axial aqua ligands. In the crystal, O—H
O, N—H
O and O—H
N hydrogen bonds involving the solvent water molecules, aqua and APZC ligands form layers parallel to (010). These layers are linked further
via O—H
O, N—H
O and C—H
O hydrogen bonds involving the axial aqua ligands, amino groups and the carboxylate groups of the APZC ligands, forming a three-dimensional network.
Supporting information
CCDC reference: 954408
Key indicators
- Single-crystal X-ray study
- T = 150 K
- Mean (C-C) = 0.004 Å
- R factor = 0.028
- wR factor = 0.073
- Data-to-parameter ratio = 10.4
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.1
PLAT417_ALERT_2_C Short Inter D-H..H-D H1A .. H2B .. 2.11 Ang.
PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.596 6
Alert level G
PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ?
PLAT007_ALERT_5_G Note: Number of Unrefined Donor-H Atoms ........ 2
PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 75 %
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
4 ALERT level C = Check. Ensure it is not caused by an omission or oversight
3 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
Nickel dichloride hexahydrate (0.2 mmol) and 3-aminopyrazine-2-carboxylic acid
(0.02 mmol) were dissolved in acidified water with concentrated hydrogen
chloride acid (37%). Light green crystals, suitable for X-ray diffraction
study, were obtained from evaporation of obtained solution for three days.
The H atoms bonded to C and N were located in differnce Fourier maps but
subsequently introduced in calculated positions and treated as riding on their
parent atoms (C or N) with C—H = 0.93 Å and N—H = 0.86 Å with
Uiso(H) = 1.2Ueq(C or N).
Atoms H1W and H2W were located in a difference Fourier map and refined
isotropically wirh Uiso(H) = 1.5Ueq(O).
Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Bis(3-aminopyrazine-2-carboxylato-
κ2N1,
O)diaquanickel(II)
dihydrate
top
Crystal data top
[Ni(C5H4N3O2)2(H2O)2]·2H2O | F(000) = 420 |
Mr = 406.98 | Dx = 1.788 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7939 (15) Å | Cell parameters from 2285 reflections |
b = 5.1123 (9) Å | θ = 2.7–25° |
c = 16.776 (3) Å | µ = 1.34 mm−1 |
β = 115.838 (11)° | T = 150 K |
V = 756.0 (2) Å3 | Cube, white |
Z = 2 | 0.18 × 0.16 × 0.15 mm |
Data collection top
Bruker APEXII CCD diffractometer | 1121 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.051 |
Graphite monochromator | θmax = 25.1°, θmin = 2.7° |
ϕ and ω scans | h = −11→11 |
6200 measured reflections | k = −6→6 |
1326 independent reflections | l = −19→19 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0363P)2 + 0.4886P] where P = (Fo2 + 2Fc2)/3 |
1326 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
Crystal data top
[Ni(C5H4N3O2)2(H2O)2]·2H2O | V = 756.0 (2) Å3 |
Mr = 406.98 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.7939 (15) Å | µ = 1.34 mm−1 |
b = 5.1123 (9) Å | T = 150 K |
c = 16.776 (3) Å | 0.18 × 0.16 × 0.15 mm |
β = 115.838 (11)° | |
Data collection top
Bruker APEXII CCD diffractometer | 1121 reflections with I > 2σ(I) |
6200 measured reflections | Rint = 0.051 |
1326 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.36 e Å−3 |
1326 reflections | Δρmin = −0.59 e Å−3 |
127 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.2428 (3) | 0.2367 (5) | 0.99519 (16) | 0.0089 (5) | |
C2 | 0.2750 (3) | 0.4494 (4) | 1.06347 (15) | 0.0079 (5) | |
C3 | 0.1864 (3) | 0.4915 (5) | 1.11094 (15) | 0.0090 (5) | |
C4 | 0.3430 (3) | 0.8353 (5) | 1.18295 (16) | 0.0098 (5) | |
H4 | 0.3692 | 0.9711 | 1.2239 | 0.012* | |
C5 | 0.4304 (3) | 0.7942 (5) | 1.13805 (15) | 0.0097 (5) | |
H5 | 0.5141 | 0.8999 | 1.1492 | 0.012* | |
N1 | 0.3937 (2) | 0.6010 (4) | 1.07831 (13) | 0.0074 (4) | |
N2 | 0.2227 (2) | 0.6890 (4) | 1.17019 (13) | 0.0102 (4) | |
N3 | 0.0696 (2) | 0.3396 (4) | 1.10092 (14) | 0.0125 (5) | |
H1N | 0.0202 | 0.3689 | 1.1316 | 0.015* | |
H2N | 0.0436 | 0.2122 | 1.0637 | 0.015* | |
O1 | 0.33555 (17) | 0.2240 (3) | 0.96010 (11) | 0.0090 (4) | |
O2 | 0.13487 (18) | 0.0885 (3) | 0.97784 (12) | 0.0137 (4) | |
O1W | 0.6426 (2) | 0.2542 (4) | 1.10017 (12) | 0.0102 (4) | |
H1A | 0.726 (3) | 0.312 (6) | 1.1356 (19) | 0.015* | |
H1B | 0.652 (3) | 0.124 (6) | 1.083 (2) | 0.015* | |
O2W | 0.0735 (2) | 0.6137 (4) | 0.76616 (12) | 0.0133 (4) | |
H2A | 0.046 (4) | 0.472 (6) | 0.754 (2) | 0.02* | |
H2B | 0.104 (3) | 0.663 (6) | 0.733 (2) | 0.02* | |
Ni1 | 0.5 | 0.5 | 1 | 0.00664 (16) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0073 (11) | 0.0071 (12) | 0.0116 (12) | 0.0010 (9) | 0.0036 (10) | 0.0014 (10) |
C2 | 0.0067 (12) | 0.0078 (12) | 0.0087 (11) | 0.0002 (9) | 0.0029 (10) | 0.0009 (9) |
C3 | 0.0078 (11) | 0.0088 (12) | 0.0098 (11) | 0.0029 (10) | 0.0031 (9) | 0.0029 (11) |
C4 | 0.0114 (12) | 0.0077 (12) | 0.0105 (12) | −0.0014 (9) | 0.0050 (10) | −0.0024 (10) |
C5 | 0.0068 (12) | 0.0089 (12) | 0.0137 (13) | −0.0011 (9) | 0.0048 (10) | −0.0017 (10) |
N1 | 0.0040 (10) | 0.0067 (10) | 0.0102 (10) | 0.0004 (8) | 0.0019 (8) | 0.0009 (8) |
N2 | 0.0097 (10) | 0.0101 (11) | 0.0123 (10) | −0.0008 (8) | 0.0061 (9) | 0.0001 (8) |
N3 | 0.0094 (10) | 0.0139 (11) | 0.0195 (11) | −0.0052 (9) | 0.0113 (9) | −0.0056 (9) |
O1 | 0.0069 (8) | 0.0093 (8) | 0.0137 (9) | −0.0018 (7) | 0.0073 (7) | −0.0032 (7) |
O2 | 0.0092 (9) | 0.0135 (9) | 0.0213 (10) | −0.0055 (7) | 0.0092 (8) | −0.0059 (8) |
O1W | 0.0077 (9) | 0.0081 (9) | 0.0147 (9) | −0.0015 (7) | 0.0046 (8) | −0.0030 (8) |
O2W | 0.0148 (10) | 0.0129 (9) | 0.0169 (10) | −0.0035 (8) | 0.0115 (8) | −0.0018 (8) |
Ni1 | 0.0049 (2) | 0.0062 (2) | 0.0106 (2) | −0.00089 (17) | 0.00506 (18) | −0.00108 (18) |
Geometric parameters (Å, º) top
C1—O2 | 1.228 (3) | N1—Ni1 | 2.0657 (19) |
C1—O1 | 1.281 (3) | N3—H1N | 0.86 |
C1—C2 | 1.510 (3) | N3—H2N | 0.86 |
C2—N1 | 1.327 (3) | O1—Ni1 | 2.0233 (16) |
C2—C3 | 1.427 (3) | O1W—Ni1 | 2.0755 (18) |
C3—N3 | 1.331 (3) | O1W—H1A | 0.83 (3) |
C3—N2 | 1.351 (3) | O1W—H1B | 0.74 (3) |
C4—N2 | 1.332 (3) | O2W—H2A | 0.77 (3) |
C4—C5 | 1.381 (3) | O2W—H2B | 0.78 (3) |
C4—H4 | 0.93 | Ni1—O1i | 2.0233 (16) |
C5—N1 | 1.340 (3) | Ni1—N1i | 2.066 (2) |
C5—H5 | 0.93 | Ni1—O1Wi | 2.0755 (18) |
| | | |
O2—C1—O1 | 124.7 (2) | H1N—N3—H2N | 120 |
O2—C1—C2 | 119.8 (2) | C1—O1—Ni1 | 115.72 (15) |
O1—C1—C2 | 115.5 (2) | Ni1—O1W—H1A | 118 (2) |
N1—C2—C3 | 120.2 (2) | Ni1—O1W—H1B | 113 (2) |
N1—C2—C1 | 116.0 (2) | H1A—O1W—H1B | 110 (3) |
C3—C2—C1 | 123.7 (2) | H2A—O2W—H2B | 108 (3) |
N3—C3—N2 | 117.7 (2) | O1—Ni1—O1i | 180 |
N3—C3—C2 | 122.7 (2) | O1—Ni1—N1 | 80.54 (7) |
N2—C3—C2 | 119.6 (2) | O1i—Ni1—N1 | 99.46 (7) |
N2—C4—C5 | 122.8 (2) | O1—Ni1—N1i | 99.46 (7) |
N2—C4—H4 | 118.6 | O1i—Ni1—N1i | 80.54 (7) |
C5—C4—H4 | 118.6 | N1—Ni1—N1i | 180.0000 (10) |
N1—C5—C4 | 119.5 (2) | O1—Ni1—O1Wi | 89.81 (7) |
N1—C5—H5 | 120.3 | O1i—Ni1—O1Wi | 90.19 (7) |
C4—C5—H5 | 120.3 | N1—Ni1—O1Wi | 90.92 (7) |
C2—N1—C5 | 119.9 (2) | N1i—Ni1—O1Wi | 89.08 (7) |
C2—N1—Ni1 | 112.20 (15) | O1—Ni1—O1W | 90.19 (7) |
C5—N1—Ni1 | 127.92 (16) | O1i—Ni1—O1W | 89.81 (7) |
C4—N2—C3 | 117.9 (2) | N1—Ni1—O1W | 89.08 (7) |
C3—N3—H1N | 120 | N1i—Ni1—O1W | 90.92 (7) |
C3—N3—H2N | 120 | O1Wi—Ni1—O1W | 180.00 (9) |
| | | |
O2—C1—C2—N1 | 180.0 (2) | N3—C3—N2—C4 | 177.5 (2) |
O1—C1—C2—N1 | 1.0 (3) | C2—C3—N2—C4 | −1.1 (3) |
O2—C1—C2—C3 | 0.2 (4) | O2—C1—O1—Ni1 | 178.74 (18) |
O1—C1—C2—C3 | −178.8 (2) | C2—C1—O1—Ni1 | −2.3 (3) |
N1—C2—C3—N3 | −177.5 (2) | C1—O1—Ni1—N1 | 2.15 (16) |
C1—C2—C3—N3 | 2.3 (4) | C1—O1—Ni1—N1i | −177.85 (16) |
N1—C2—C3—N2 | 1.0 (3) | C1—O1—Ni1—O1Wi | −88.81 (16) |
C1—C2—C3—N2 | −179.2 (2) | C1—O1—Ni1—O1W | 91.19 (16) |
N2—C4—C5—N1 | 0.5 (4) | C2—N1—Ni1—O1 | −1.50 (15) |
C3—C2—N1—C5 | 0.0 (3) | C5—N1—Ni1—O1 | 179.2 (2) |
C1—C2—N1—C5 | −179.9 (2) | C2—N1—Ni1—O1i | 178.50 (15) |
C3—C2—N1—Ni1 | −179.41 (17) | C5—N1—Ni1—O1i | −0.8 (2) |
C1—C2—N1—Ni1 | 0.8 (2) | C2—N1—Ni1—O1Wi | 88.16 (16) |
C4—C5—N1—C2 | −0.7 (3) | C5—N1—Ni1—O1Wi | −91.1 (2) |
C4—C5—N1—Ni1 | 178.57 (17) | C2—N1—Ni1—O1W | −91.84 (16) |
C5—C4—N2—C3 | 0.4 (3) | C5—N1—Ni1—O1W | 88.9 (2) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O2Wi | 0.83 (3) | 1.97 (3) | 2.789 (3) | 169 (3) |
O1W—H1B···O1ii | 0.75 (3) | 1.94 (3) | 2.690 (3) | 176 (4) |
N3—H1N···O2Wiii | 0.86 | 2.27 | 3.117 (3) | 168 |
O2W—H2A···O2Wiv | 0.77 (3) | 2.12 (3) | 2.867 (3) | 164 (4) |
O2W—H2B···N2v | 0.78 (3) | 2.03 (3) | 2.792 (3) | 168 (3) |
N3—H2N···O2 | 0.86 | 2.10 | 2.733 (3) | 130 |
N3—H2N···O2vi | 0.86 | 2.20 | 2.871 (3) | 135 |
C5—H5···O1Wvii | 0.93 | 2.54 | 3.377 (4) | 150 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2; (iii) −x, −y+1, −z+2; (iv) −x, y−1/2, −z+3/2; (v) x, −y+3/2, z−1/2; (vi) −x, −y, −z+2; (vii) x, y+1, z. |
Experimental details
Crystal data |
Chemical formula | [Ni(C5H4N3O2)2(H2O)2]·2H2O |
Mr | 406.98 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 9.7939 (15), 5.1123 (9), 16.776 (3) |
β (°) | 115.838 (11) |
V (Å3) | 756.0 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.34 |
Crystal size (mm) | 0.18 × 0.16 × 0.15 |
|
Data collection |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6200, 1326, 1121 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.596 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.073, 1.04 |
No. of reflections | 1326 |
No. of parameters | 127 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.59 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O2Wi | 0.83 (3) | 1.97 (3) | 2.789 (3) | 169 (3) |
O1W—H1B···O1ii | 0.75 (3) | 1.94 (3) | 2.690 (3) | 176 (4) |
N3—H1N···O2Wiii | 0.86 | 2.27 | 3.117 (3) | 168 |
O2W—H2A···O2Wiv | 0.77 (3) | 2.12 (3) | 2.867 (3) | 164 (4) |
O2W—H2B···N2v | 0.78 (3) | 2.03 (3) | 2.792 (3) | 168 (3) |
N3—H2N···O2 | 0.86 | 2.10 | 2.733 (3) | 130 |
N3—H2N···O2vi | 0.86 | 2.20 | 2.871 (3) | 135 |
C5—H5···O1Wvii | 0.93 | 2.54 | 3.377 (4) | 150 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2; (iii) −x, −y+1, −z+2; (iv) −x, y−1/2, −z+3/2; (v) x, −y+3/2, z−1/2; (vi) −x, −y, −z+2; (vii) x, y+1, z. |
The pyrazine-2-carboxylic acid bridging ligand, owing to its ability to act in acidic environments (Zhang & Mitchison, 2003), has been extensively studied for biological applications, such as anti-tubercular (Manju et al., 2010), antipyretic, antitumor, and anticancer (Chanda et al., 2004). An additional amino substitution on 3-amino-2-pyrazine carboxylic acid could be expected to enhance crystal packing through extensive hydrogen bonding. APZC has a large variety of coordination geometries in metal complexes (Leciejewicz et al., 1997, 1998; Ptasiewicz-Bak & Leciejewicz, 1997; Tayebee et al., 2008).
In continuation of our search to enrich the variety of such kinds of hybrid compounds and to investigate the influence of hydrogen bonds on the structural features (Bouacida et al., 2007, 2009), we report here the synthesis and crystal structure of the title compound, (I), as a extention of our earlier work on N,O chelated ligands (Bouchene et al.2013) which can be involved in covalent interactions in metal coordination chemistry.
The asymmetric unit of (I) consists of one-half of the molecule, with the other half generated by a crystallographic inversion center. The molecular structure is shown in Fig. 1. The NiII ion is coordinated by two 3-amino-2-pyrazine carboxylate ligands via N,O-chelating groups in the equatorial plane and two aqua O atoms in the axial sites forming a slightly distorted octahedral coordination environment. The Ni—N, Ni—O and Ni—Oaqua distances are consistent with the reported data for the anhydrous Ni(II)(APZC)2(H2O)2 complex (Ptasiewicz-Bak & Leciejewicz, 1999). In the crystal, the solvent water molecules and complex molecules are involved in intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds forming two-dimensional layers parallel to (010) (Fig.2). Further O—H···O hydrogen bonds (Fig.3) involving the aqua ligands, N—H···.O hydrogen bonds the carboxylate groups of the APZC ligands form a three-dimensional network.